Convex geometric Demazure operators

Valentina Kiritchenko*

*Faculty of Mathematics and Laboratory of Algebraic Geometry,
National Research University Higher School of Economics
and
Kharkevich Institute for Information Transmission Problems RAS

The 5th MSJ-SI workshop on Schubert Calculus, July 24, 2012
Convex polytopes in algebraic geometry and in representation theory

0. Toric geometry
Newton (or moment) polytopes

1. Representation theory
Gelfand–Zetlin polytopes and *string polytopes* (Berenstein–Zelevinsky, Littelmann, 1998)

2. Algebraic geometry
Newton–Okounkov convex bodies (Kaveh–Khovanskii, Lazarsfeld–Mustata, 2009)

1 & 2. Schubert calculus
Convex polytopes in algebraic geometry and in representation theory

0. Toric geometry

Newton (or moment) polytopes

1. Representation theory

Gelfand–Zetlin polytopes and string polytopes
(Berenstein–Zelevinsky, Littelmann, 1998)

2. Algebraic geometry

Newton–Okounkov convex bodies
(Kaveh–Khovanskii, Lazarsfeld–Mustata, 2009)

1 & 2. Schubert calculus
Convex polytopes in algebraic geometry and in representation theory

0. Toric geometry

Newton (or moment) polytopes

1. Representation theory

Gelfand–Zetlin polytopes and string polytopes
(Berenstein–Zelevinsky, Littelmann, 1998)

2. Algebraic geometry

Newton–Okounkov convex bodies
(Kaveh–Khovanskii, Lazarsfeld–Mustata, 2009)

1 & 2. Schubert calculus
Convex polytopes in algebraic geometry and in representation theory

0. Toric geometry

Newton (or moment) polytopes

1. Representation theory

Gelfand–Zetlin polytopes and string polytopes (Berenstein–Zelevinsky, Littelmann, 1998)

2. Algebraic geometry

Newton–Okounkov convex bodies (Kaveh–Khovanskii, Lazarsfeld–Mustata, 2009)

1 & 2. Schubert calculus
Flag varieties

Definition
The flag variety X is the variety of complete flags in \mathbb{C}^n:

$$X = \{\{0\} = V^0 \subset V^1 \subset \ldots \subset V^{n-1} \subset V^n = \mathbb{C}^n | \dim V^i = i\}$$

Remark
Alternatively, $X = GL_n(\mathbb{C})/B$, where B denotes the group of upper-triangular matrices (Borel subgroup). In this form, the definition can be extended to arbitrary connected reductive groups.

Dimension

$$\dim X = \frac{n(n-1)}{2}$$
Flag varieties

Definition
The flag variety X is the variety of complete flags in \mathbb{C}^n:

$$X = \{ \{0\} = V^0 \subset V^1 \subset \ldots \subset V^{n-1} \subset V^n = \mathbb{C}^n \mid \dim V^i = i \}$$

Remark
Alternatively, $X = \text{GL}_n(\mathbb{C})/B$, where B denotes the group of upper-triangular matrices (Borel subgroup). In this form, the definition can be extended to arbitrary connected reductive groups.

Dimension

$$\dim X = \frac{n(n - 1)}{2}$$
Flag varieties

Definition
The flag variety X is the variety of complete flags in \mathbb{C}^n:

$$X = \{\{0\} = V^0 \subset V^1 \subset \ldots \subset V^{n-1} \subset V^n = \mathbb{C}^n \mid \dim V^i = i\}$$

Remark
Alternatively, $X = GL_n(\mathbb{C})/B$, where B denotes the group of upper-triangular matrices (Borel subgroup). In this form, the definition can be extended to arbitrary connected reductive groups.

Dimension

$$\dim X = \frac{n(n-1)}{2}$$
Flag varieties and representation theory

Definition
A collection of integers $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{Z}^n$ is a strictly dominant weight of the group $GL_n(\mathbb{C})$ if $\lambda_i < \lambda_{i+1}$ for all $i = 1, \ldots, n - 1$.

Fact
very ample line bundles on X \longleftrightarrow irreducible representations of $GL_n(\mathbb{C})$ with strictly dominant weights.

Construction

- V_λ — the irreducible GL_n-module with the highest weight λ \implies $X \hookrightarrow \mathbb{P}(V_\lambda)$, $g \mapsto gv_\lambda$ — embedding;
- \mathcal{L} — very ample line bundle $\implies H^0(X, \mathcal{L})^* = V_\lambda$
Flag varieties and representation theory

Definition
A collection of integers \(\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{Z}^n \) is a *strictly dominant weight* of the group \(GL_n(\mathbb{C}) \) if \(\lambda_i < \lambda_{i+1} \) for all \(i = 1, \ldots, n-1 \).

Fact
very ample line bundles on \(X \) \(\iff \) irreducible representations of \(GL_n(\mathbb{C}) \) with strictly dominant weights.

Construction

- \(V_\lambda \) — the irreducible \(GL_n \)-module with the highest weight \(\lambda \)
 \(\implies \) \(X \hookrightarrow \mathbb{P}(V_\lambda), \ g \mapsto gv_\lambda \) — embedding;
- \(L \) — very ample line bundle
 \(\implies \) \(H^0(X, L)^* = V_\lambda \)
Flag varieties and representation theory

Definition
A collection of integers \(\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{Z}^n \) is a *strictly dominant weight* of the group \(GL_n(\mathbb{C}) \) if \(\lambda_i < \lambda_{i+1} \) for all \(i = 1, \ldots, n-1 \).

Fact
very ample line bundles on \(X \iff \) irreducible representations of \(GL_n(\mathbb{C}) \) with strictly dominant weights.

Construction
- \(V_\lambda \) — the irreducible \(GL_n \)-module with the highest weight \(\lambda \)
 \(\implies X \hookrightarrow \mathbb{P}(V_\lambda), \ g \mapsto gv_\lambda \ — \ embedding; \)
- \(\mathcal{L} \) — very ample line bundle
 \(\implies H^0(X, \mathcal{L})^* = V_\lambda \)
Flag varieties and representation theory

Definition
A collection of integers $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{Z}^n$ is a strictly dominant weight of the group $GL_n(\mathbb{C})$ if $\lambda_i < \lambda_{i+1}$ for all $i = 1, \ldots, n - 1$.

Fact
very ample line bundles on $X \leftrightarrow$ irreducible representations of $GL_n(\mathbb{C})$ with strictly dominant weights.

Construction

• V_λ — the irreducible GL_n-module with the highest weight λ
 $\implies X \hookrightarrow \mathbb{P}(V_\lambda)$, $g \mapsto gv_\lambda$ — embedding;

• L — very ample line bundle
 $\implies H^0(X, L)^* = V_\lambda$
Flag varieties and representation theory

Definition
A collection of integers \(\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{Z}^n \) is a strictly dominant weight of the group \(GL_n(\mathbb{C}) \) if \(\lambda_i < \lambda_{i+1} \) for all \(i = 1, \ldots, n-1 \).

Fact
very ample line bundles on \(X \leftrightarrow \) irreducible representations of \(GL_n(\mathbb{C}) \) with strictly dominant weights.

Construction
- \(V_\lambda \) — the irreducible \(GL_n \)-module with the highest weight \(\lambda \)
 \(\implies X \hookrightarrow \mathbb{P}(V_\lambda), \ g \mapsto gv_\lambda \) — embedding;
- \(\mathcal{L} \) — very ample line bundle
 \(\implies H^0(X, \mathcal{L})^* = V_\lambda \)
Gelfand–Zetlin polytope
For each strictly dominant weight λ, define a convex polytope $P_\lambda \subset \mathbb{R}^d$ (where $d = n(n - 1)/2$) with integer vertices.

Origins
Gelfand and Zetlin constructed a natural basis in V_λ. The basis elements are parameterized by the integer points inside and at the boundary of P_λ.

Dimension
$$\dim P_\lambda = d = \dim X$$
Gelfand–Zetlin polytope

For each strictly dominant weight λ, define a convex polytope $P_{\lambda} \subset \mathbb{R}^d$ (where $d = n(n - 1)/2$) with integer vertices.

Origins

Gelfand and Zetlin constructed a natural basis in V_{λ}. The basis elements are parameterized by the integer points inside and at the boundary of P_{λ}.

Dimension

$$\dim P_{\lambda} = d = \dim X$$
Gelfand–Zetlin polytope

For each strictly dominant weight λ, define a convex polytope $P_\lambda \subset \mathbb{R}^d$ (where $d = n(n - 1)/2$) with integer vertices.

Origins

Gelfand and Zetlin constructed a natural basis in V_λ. The basis elements are parameterized by the integer points inside and at the boundary of P_λ.

Dimension

$$\dim P_\lambda = d = \dim X$$
Gelfand–Zetlin polytopes

The Gelfand–Zetlin polytope P_λ is defined by inequalities:

$$
\begin{array}{ccccccc}
\lambda_1 & \lambda_2 & \lambda_3 & \cdots & \lambda_n \\
 x_1^1 & x_2^1 & \cdots & \cdots & x_{n-1}^1 \\
 x_1^2 & \cdots & \cdots & \cdots & x_{n-2}^2 \\
 \vdots & \cdots & \cdots & \cdots & \ddots \\
 x_1^{n-2} & \cdots & \cdots & \cdots & x_2^{n-2} \\
 x_1^{n-1} & & & & & x_1^1 \\
\end{array}
$$

where $(x_1^1, \ldots, x_{n-1}^1; \ldots; x_1^{n-1})$ are coordinates in \mathbb{R}^d, and the notation

$$
\begin{array}{ccc}
a & b \\
& c \\
\end{array}
$$

means $a \leq c \leq b$.
Gelfand–Zetlin polytopes

A Gelfand–Zetlin polytope for GL_3:

$$
\begin{bmatrix}
-1 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
\end{bmatrix}
$$
Flag varieties and Gelfand–Zetlin polytopes

Goal

Use combinatorics of P_λ to study geometry of X.

Results

• Relation between Schubert varieties and preimages of rc-faces of P_λ under the Guillemin–Sternberg moment map $X \to P_\lambda$ (Kogan, 2000)

• Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of P_λ (Kogan–Miller, Knutson–Miller, 2003)

• Description of $H^*(X, \mathbb{Z})$ using volume polynomial of P_λ (Kaveh, 2003)

• Schubert calculus: intersection product of Schubert cycles in $H^*(X, \mathbb{Z}) = \text{intersection of faces in } P_\lambda$ (K.—Smirnov–Timorin, 2011)
Flag varieties and Gelfand–Zetlin polytopes

Goal
Use combinatorics of P_λ to study geometry of X.

Results

- Relation between Schubert varieties and preimages of rc-faces of P_λ under the Guillemin–Sternberg moment map $X \rightarrow P_\lambda$ (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of P_λ (Kogan–Miller, Knutson–Miller, 2003)
- Description of $H^*(X, \mathbb{Z})$ using volume polynomial of P_λ (Kaveh, 2003)
- Schubert calculus: intersection product of Schubert cycles in $H^*(X, \mathbb{Z}) = \text{intersection of faces in } P_\lambda$ (K.–Smirnov–Timorin, 2011)
Flag varieties and Gelfand–Zetlin polytopes

Goal
Use combinatorics of P_λ to study geometry of X.

Results

• Relation between Schubert varieties and preimages of rc-faces of P_λ under the Guillemin–Sternberg moment map $X \to P_\lambda$ (Kogan, 2000)

• Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of P_λ (Kogan–Miller, Knutson–Miller, 2003)

• Description of $H^*(X, \mathbb{Z})$ using volume polynomial of P_λ (Kaveh, 2003)

• Schubert calculus: intersection product of Schubert cycles in $H^*(X, \mathbb{Z}) = \text{intersection of faces in } P_\lambda$ (K.–Smirnov–Timorin, 2011)
Flag varieties and Gelfand–Zetlin polytopes

Goal
Use combinatorics of P_λ to study geometry of X.

Results

• Relation between Schubert varieties and preimages of rc-faces of P_λ under the Guillemin–Sternberg moment map $X \to P_\lambda$ (Kogan, 2000)

• Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of P_λ (Kogan–Miller, Knutson–Miller, 2003)

• Description of $H^*(X,\mathbb{Z})$ using volume polynomial of P_λ (Kaveh, 2003)

• Schubert calculus: intersection product of Schubert cycles in $H^*(X,\mathbb{Z}) = \text{intersection of faces in } P_\lambda$ (K.–Smirnov–Timorin, 2011)
Flag varieties and Gelfand–Zetlin polytopes

Goal
Use combinatorics of P_λ to study geometry of X.

Results

- Relation between Schubert varieties and preimages of rc-faces of P_λ under the Guillemin–Sternberg moment map $X \to P_\lambda$ (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of P_λ (Kogan–Miller, Knutson–Miller, 2003)
- Description of $H^*(X, \mathbb{Z})$ using volume polynomial of P_λ (Kaveh, 2003)
- Schubert calculus: intersection product of Schubert cycles in $H^*(X, \mathbb{Z}) = \text{intersection of faces in } P_\lambda$ (K.-Smirnov–Timorin, 2011)
Flag varieties and Gelfand–Zetlin polytopes

Goal
Use combinatorics of P_λ to study geometry of X.

Results

- Relation between Schubert varieties and preimages of rc-faces of P_λ under the Guillemin–Sternberg moment map $X \rightarrow P_\lambda$ (Kogan, 2000)
- Degenerations of Schubert varieties to (reducible) toric varieties given by (unions of) faces of P_λ (Kogan–Miller, Knutson–Miller, 2003)
- Description of $H^*(X, \mathbb{Z})$ using volume polynomial of P_λ (Kaveh, 2003)
- Schubert calculus: intersection product of Schubert cycles in $H^*(X, \mathbb{Z}) = \text{intersection of faces in } P_\lambda$ (K.–Smirnov–Timorin, 2011)
Schubert calculus and Gelfand–Zetlin polytopes

Definition
For each permutation $w \in S_n$, the *Schubert variety* $X_w \subset X$ is

$$X_w = \overline{B w B},$$

where w acts on the standard basis vectors e_i by the formula $e_i \mapsto e_{w(i)}$.

Dimension
$$\dim X_w = \ell(w)$$

Definition
The *Schubert cycle* $[X_w]$ is the class of X_w in $H^*(X, \mathbb{Z})$.
Schubert calculus and Gelfand–Zetlin polytopes

Definition
For each permutation $w \in S_n$, the Schubert variety $X_w \subset X$ is

$$X_w = BwB,$$

where w acts on the standard basis vectors e_i by the formula

$e_i \mapsto e_{w(i)}$.

Dimension
$\dim X_w = \ell(w)$

Definition
The Schubert cycle $[X_w]$ is the class of X_w in $H^*(X, \mathbb{Z})$.
Schubert calculus and Gelfand–Zetlin polytopes

Definition
For each permutation $w \in S_n$, the Schubert variety $X_w \subset X$ is

$$X_w = \overline{BwB},$$

where w acts on the standard basis vectors e_i by the formula $e_i \mapsto e_{w(i)}$.

Dimension
$\dim X_w = \ell(w)$

Definition
The Schubert cycle $[X_w]$ is the class of X_w in $H^*(X, \mathbb{Z})$.

Schubert calculus and Gelfand–Zetlin polytopes

\[
\begin{align*}
[X_{s_1 s_2 s_1}] & = \\
[X_{s_1 s_2}] & = \\
[X_{s_2 s_1}] & =
\end{align*}
\]
Schubert calculus and Gelfand–Zetlin polytopes

\[
[J_{s_1 s_2 s_1}] = \\
[J_{s_1 s_2}] = \\
[J_{s_2 s_1}] =
\]

\[
= +
\]
Schubert calculus and Gelfand–Zetlin polytopes

\[[X_{s_1 s_2 s_1}] = \]

\[[X_{s_1 s_2}] = \]

\[= + \]

\[[X_{s_2 s_1}] = \]

\[= + \]

\[= + \]
Schubert calculus and Gelfand–Zetlin polytopes

\[
[X_{s_1}] = \cdots = [X_{s_2}] = \cdots \\
= [X_{s_1}] + [X_{s_2}]
\]
Schubert calculus and Gelfand–Zetlin polytopes

\[[X_{s_1}] = \quad = \quad [X_{s_2}] = \quad = \quad \]

\[[X_{s_2 s_1}]^2 = \quad \cdot \quad (\quad + \quad) = \quad = \quad [X_{s_1}] \]
Schubert calculus and Gelfand–Zetlin polytopes

GL_n

Any two Schubert cycles $[X_w]$ and $[X_{w'}]$ can be represented as sums of faces so that every face appearing in the decomposition of $[X_w]$ is transverse to every face appearing in the decomposition of $[X_{w'}]$\(^1\).

Corollary

Intersection of any two Schubert cycles can be represented by linear combinations of faces with nonnegative coefficients.

Question

Why intersecting faces is better than multiplying Schubert polynomials?

\(^1\)see ArXiv:1101.0278v1 [Math.AG] for precise formulas
Schubert calculus and Gelfand–Zetlin polytopes

GL_n

Any two Schubert cycles $[X_w]$ and $[X_{w'}]$ can be represented as sums of faces so that every face appearing in the decomposition of $[X_w]$ is transverse to every face appearing in the decomposition of $[X_{w'}]$\(^1\).

Corollary

Intersection of any two Schubert cycles can be represented by linear combinations of faces with nonnegative coefficients.

Question

Why intersecting faces is better than multiplying Schubert polynomials?

\(^1\text{see arXiv:1101.0278v1 [math.AG] for precise formulas}\)
Schubert calculus and Gelfand–Zetlin polytopes

GL_n
Any two Schubert cycles $[X_w]$ and $[X_{w'}]$ can be represented as sums of faces so that every face appearing in the decomposition of $[X_w]$ is transverse to every face appearing in the decomposition of $[X_{w'}]$.\(^1\)

Corollary
Intersection of any two Schubert cycles can be represented by linear combinations of faces with nonnegative coefficients.

Question
Why intersecting faces is better than multiplying Schubert polynomials?

\(^1\)see arXiv:1101.0278v1 [math.AG] for precise formulas
Schubert calculus and Gelfand–Zetlin polytopes

Answer
Faces are more “positive” than monomials: all computations with faces are cancelation free.

Example for GL_3
Compute $[X_{s_1}] \cdot [X_{s_2 s_1}]$ in two ways: via Schubert polynomials and via faces.

\[x_1 x_2 (x_1 + x_2) = x_1^2 x_2 - x_1 x_2^2 = 1 - 1 = 0 \text{ (cancelation)} \]
Schubert calculus and Gelfand–Zetlin polytopes

Answer
Faces are more “positive” than monomials: all computations with faces are cancelation free.

Example for GL_3
Compute $[X_{s_1}] \cdot [X_{s_2 s_1}]$ in two ways: via Schubert polynomials and via faces.

$$x_1 x_2 (x_1 + x_2) = x_1^2 x_2 - x_1 x_2^2 = 1 - 1 = 0 \text{ (cancelation)}$$

intersection is empty (no cancelation)
Schubert calculus and Gelfand–Zetlin polytopes

Answer
Faces are more “positive” than monomials: all computations with faces are cancelation free.

Example for GL_3
Compute $[X_{s_1}] \cdot [X_{s_2 s_1}]$ in two ways: via Schubert polynomials and via faces.

$$x_1 x_2(x_1 + x_2) = x_1^2 x_2 - x_1 x_2^2 = 1 - 1 = 0 \text{ (cancelation)}$$

intersection is empty (no cancelation)
Schubert calculus and Gelfand–Zetlin polytopes

Answer
Faces are more “positive” than monomials: all computations with faces are cancelation free.

Example for GL_3
Compute $[X_{s_1}] \cdot [X_{s_2s_1}]$ in two ways: via Schubert polynomials and via faces.

\[
x_1x_2(x_1 + x_2) = x_1^2x_2 - x_1x_2^2 = 1 - 1 = 0 \text{ (cancelation)}
\]

\[
\begin{array}{c}
\text{intersection is empty (no cancelation)}
\end{array}
\]
Schubert calculus and Gelfand–Zetlin polytopes

Answer
Faces are more “positive” than monomials: all computations with faces are cancelation free.

Example for GL_3
Compute $[X_{s_1}] \cdot [X_{s_2 s_1}]$ in two ways: via Schubert polynomials and via faces.

\[
x_1x_2(x_1 + x_2) = x_1^2x_2 - x_1x_2^2 = 1 - 1 = 0 \text{ (cancelation)}
\]

intersection is empty (no cancelation)
Schubert calculus and Gelfand–Zetlin polytopes

Answer
Faces are more “positive” than monomials: all computations with faces are cancelation free.

Example for GL_3
Compute $[X_{s_1}] \cdot [X_{s_2 s_1}]$ in two ways: via Schubert polynomials and via faces.

\[x_1 x_2 (x_1 + x_2) = x_1^2 x_2 - x_1 x_2^2 = 1 - 1 = 0 \text{ (cancelation)} \]

intersection is empty (no cancelation)
Schubert calculus and Gelfand–Zetlin polytopes

Answer
Faces are more “positive” than monomials: all computations with faces are cancelation free.

Example for GL_3
Compute $[X_{s_1}] \cdot [X_{s_2 s_1}]$ in two ways: via Schubert polynomials and via faces.

\[x_1 x_2 (x_1 + x_2) = x_1^2 x_2 - x_1 x_2^2 = 1 - 1 = 0 \text{ (cancelation)} \]
Schubert calculus and Gelfand–Zetlin polytopes

Answer
Faces are more “positive” than monomials: all computations with faces are cancelation free.

Example for GL_3
Compute $[X_{s_1}] \cdot [X_{s_2 s_1}]$ in two ways: via Schubert polynomials and via faces.

\[x_1 x_2 (x_1 + x_2) = x_1^2 x_2 - x_1 x_2^2 = 1 - 1 = 0 \text{ (cancelation)} \]

\[\cdot = 0 \]

intersection is empty (no cancelation)
Schubert calculus and Gelfand–Zetlin polytopes

Answer
Faces are more “positive” than monomials: all computations with faces are cancelation free.

Example for GL_3
Compute $[X_{s_1}] \cdot [X_{s_2 s_1}]$ in two ways: via Schubert polynomials and via faces.

\[x_1 x_2 (x_1 + x_2) = x_1^2 x_2 - x_1 x_2^2 = 1 - 1 = 0 \text{ (cancelation)} \]

\[\cdot = 0 \text{ (no cancelation)} \]
Schubert calculus and Gelfand–Zetlin polytopes

Arbitrary reductive groups
How to relate Schubert cycles to (unions of) faces of polytopes?

Main tool
A convex geometric incarnation of divided difference operators.
Schubert calculus and Gelfand–Zetlin polytopes

Arbitrary reductive groups
How to relate Schubert cycles to (unions of) faces of polytopes?

Main tool
A convex geometric incarnation of divided difference operators.
Tool: divided difference operators

Definition (for GL_n)

Divided difference operator δ_i (for $i = 1, \ldots, n - 1$) acts on $\mathbb{Z}[x_1, \ldots, x_n]$ as follows:

$$
\delta_i : f \mapsto \frac{f - s_i(f)}{x_i - x_{i+1}}.
$$

Example

$$
\delta_1(x_1^2) = \frac{x_1^2 - x_2^2}{x_1 - x_2} = x_1 + x_2.
$$
Tool: divided difference operators

Definition (for GL_n)

Divided difference operator δ_i (for $i = 1, \ldots, n - 1$) acts on $\mathbb{Z}[x_1, \ldots, x_n]$ as follows:

$$\delta_i : f \mapsto \frac{f - s_i(f)}{x_i - x_{i+1}}.$$

Example

$$\delta_1(x_1^2) = \frac{x_1^2 - x_2^2}{x_1 - x_2} = x_1 + x_2$$
Theorem (Bernstein–Gelfand–Gelfand, Demazure, 1971)

Let \(w = s_{i_1} \ldots s_{i_\ell} \) be a reduced representation. In the Borel presentation,

\[
[X_w] = \delta_{i_\ell} \ldots \delta_{i_1} [X_{id}],
\]

where \([X_{id}]\) is the class of a point.

Remark

For \(GL_n \),

\[
[X_{id}] = x_1^{n-1} x_2^{n-2} \ldots x_{n-1}.
\]

For other reductive groups, there is sometimes no denominator-free formula.
Theorem (Bernstein–Gelfand–Gelfand, Demazure, 1971)
Let \(w = s_{i_1} \ldots s_{i_\ell} \) be a reduced representation. In the Borel presentation,
\[
[X_w] = \delta_{i_\ell} \ldots \delta_{i_1} [X_{id}],
\]
where \([X_{id}]\) is the class of a point.

Remark
For \(GL_n \),
\[
[X_{id}] = x_1^{n-1} x_2^{n-2} \ldots x_{n-1}.
\]
For other reductive groups, there is sometimes no denominator-free formula.
Topological meaning of divided difference operators

Gysin morphism

Let P_i be the minimal parabolic subgroup, and $p_i : G/B \to G/P_i$ the natural projection. Then the action of δ_i on $H^*(G/B, \mathbb{Z})$ coincides with the action of $p_i^* \circ p_{i*}$:

$$\delta_i : H^*(G/B, \mathbb{Z}) \xrightarrow{p_i^*} H^*(G/P_i, \mathbb{Z}) \xrightarrow{p_i^*} H^*(G/B, \mathbb{Z}).$$

Example

If $G = GL_n$, then G/P_i is obtained by forgetting the i-th space in a flag.
Topological meaning of divided difference operators

Gysin morphism
Let P_i be the minimal parabolic subgroup, and $p_i : G/B \to G/P_i$ the natural projection. Then the action of δ_i on $H^*(G/B, \mathbb{Z})$ coincides with the action of $p_i^* \circ p_i^*$:

$$\delta_i : H^*(G/B, \mathbb{Z}) \xrightarrow{p_i^*} H^*(G/P_i, \mathbb{Z}) \xrightarrow{p_i^*} H^*(G/B, \mathbb{Z}).$$

Example
If $G = GL_n$, then G/P_i is obtained by forgetting the i-th space in a flag.
Generalizations of divided difference operators

Generalized cohomology theories

Let A^* be a generalized oriented cohomology theory. Define the \emph{generalized divided difference operator} δ_i^A as the composition

$$
\delta_i^A : A^*(G/B, \mathbb{Z}) \xrightarrow{p_i^A} A^*(G/P_i, \mathbb{Z}) \xrightarrow{p_i^{*A}} A^*(G/B, \mathbb{Z}).
$$

Examples

- classical cohomology H^* or Chow ring CH^*
- K-theory K^*_0
- complex cobordism MU^* or algebraic cobordism Ω^*
Generalizations of divided difference operators

Generalized cohomology theories
Let A^* be a generalized oriented cohomology theory. Define the \textit{generalized divided difference operator} δ_i^A as the composition

$$
\delta_i^A : A^*(G/B, \mathbb{Z}) \xrightarrow{p_i^A} A^*(G/P_i, \mathbb{Z}) \xrightarrow{p_i^{*,A}} A^*(G/B, \mathbb{Z}).
$$

Examples

- classical cohomology H^* or Chow ring CH^*
- K-theory K_0^*
- complex cobordism MU^* or algebraic cobordism Ω^*
Generalizations of divided difference operators

Generalized cohomology theories
Let A^* be a generalized oriented cohomology theory. Define \textit{generalized divided difference operator} δ_i^A as the composition

$$\delta_i^A : A^*(G/B, \mathbb{Z}) \xrightarrow{p_{i*}^A} A^*(G/P_i, \mathbb{Z}) \xrightarrow{p_{i*}^A} A^*(G/B, \mathbb{Z}).$$

Examples

- classical cohomology H^* or Chow ring CH^*
- K-theory K_0^*
- complex cobordism MU^* or algebraic cobordism Ω^*
Generalizations of divided difference operators

Generalized cohomology theories
Let A^* be a generalized oriented cohomology theory. Define \textit{generalized divided difference operator} δ_i^A as the composition

$$\delta_i^A : A^*(G/B, \mathbb{Z}) \xrightarrow{p_i^A} A^*(G/P_i, \mathbb{Z}) \xrightarrow{p_i^{*A}} A^*(G/B, \mathbb{Z}).$$

Examples

- classical cohomology H^* or Chow ring CH^*
- K-theory K_0^*
- complex cobordism MU^* or algebraic cobordism Ω^*
Generalizations of divided difference operators

Generalized cohomology theories

Let A^* be a generalized oriented cohomology theory. Define the \textit{generalized divided difference operator} δ^A_i as the composition

$$
\delta^A_i : A^*(G/B, \mathbb{Z}) \xrightarrow{p^A_{i*}} A^*(G/P_i, \mathbb{Z}) \xrightarrow{p^{*A}_i} A^*(G/B, \mathbb{Z}).
$$

Examples

- classical cohomology H^* or Chow ring CH^*
- K-theory K_0^*
- complex cobordism MU^* or algebraic cobordism Ω^*
Generalizations of divided difference operators

Question
Is there an algebraic formula for δ_i^A?

Formal group law
There exists a formal power series $F_A(x, y) = x + y + \ldots$ with coefficients in A^0 such that

$$F(c_1^A(L), c_1^A(M)) = c_1^A(L \otimes M)$$

in $A^*(X)$ for any pair of line bundles L and M on a variety X.

Examples

CH^* $F(x, y) = x + y$

K_0^* $F(x, y) = x + y - xy$

Ω^* $F(x, y) = x + y - [\mathbb{P}^1]xy + ([\mathbb{P}^1]^2 - [\mathbb{P}^2])x^2y + \ldots$

universal formal group law
Generalizations of divided difference operators

Question
Is there an algebraic formula for δ_i^A?

Formal group law
There exists a formal power series $F_A(x, y) = x + y + \ldots$ with coefficients in A^0 such that

$$F(c_1^A(L), c_1^A(M)) = c_1^A(L \otimes M)$$

in $A^*(X)$ for any pair of line bundles L and M on a variety X.

Examples

CH^* $F(x, y) = x + y$

K_0^* $F(x, y) = x + y - xy$

Ω^* $F(x, y) = x + y - [\mathbb{P}^1]xy + ([\mathbb{P}^1]^2 - [\mathbb{P}^2])x^2y + \ldots$

universal formal group law
Generalizations of divided difference operators

Question
Is there an algebraic formula for δ_i^A?

Formal group law
There exists a formal power series $F_A(x, y) = x + y + \ldots$ with coefficients in A^0 such that

$$F(c_1^A(L), c_1^A(M)) = c_1^A(L \otimes M)$$

in $A^*(X)$ for any pair of line bundles L and M on a variety X.

Examples

CH^* $F(x, y) = x + y$

K_0^* $F(x, y) = x + y - xy$

Ω^* $F(x, y) = x + y - [P^1]xy + ([P^1]^2 - [P^2])x^2y + \ldots$

universal formal group law
Generalizations of divided difference operators

Question
Is there an algebraic formula for δ_i^A?

Formal group law
There exists a formal power series $F_A(x, y) = x + y + \ldots$ with coefficients in A^0 such that

$$F(c_1^A(L), c_1^A(M)) = c_1^A(L \otimes M)$$

in $A^*(X)$ for any pair of line bundles L and M on a variety X.

Examples

CH^* $F(x, y) = x + y$

K_0^* $F(x, y) = x + y - xy$

Ω^* $F(x, y) = x + y - [P^1]xy + ([P^1]^2 - [P^2])x^2y + \ldots$

universal formal group law
Generalizations of divided difference operators

Question
Is there an algebraic formula for δ_i^A?

Formal group law
There exists a formal power series $F_A(x, y) = x + y + \ldots$ with coefficients in A^0 such that

$$F(c_1^A(L), c_1^A(M)) = c_1^A(L \otimes M)$$

in $A^*(X)$ for any pair of line bundles L and M on a variety X.

Examples

CH^* $F(x, y) = x + y$

K_0^* $F(x, y) = x + y - xy$

Ω^* $F(x, y) = x + y - [P^1]xy + ([P^1]^2 - [P^2])x^2 y + \ldots$

universal formal group law
Generalizations of divided difference operators

Question
Is there an algebraic formula for δ_i^A?

Formal group law
There exists a formal power series $F_A(x, y) = x + y + \ldots$ with coefficients in A^0 such that

$$F(c_1^A(L), c_1^A(M)) = c_1^A(L \otimes M)$$

in $A^*(X)$ for any pair of line bundles L and M on a variety X.

Examples

CH^* $F(x, y) = x + y$
K_0^* $F(x, y) = x + y - xy$
Ω^* $F(x, y) = x + y - [P^1]xy + ([P^1]^2 - [P^2])x^2y + \ldots$

universal formal group law
Generalizations of divided difference operators

Theorem

\[\delta_i^A = (1 + s_i) \frac{1}{x_i - A x_{i+1}} \]

Applications

Formulas for “Schubert cycles” in the “Borel presentation” for \(A^*(G/B) \). Algorithms for multiplying “Schubert cycles”.

- \(H^* \) Bernstein–Gelfand–Gelfand, Demazure, 1973
- \(K_0^* \) Demazure, 1974
- \(MU^* \) Bressler–Evens, 1992
- \(\Omega^* \) Hornbostel–K., Calmés–Petrov–Zainoulline, 2009
- \(\Omega_T^* \) K.–Krishna, 2011
Generalizations of divided difference operators

Theorem

\[\delta_i^A = (1 + s_i) \frac{1}{x_i - A x_{i+1}} \]

Applications

Formulas for “Schubert cycles” in the “Borel presentation” for \(A^*(G/B) \). Algorithms for multiplying “Schubert cycles”.

- \(H^* \) Bernstein–Gelfand–Gelfand, Demazure, 1973
- \(K_0^* \) Demazure, 1974
- \(MU^* \) Bressler–Evens, 1992
- \(\Omega^* \) Hornbostel–K., Calmés–Petrov–Zainoulline, 2009
- \(\Omega_T^* \) K.–Krishna, 2011
Generalizations of divided difference operators

Theorem

\[\delta_i^A = (1 + s_i) \frac{1}{x_i - A x_{i+1}} \]

Applications

Formulas for “Schubert cycles” in the “Borel presentation” for \(A^*(G/B) \). Algorithms for multiplying “Schubert cycles”.

- \(H^* \) Bernstein–Gelfand–Gelfand, Demazure, 1973
- \(K_0^* \) Demazure, 1974
- \(MU^* \) Bressler–Evens, 1992
- \(\Omega^* \) Hornbostel–K., Calmés–Petrov–Zainoulline, 2009
- \(\Omega^*_T \) K.–Krishna, 2011
Generalizations of divided difference operators

Theorem

\[\delta_i^A = (1 + s_i) \frac{1}{x_i - A x_{i+1}} \]

Applications

Formulas for “Schubert cycles” in the “Borel presentation” for \(A^*(G/B) \). Algorithms for multiplying “Schubert cycles”.

- \(H^* \) Bernstein–Gelfand–Gelfand, Demazure, 1973
- \(K_0^* \) Demazure, 1974
- \(MU^* \) Bressler–Evens, 1992
- \(\Omega^* \) Hornbostel–K., Calmés–Petrov–Zainoulline, 2009
- \(\Omega_T^* \) K.–Krishna, 2011
Generalizations of divided difference operators

Theorem

\[\delta_i^A = (1 + s_i) \frac{1}{x_i - A x_{i+1}} \]

Applications

Formulas for “Schubert cycles” in the “Borel presentation” for \(A^*(G/B) \). Algorithms for multiplying “Schubert cycles”.

\(H^* \) Bernstein–Gelfand–Gelfand, Demazure, 1973

\(K_0^* \) Demazure, 1974

\(MU^* \) Bressler–Evens, 1992

\(\Omega^* \) Hornbostel–K., Calmés–Petrov–Zainoulline, 2009

\(\Omega_T^* \) K.–Krishna, 2011
Generalizations of divided difference operators

Theorem

\[\delta_i^A = (1 + s_i) \frac{1}{x_i - A x_{i+1}} \]

Applications

Formulas for “Schubert cycles” in the “Borel presentation” for \(A^* (G/B) \). Algorithms for multiplying “Schubert cycles”.

- \(H^* \) Bernstein–Gelfand–Gelfand, Demazure, 1973
- \(K_0^* \) Demazure, 1974
- \(MU^* \) Bressler–Evens, 1992
- \(\Omega^* \) Hornbostel–K., Calmés–Petrov–Zainoulline, 2009
- \(\Omega_T^* \) K.–Krishna, 2011
Generalizations of divided difference operators

Theorem

\[\delta_i^A = (1 + s_i) \frac{1}{x_i - A - x_{i+1}} \]

Applications

Formulas for “Schubert cycles” in the “Borel presentation” for \(A^*(G/B) \). Algorithms for multiplying “Schubert cycles”.

- \(H^* \) Bernstein–Gelfand–Gelfand, Demazure, 1973
- \(K_0^* \) Demazure, 1974
- \(MU^* \) Bressler–Evens, 1992
- \(\Omega^* \) Hornbostel–K., Calmés–Petrov–Zainoulline, 2009
- \(\Omega_T^* \) K.–Krishna, 2011
Demazure operators

Notation
Let G be a connected reductive group of semisimple rank r, Λ_G the weight lattice of G, and $\mathbb{Z}[\Lambda_G]$ the group ring. Simple roots of G are denoted by $\alpha_1, \ldots, \alpha_r$.

Remark
Elements of Λ_G are written in the form

$$\sum_{\mu \in \Lambda_G} m(\mu)e^\mu.$$

Definition
Demazure operator D_i (for $i = 1, \ldots, n$) acts on $\mathbb{Z}[\Lambda_G]$ as follows:

$$D_i : f \mapsto \frac{f - e^{\alpha_i}s_i(f)}{1 - e^{\alpha_i}}.$$
Demazure operators

Notation
Let G be a connected reductive group of semisimple rank r, Λ_G the weight lattice of G, and $\mathbb{Z}[\Lambda_G]$ the group ring. Simple roots of G are denoted by $\alpha_1, \ldots, \alpha_r$.

Remark
Elements of Λ_G are written in the form
\[
\sum_{\mu \in \Lambda_G} m(\mu) e^\mu.
\]

Definition
Demazure operator D_i (for $i = 1, \ldots, n$) acts on $\mathbb{Z}[\Lambda_G]$ as follows:
\[
D_i : f \mapsto \frac{f - e^{\alpha_i} s_i(f)}{1 - e^{\alpha_i}}.
\]
Demazure operators

Notation
Let G be a connected reductive group of semisimple rank r, Λ_G the weight lattice of G, and $\mathbb{Z}[\Lambda_G]$ the group ring. Simple roots of G are denoted by $\alpha_1, \ldots, \alpha_r$.

Remark
Elements of Λ_G are written in the form
$$\sum_{\mu \in \Lambda_G} m(\mu)e^{\mu}.$$

Definition
Demazure operator D_i (for $i = 1, \ldots, n$) acts on $\mathbb{Z}[\Lambda_G]$ as follows:
$$D_i : f \mapsto \frac{f - e^{\alpha_i} s_i(f)}{1 - e^{\alpha_i}}.$$
Demazure operators

Example for GL_n

$$D_1(e^{\alpha_2}) = \frac{e^{\alpha_2} - e^{\alpha_1}e^{\alpha_1+\alpha_2}}{1 - e^{\alpha_1}} = e^{\alpha_2} + e^{\alpha_1+\alpha_2}$$

Exercise

Define (λ, α_i) by the identity $s_i(\lambda) = \lambda - (\lambda, \alpha_i)\alpha_i$.

$$\begin{cases}
D_i(e^\lambda) = e^\lambda(1 + e^{\alpha_i} + \ldots + e^{-(\lambda,\alpha_i)\alpha_i}), & (\lambda, \alpha_i) \leq 0 \\
D_i(e^\lambda) = 0, & (\lambda, \alpha_i) = 1 \\
D_i(e^\lambda) = -e^\lambda(1 + e^{-\alpha_i} + \ldots + e^{-(\lambda,\alpha_i)-2)\alpha_i}), & (\lambda, \alpha_i) > 1
\end{cases}$$
Demazure operators

Example for GL_n

$$D_1(e^{\alpha_2}) = \frac{e^{\alpha_2} - e^{\alpha_1} e^{\alpha_1 + \alpha_2}}{1 - e^{\alpha_1}} = e^{\alpha_2} + e^{\alpha_1 + \alpha_2}$$

Exercise
Define (λ, α_i) by the identity $s_i(\lambda) = \lambda - (\lambda, \alpha_i)\alpha_i$.

$$
\begin{cases}
 D_i(e^\lambda) = e^\lambda (1 + e^{\alpha_i} + \ldots + e^{-(\lambda, \alpha_i)\alpha_i}), & (\lambda, \alpha_i) \leq 0 \\
 D_i(e^\lambda) = 0, & (\lambda, \alpha_i) = 1 \\
 D_i(e^\lambda) = -e^\lambda (1 + e^{-\alpha_i} + \ldots + e^{-((\lambda, \alpha_i)-2)\alpha_i}), & (\lambda, \alpha_i) > 1
\end{cases}
$$
Remark
For $G = GL_n$, put $x_i := 1 + e^{\chi_i}$ where the character χ_i is given by the i-th entry of the diagonal torus. Then

$$D_i = -\delta_i^K,$$

that is, the Demazure operator is equal up to a sign to the K-theory divided difference operator (= isobaric divided difference operator).
Demazure characters

Definition
Demazure B-module $V_{\lambda,w} := H^0(X_w, \mathcal{L}_\lambda|_{X_w})^*$ is the dual space to the space of global sections of the line bundle \mathcal{L}_λ on G/B (corresponding to V_λ) restricted to X.

Definition
Demazure character $\chi_w(\lambda)$ of $V_{\lambda,w}$ is the sum over all basis weight vectors of the exponentials of the corresponding weights:

$$
\chi_w(\lambda) := \sum_{\mu \in \Lambda} m_{\lambda,w}(\mu) e^{\mu}
$$

Demazure character formula [Andersen, 1985, ...]
Let $w = s_{i_1} \ldots s_{i_\ell}$ be a reduced representation. Then

$$
\chi_w(\lambda) = D_{i_1} \ldots D_{i_\ell} e^{\lambda}
$$
Demazure characters

Definition

Demazure B-module $V_{\lambda,w} := H^0(X_w, \mathcal{L}_\lambda|_{X_w})^*$ is the dual space to the space of global sections of the line bundle \mathcal{L}_λ on G/B (corresponding to V_λ) restricted to X.

Definition

Demazure character $\chi_w(\lambda)$ of $V_{\lambda,w}$ is the sum over all basis weight vectors of the exponentials of the corresponding weights:

$$\chi_w(\lambda) := \sum_{\mu \in \Lambda} m_{\lambda,w}(\mu) e^\mu$$

Demazure character formula [Andersen, 1985, ...]

Let $w = s_{i_1} \ldots s_{i_\ell}$ be a reduced representation. Then

$$\chi_w(\lambda) = D_{i_1} \ldots D_{i_\ell} e^\lambda$$
Demazure characters

Definition

Demazure B-module $V_{\lambda,w} := H^0(X_w, \mathcal{L}_\lambda|_{X_w})^*$ is the dual space to the space of global sections of the line bundle \mathcal{L}_λ on G/B (corresponding to V_λ) restricted to X.

Definition

Demazure character $\chi_w(\lambda)$ of $V_{\lambda,w}$ is the sum over all basis weight vectors of the exponentials of the corresponding weights:

$$\chi_w(\lambda) := \sum_{\mu \in \Lambda} m_{\lambda,w}(\mu)e^\mu$$

Demazure character formula [Andersen, 1985, ...]

Let $w = s_{i_1} \ldots s_{i_\ell}$ be a reduced representation. Then

$$\chi_w(\lambda) = D_{i_1} \ldots D_{i_\ell} e^\lambda$$
Demazure characters

Examples

- \(V_{\lambda, id} = \mathbb{C}_\lambda, \chi_{id}(\lambda) = e^\lambda \)
- \(V_{\lambda, w_0} = V_\lambda, \chi_{w_0}(\lambda) — \text{Weyl character} \)

Remark

For \(GL_n \), the definition of Gelfand–Zetlin polytopes implies that

\[
\chi_{w_0}(\lambda) = \sum_{x \in P_\lambda \cap \mathbb{Z}^d} e^{p(x)},
\]

where \(p(x) := (\sum_{j=1}^{n-1} x_j^1)\alpha_1 + (\sum_{j=1}^{n-2} x_j^1)\alpha_2 + \ldots + x_1^{n-1}\alpha_{n-1} \) is the weight of \(x \).
Demazure characters

Examples

- $V_{\lambda, id} = \mathbb{C}_\lambda$, $\chi_{id}(\lambda) = e^\lambda$
- $V_{\lambda, w_0} = V_\lambda$, $\chi_{w_0}(\lambda)$ — Weyl character

Remark

For GL_n, the definition of Gelfand–Zetlin polytopes implies that

$$\chi_{w_0}(\lambda) = \sum_{x \in P_\lambda \cap \mathbb{Z}^d} e^{p(x)},$$

where $p(x) := (\sum_{j=1}^{n-1} x_j^1) \alpha_1 + (\sum_{j=1}^{n-2} x_j^1) \alpha_2 + \ldots + x_1^{n-1} \alpha_{n-1}$ is the weight of x.
Demazure characters

Examples

• $V_{\lambda, id} = \mathbb{C}_\lambda$, $\chi_{id}(\lambda) = e^\lambda$

• $V_{\lambda, w_0} = V_\lambda$, $\chi_{w_0}(\lambda)$ — Weyl character

Remark

For GL_n, the definition of Gelfand–Zetlin polytopes implies that

$$\chi_{w_0}(\lambda) = \sum_{x \in P_\lambda \cap \mathbb{Z}^d} e^{p(x)},$$

where $p(x) := (\sum_{j=1}^{n-1} x_j^1)\alpha_1 + (\sum_{j=1}^{n-2} x_j^1)\alpha_2 + \ldots + x_1^{n-1}\alpha_{n-1}$ is the weight of x.
Demazure characters

Examples

• \(V_{\lambda, id} = \mathbb{C}_\lambda, \chi_{id}(\lambda) = e^\lambda \)
• \(V_{\lambda, w_0} = V_\lambda, \chi_{w_0}(\lambda) = \text{Weyl character} \)

Remark
For \(GL_n \), the definition of Gelfand–Zetlin polytopes implies that

\[
\chi_{w_0}(\lambda) = \sum_{x \in P_\lambda \cap \mathbb{Z}^d} e^{p(x)},
\]

where \(p(x) := (\sum_{j=1}^{n-1} x_j)\alpha_1 + (\sum_{j=1}^{n-2} x_j)\alpha_2 + \ldots + x_1^{n-1}\alpha_{n-1} \) is the weight of \(x \).
Demazure characters and Gelfand–Zetlin polytopes

A Gelfand–Zetlin polytope for GL_3:

$$
\begin{pmatrix}
-1 & 0 & 1 \\
 0 & x & y \\
 0 & 0 & z
\end{pmatrix}
$$

$$
p(x, y, z) = (x + y, z)
$$
Demazure characters and Gelfand–Zetlin polytopes

The weight polytope (\(=\)image of \(P_\lambda\) under the projection \(p\)):
Convex geometric Demazure operators

Goal

Define operators D_1, \ldots, D_r on convex polytopes in \mathbb{R}^d and a weight map $\mathbb{R}^d \to \mathbb{R}^r$ such that for any reduced decomposition $w = s_{i_1} \ldots s_{i_\ell}$ the sequence of polytopes

$$pt(\lambda) \xrightarrow{D_{i_1}} P_1(\lambda) \xrightarrow{D_{i_2}} P_2(\lambda) \xrightarrow{D_{i_3}} \ldots \xrightarrow{D_{i_\ell}} P_\ell(\lambda)$$

yields the sequence of the Demazure characters

$$e^\lambda \xrightarrow{D_{i_1}} \chi_{s_{i_1}}(\lambda) \xrightarrow{D_{i_2}} \chi_{s_{i_1}s_{i_2}}(\lambda) \xrightarrow{D_{i_3}} \ldots \xrightarrow{D_{i_\ell}} \chi_w(\lambda)$$

that is,

$$\chi_w(\lambda) = \sum_{x \in P_\ell(\lambda) \cap \mathbb{Z}^d} e^{p(x)}.$$
Definition
A *root space* of rank r is a real vector space \mathbb{R}^d together with a direct sum decomposition

$$\mathbb{R}^d = \mathbb{R}^{d_1} \oplus \ldots \oplus \mathbb{R}^{d_r}$$

and a collection of linear functions $l_1, \ldots, l_r \in (\mathbb{R}^d)^{\ast}$ such that l_i vanishes on \mathbb{R}^{d_i}.

Definition
A convex polytope $P \subset \mathbb{R}^d$ is called a *parapolytope* if for all $i = 1, \ldots, r$, and any vector $c \in \mathbb{R}^d$ the intersection of P with the parallel translate $c + \mathbb{R}^{d_i}$ of \mathbb{R}^{d_i} is a coordinate parallelepiped.
Definition
A root space of rank r is a real vector space \mathbb{R}^d together with a direct sum decomposition

$$\mathbb{R}^d = \mathbb{R}^{d_1} \oplus \ldots \oplus \mathbb{R}^{d_r}$$

and a collection of linear functions $l_1, \ldots, l_r \in (\mathbb{R}^d)^*$ such that l_i vanishes on \mathbb{R}^{d_i}.

Definition
A convex polytope $P \subset \mathbb{R}^d$ is called a parapolytope if for all $i = 1, \ldots, r$, and any vector $c \in \mathbb{R}^d$ the intersection of P with the parallel translate $c + \mathbb{R}^{d_i}$ of \mathbb{R}^{d_i} is a coordinate parallelepiped.
Convex geometric Demazure operators

Notation
Coordinates in \mathbb{R}^d: $(x_1^1, \ldots, x_{d_1}^1; \ldots; x_1^n, \ldots, x_{d_n}^n)$.

Definition
A coordinate parallelepiped in \mathbb{R}^{d_i} is

$$\Pi(\mu, \nu) = \{(x_1^i, \ldots, x_{d_i}^i) \in \mathbb{R}^{d_i} | \mu_j \leq x_j^i \leq \nu_j, j = 1, \ldots, d_i\}.$$
Convex geometric Demazure operators

Notation
Coordinates in \mathbb{R}^d: $(x_1^{1}, \ldots, x_{d_1}^{1}; \ldots; x_1^{n}, \ldots, x_{d_n}^{n})$.

Definition
A coordinate parallelepiped in \mathbb{R}^{d_i} is

$$\Pi(\mu, \nu) = \{(x_1^i, \ldots, x_{d_i}^i) \in \mathbb{R}^{d_i} | \mu_j \leq x_j^i \leq \nu_j, j = 1, \ldots, d_i\}.$$
Convex geometric Demazure operators

Notation
Coordinates in \mathbb{R}^d: $(x_1^1, \ldots, x_{d_1}^1; \ldots; x_1^n, \ldots, x_{d_n}^n)$.

Definition
A coordinate parallelepiped in \mathbb{R}^{d_i} is

$$\Pi(\mu, \nu) = \{(x_1^i, \ldots, x_{d_i}^i) \in \mathbb{R}^{d_i} | \mu_j \leq x_j^i \leq \nu_j, j = 1, \ldots, d_i\}.$$
Convex geometric Demazure operators

A coordinate parallelepiped in \mathbb{R}^3

Notation

Coordinates in \mathbb{R}^d: $(x_1^1, \ldots, x_{d_1}^1; \ldots; x_1^n, \ldots, x_{d_n}^n)$.

Definition

A coordinate parallelepiped in \mathbb{R}^{d_i} is

$$\Pi(\mu, \nu) = \{(x_1^i, \ldots, x_{d_i}^i) \in \mathbb{R}^{d_i} | \mu_j \leq x_j^i \leq \nu_j, j = 1, \ldots, d_i\}.$$
Convex geometric Demazure operators

A coordinate parallelepiped in \mathbb{R}^3

Notation
Coordinates in \mathbb{R}^d: $(x_1^1, \ldots, x_{d_1}^1; \ldots; x_1^n, \ldots, x_{d_n}^n)$.

Definition
A *coordinate parallelepiped* in \mathbb{R}^{d_i} is

$$\Pi(\mu, \nu) = \{ (x_1^i, \ldots, x_{d_i}^i) \in \mathbb{R}^{d_i} | \mu_j \leq x_j^i \leq \nu_j, j = 1, \ldots, d_i \}.$$
Convex geometric Demazure operators

Example

\[d = \frac{n(n-1)}{2}, \quad r = (n-1) \]

\[\mathbb{R}^d = \mathbb{R}^{n-1} \oplus \mathbb{R}^{n-2} \oplus \ldots \oplus \mathbb{R}^1 \]

Exercise

The Gelfand–Zetlin polytope \(P_\lambda \) is a parapolytope.

\[
\begin{array}{cccccc}
\lambda_1 & \lambda_2 & \lambda_3 & \ldots & \lambda_{n-1} & \lambda_n \\
x_1^1 & x_2^1 & x_3^1 & \ldots & x_{n-1}^1 \\
x_1^2 & x_2^2 & \ldots & \ldots & x_{n-1}^2 \\
& \ldots & \ldots & \ldots & \ldots \\
x_1^{n-2} & x_2^{n-2} & \ldots & \ldots & \ldots \\
x_1^{n-1} & \end{array}
\]
Convex geometric Demazure operators

$$\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}$$

The slices \(\{ z = \frac{1}{2} \} \) and \(\{ z = -\frac{1}{2} \} \) are coordinate rectangles.
Convex geometric Demazure operators

Definition

1. $P = \prod(\mu, \nu) \subset (c + \mathbb{R}^{d_i})$ — coordinate parallelepiped
 Choose the smallest $j = 1, \ldots, d_i$ such that $\mu_j = \nu_j$. Put
 $$D_i(P) := \prod(\mu, \nu'),$$
 where $\nu'_k = \nu_k$ for all $k \neq j$ and ν'_j is defined by the equality
 $$\sum_{k=1}^{d_i} (\mu_k + \nu'_k) = l_i(c).$$

2. P — any parapolytope
 $$D_i(P) = \bigcup_{c \in \mathbb{R}^d} \{D_i(P \cap (c + \mathbb{R}^{d_i}))\}$$
Convex geometric Demazure operators

Definition

1. \(P = \Pi(\mu, \nu) \subset (c + \mathbb{R}^{d_i}) \) — coordinate parallelepiped
 Choose the smallest \(j = 1, \ldots, d_i \) such that \(\mu_j = \nu_j \). Put
 \[
 D_i(P) := \Pi(\mu, \nu'),
 \]
 where \(\nu'_k = \nu_k \) for all \(k \neq j \) and \(\nu'_j \) is defined by the equality
 \[
 \sum_{k=1}^{d_i} (\mu_k + \nu'_k) = l_i(c).
 \]

2. \(P \) — any parapolytope

 \[
 D_i(P) = \bigcup_{c \in \mathbb{R}^d} \{ D_i(P \cap (c + \mathbb{R}^{d_i})) \}
 \]
Convex geometric Demazure operators

Definition

1. $P = \Pi(\mu, \nu) \subset (c + \mathbb{R}^{d_i})$ — coordinate parallelepiped

Choose the smallest $j = 1, \ldots, d_i$ such that $\mu_j = \nu_j$. Put

$$D_i(P) := \Pi(\mu, \nu'),$$

where $\nu'_k = \nu_k$ for all $k \neq j$ and ν'_j is defined by the equality

$$\sum_{k=1}^{d_i} (\mu_k + \nu'_k) = l_i(c).$$

2. P — any parapolytope

$$D_i(P) = \bigcup_{c \in \mathbb{R}^d} \{D_i(P \cap (c + \mathbb{R}^{d_i}))\}$$
Convex geometric Demazure operators

Examples

\[\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \quad l_1(x, y, z) = z, \quad l_2(x, y, z) = x + y \]

\[P = \{(a, b, c)\} \quad \text{— a point} \]

\[D_1(P) = [(a, b, c), (a', b, c)] \]

where \(a' \) is defined by the equality

\[a + b + a' + b = l_1(a, b, c) \]

that is,

\[a' = c - a - 2b \]
Examples

\[\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \quad l_1(x, y, z) = z, \quad l_2(x, y, z) = x + y \]

\[P = \{(a, b, c)\} \text{ — a point} \]

\[D_1(P) = [(a, b, c), (a', b, c)], \]

where \(a' \) is defined by the equality

\[a + b + a' + b = l_1(a, b, c), \]

that is,

\[a' = c - a - 2b \]
Convex geometric Demazure operators

Examples

\(\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \ l_1(x, y, z) = z, \ l_2(x, y, z) = x + y \)

\[P = \{(a, b, c)\} \text{ — a point} \]

\[D_1(P) = [(a, b, c), (a', b, c)] \]

where \(a' \) is defined by the equality

\[a + b + a' + b = l_1(a, b, c), \]

that is,

\[a' = c - a - 2b \]
Convex geometric Demazure operators

Examples

\(\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \ l_1(x, y, z) = z, \ l_2(x, y, z) = x + y \)

\(P = \{(a, b, c)\} \) — a point

\(D_1(P) = [(a, b, c), (a', b, c)] \),

where \(a' \) is defined by the equality

\[a + b + a' + b = l_1(a, b, c), \]

that is,

\[a' = c - a - 2b \]
Convex geometric Demazure operators

Examples

\[\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \quad l_1(x, y, z) = z, \quad l_2(x, y, z) = x + y \]

\[P = \{(a, b, c)\} \text{ — a point} \]

\[D_1(P) = [(a, b, c), (a', b, c)], \]

where \(a' \) is defined by the equality

\[a + b + a' + b = l_1(a, b, c), \]

that is,

\[a' = c - a - 2b \]
Convex geometric Demazure operators

\(\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \quad l_1(x, y, z) = z, \quad l_2(x, y, z) = x + y \)

\(P = [(a, b, c), (a', b, c)] \) — segment
Convex geometric Demazure operators

\[\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \ l_1(x, y, z) = z, \ l_2(x, y, z) = x + y \]

\[P = [(a, b, c), (a', b, c)] \] — segment

\[D_2(P) = \bigcup_{x \in [a, a']} [(x, b, c), (x, b, c'(x))], \]

where

\[c'(x) = x + b - c \]
Convex geometric Demazure operators

\[\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \quad l_1(x, y, z) = z, \quad l_2(x, y, z) = x + y \]

\[P = [(a, b, c), (a', b, c)] \quad \text{— segment} \]

\[D_2(P) = \bigcup_{x \in [a, a']} [(x, b, c), (x, b, c'(x))], \]

where

\[c'(x) = x + b - c \]
Convex geometric Demazure operators

\(\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \quad l_1(x, y, z) = z, \quad l_2(x, y, z) = x + y \)

\(P = [(a, b, c), (a', b, c)] \) — segment

\(D_2(P) = \bigcup_{x \in [a, a']} [(x, b, c), (x, b, c'(x))], \)

where

\(c'(x) = x + b - c \)
Convex geometric Demazure operators

\[\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \ l_1(x, y, z) = z, \ l_2(x, y, z) = x + y \]

\[P = D_2D_1(\{(\lambda_1, \lambda_2, \lambda_1)\}) \rightarrow \text{trapezoid} \]
Convex geometric Demazure operators

\[\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \quad l_1(x, y, z) = z, \quad l_2(x, y, z) = x + y \]

\[P = D_2 D_1(\{(\lambda_1, \lambda_2, \lambda_1)\}) \quad \text{trapezoid} \]
Convex geometric Demazure operators

\[\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \quad l_1(x, y, z) = z, \quad l_2(x, y, z) = x + y \]

\[P = D_2 D_1(\{(\lambda_1, \lambda_2, \lambda_1)\}) \quad \text{— trapezoid} \]
Convex geometric Demazure operators

\[\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \quad l_1(x, y, z) = z, \quad l_2(x, y, z) = x + y \]

\[P = D_2 D_1 (\{ (\lambda_1, \lambda_2, \lambda_1) \}) \rightarrow \text{trapezoid} \]
Convex geometric Demazure operators

$\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \quad l_1(x, y, z) = z, \quad l_2(x, y, z) = x + y$

$P = D_2 D_1(\{(\lambda_1, \lambda_2, \lambda_1)\})$ — trapezoid
Convex geometric Demazure operators

\[\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \quad l_1(x, y, z) = z, \quad l_2(x, y, z) = x + y \]

Exercise

\[D_1 D_2 D_1(\{(\lambda_1, \lambda_2, \lambda_1)\}) \] — Gelfand–Zetlin polytope for \(\lambda = (\lambda_1, \lambda_2, -\lambda_1 - \lambda_2) \).
Convex geometric Demazure operators

\[\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \quad l_1(x, y, z) = z, \quad l_2(x, y, z) = x + y \]

Exercise

\[D_1 D_2 D_1(\{ (\lambda_1, \lambda_2, \lambda_1) \}) \] — Gelfand–Zetlin polytope for
\[\lambda = (\lambda_1, \lambda_2, -\lambda_1 - \lambda_2). \]
Convex geometric Demazure operators

\[\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \quad l_1(x, y, z) = z, \quad l_2(x, y, z) = x + y \]

Exercise

\[D_1 D_2 D_1(\{(\lambda_1, \lambda_2, \lambda_1)\}) \text{ — Gelfand–Zetlin polytope for } \lambda = (\lambda_1, \lambda_2, -\lambda_1 - \lambda_2). \]
Convex geometric Demazure operators

\[\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \quad l_1(x, y, z) = z, \quad l_2(x, y, z) = x + y \]

Exercise

\[D_1 D_2 D_1(\{(\lambda_1, \lambda_2, \lambda_1)\}) \] — Gelfand–Zetlin polytope for \(\lambda = (\lambda_1, \lambda_2, -\lambda_1 - \lambda_2) \).
Convex geometric Demazure operators

\[\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \quad l_1(x, y, z) = z, \quad l_2(x, y, z) = x + y \]

Exercise

\[D_1 D_2 D_1(\{(\lambda_1, \lambda_2, \lambda_1)\}) \] — Gelfand–Zetlin polytope for \(\lambda = (\lambda_1, \lambda_2, -\lambda_1 - \lambda_2) \).
Convex geometric Demazure operators

\[\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \quad l_1(x, y, z) = z, \quad l_2(x, y, z) = x + y \]

Exercise

\[D_1 D_2 D_1 (\{(\lambda_1, \lambda_2, \lambda_1)\}) \] — Gelfand–Zetlin polytope for \(\lambda = (\lambda_1, \lambda_2, -\lambda_1 - \lambda_2) \).
Convex geometric Demazure operators

\[\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \quad l_1(x, y, z) = z, \quad l_2(x, y, z) = x + y \]

Exercise

\[D_1 D_2 D_1(\{(\lambda_1, \lambda_2, \lambda_1)\}) \] — Gelfand–Zetlin polytope for \(\lambda = (\lambda_1, \lambda_2, -\lambda_1 - \lambda_2) \).
Convex geometric Demazure operators

\[\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \quad l_1(x, y, z) = z, \quad l_2(x, y, z) = x + y \]

Exercise

\[D_1 D_2 D_1(\{(\lambda_1, \lambda_2, \lambda_1)\}) \] — Gelfand–Zetlin polytope for \(\lambda = (\lambda_1, \lambda_2, -\lambda_1 - \lambda_2) \).
Convex geometric Demazure operators

\[\mathbb{R}^3 = \mathbb{R}^2 \oplus \mathbb{R}, \quad l_1(x, y, z) = z, \quad l_2(x, y, z) = x + y \]

Exercise

\[D_1 D_2 D_1(\{ (\lambda_1, \lambda_2, \lambda_1) \}) \] — Gelfand–Zetlin polytope for \(\lambda = (\lambda_1, \lambda_2, -\lambda_1 - \lambda_2) \).
Convex geometric Demazure operators

GL_n root space

$$\mathbb{R}^d = \mathbb{R}^{n-1} \oplus \mathbb{R}^{n-2} \oplus \ldots \oplus \mathbb{R}^1$$

Functions l_i

$$l_i(x) = \sigma_{i-1}(x) + \sigma_{i+1}(x),$$

where $\sigma_i(x) = \sum_{j=1}^{d_i} x_j^i$ (=sum of coordinates in the i-th row) for $i = 1, \ldots, n-1$ and $\sigma_0 = \sigma_n = 0$
Convex geometric Demazure operators

GL_n root space

$\mathbb{R}^d = \mathbb{R}^{n-1} \oplus \mathbb{R}^{n-2} \oplus \ldots \oplus \mathbb{R}^{1}$

Functions l_i

$l_i(x) = \sigma_{i-1}(x) + \sigma_{i+1}(x),$

where $\sigma_i(x) = \sum_{j=1}^{d_i} x^i_j$ (=sum of coordinates in the i-th row) for $i = 1, \ldots, n-1$ and $\sigma_0 = \sigma_n = 0$
Proposition
The Gelfand–Zetlin polytope P_λ coincides with

$$[(D_1 \ldots D_{n-1})(D_1 \ldots D_{n-2}) \ldots (D_1)](p),$$

where $p \in \mathbb{R}^d$ is the point $(\lambda_1, \ldots, \lambda_{n-1}; \lambda_1, \ldots, \lambda_{n-2}; \ldots; \lambda_1)$.
Convex geometric Demazure operators

\overline{w}_0
Fix a reduced decomposition $w_0 = s_{i_1} \ldots s_{i_d}$ of the longest element in the Weyl group of G.

(G, \overline{w}_0) root space

$$R^d = R^{d_1} \oplus \ldots \oplus R^{d_r},$$
where d_i is the number of s_{i_j} in \overline{w}_0 such that $i_j = i$.

$$l_i(x) = \sum_{k \neq i} (\alpha_k, \alpha_i) \sigma_k(x).$$

Example
For $G = GL_n$ and $w_0 = (s_1 \ldots s_{n-1})(s_1 \ldots s_{n-2}) \ldots (s_1)$, we get GL_n root space.
Convex geometric Demazure operators

\overline{w}_0

Fix a reduced decomposition $w_0 = s_{i_1} \ldots s_{i_d}$ of the longest element in the Weyl group of G.

(G, \overline{w}_0) root space

$$\mathbb{R}^d = \mathbb{R}^{d_1} \oplus \ldots \oplus \mathbb{R}^{d_r},$$

where d_i is the number of s_{i_j} in \overline{w}_0 such that $i_j = i$.

$$l_i(x) = \sum_{k \neq i} (\alpha_k, \alpha_i) \sigma_k(x).$$

Example

For $G = GL_n$ and $w_0 = (s_1 \ldots s_{n-1})(s_1 \ldots s_{n-2}) \ldots (s_1)$, we get GL_n root space.
Convex geometric Demazure operators

\overline{w}_0

Fix a reduced decomposition $w_0 = s_{i_1} \ldots s_{i_d}$ of the longest element in the Weyl group of G.

(G, \overline{w}_0) root space

$$\mathbb{R}^d = \mathbb{R}^{d_1} \oplus \ldots \oplus \mathbb{R}^{d_r},$$

where d_i is the number of s_{i_j} in \overline{w}_0 such that $i_j = i$.

$$l_i(x) = \sum_{k \neq i} (\alpha_k, \alpha_i)\sigma_k(x).$$

Example

For $G = GL_n$ and $w_0 = (s_1 \ldots s_{n-1})(s_1 \ldots s_{n-2}) \ldots (s_1)$, we get GL_n root space.
Theorem
For each dominant weight λ of G, there exists a point $p_\lambda \in \mathbb{R}^d$ such that the polytope

$$P := D_{i_1} \ldots D_{i_d}(p_\lambda)$$

yields the Weyl character $\chi(V_\lambda)$ of the irreducible G-module V_λ, namely,

$$\chi(V_\lambda) = \sum_{x \in P \cap \mathbb{Z}^d} e^{p(x)}.$$
Geometric mitosis

\[D_1 D_2 D_1(p) = \]

\[D_2 D_1(p) = \]

\[D_1 D_2(p) = \]
Geometric mitosis

\[D_1 D_2 D_1(p) = \]

\[D_1 D_2(p) = \]

\[D_2 D_1(p) = \]

\sim