The Ordinary Poincaré Polynomial

The Poincaré polynomial of a complex algebraic variety X is given by

$$P_X(q) = \sum_{i=0}^\ell \dim C^i(X)q^i$$

where $H^i(X)$ is the singular homology of X, viewed in its analytic topology. If X_w is a Schubert variety, then its Poincaré polynomial can be described combinatorially by the formula

$$P_w(q) = \sum_{i \leq \ell} q^{i(u)}$$

where the sum is over all elements $x \leq w$ in the Bruhat-Chevalley order on W.

The Intersection Cohomology Poincaré Polynomial

The Poincaré polynomial for the full intersection cohomology $I_X(q)$ of X is defined to be

$$I_X(q) = \sum_{i \leq \ell} \dim C^i(X)q^i$$

As was the case for the ordinary Poincaré polynomial $P_X(q)$, when X_w is a Schubert variety the intersection cohomology Poincaré polynomial has a combinatorial description, described as follows. For $w \in W$ and $x \leq w$ in the Bruhat-Chevalley order on W, let $P_w(x)$ denote the Kazhdan-Lusztig polynomial indexed by x and w (see [5]). The Poincaré polynomial for the full intersection cohomology $I_{w}(q)$ is then given by

$$I_{w}(q) = \sum_{x \leq w} P_w(x)q^{i(u)}.$$

It has been shown that X is rationally smooth if and only if the ordinary cohomology groups $H^i(X)$ coincide with the intersection cohomology groups $IH^i(X)$ [4]. In other words, we have $I_{w} = P_{w}$ if and only if X_w is a rationally smooth Schubert variety.

Pattern Containment

An element $w \in S_n$ contains the pattern $v \in S_k$ if w contains a subword of length k whose entries are in the same relative order as the entries of v.

Ex. 541623 contains 3412 and 4231. Billey and Braden have extended the notion of pattern containment to general Weyl groups [2]. Many geometric properties of a Schubert variety X_w are equivalent to combinatorial statements about patterns.

1. For $w \in W$, $P_w(x)$ is rationally smooth if and only if the ordinary cohomology groups $\dim_{k}H^i(X_w)$ coincide with the intersection cohomology groups $\dim_{k}IH^i(X_w)$ [4].

2. See [1] for the lists of patterns which are avoided precisely when X_w is smooth/rational smooth for Weyl groups of types B, D and E.

A Factorization of $P_w(q)$

For an element $w \in S_n$, a value $r \in [n]$ is a record position of w if $w(r) > w(r-1)$ or $r = 1$. For $i \in [n]$, let r_i be the record positions of w such that $r_i \leq i < r$ and there are no other record positions of w such that $r < i < r'$. Define $e_i = \# \{ j : r_i < j < i, \; w(j) > w(i) \}$ and $f_i = \# \{ k : r' \leq k \leq n, \; w(k) < w(i) \}$.

If w avoids the patterns 3412 and 4231, then the ordinary Poincaré polynomial for w, $P_w(q)$, is given by

$$P_w(q) = \prod_{i=1}^{n} e_i + f_i$$

where $[a+1]_q := q^{a} + q^{a-1} + \ldots + q + 1$.

The Inversion Polynomial

Main Goal: to combinatorially define a new polynomial which will coincide with $I_w(q)$.

Let $N(w)$ denote the collection of all positive roots sent negative by w. Say a set $S \subset N(w)$ is N-closed if whenever $\alpha, \beta \in S$, we have $\alpha + \beta \in S$. Define $N(w)$ to be the collection of all sets S such that both S and $N(w) \setminus S$ are N-closed. The inversion polynomial for w is then defined to be

$$N_w(q) = \sum_{S \subset N(w)} q^{i(S)}.$$