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Abstract. In this paper, we determine the bifurcation set of a real polynomial

function of two variables for non-degenerate case in the sense of Newton polygons

by using a toric compactification. We also count the number of singular phenomena

at infinity, called “cleaving” and “vanishing”, in the same setting. Finally, we

give an upper bound of the number of atypical values at infinity in terms of its

Newton polygon. To obtain the upper bound, we apply toric modifications to the

singularities at infinity successively.

1. Introduction

Let f : K2 → K be a polynomial function, where K is either C or R. It is well-

known that there exists a finite set B ⊂ K such that f : K2 \ f−1(B) → K \ B is

a C∞ locally trivial fibration. The smallest one among such finite sets is called the

bifurcation set, which we denote by Bf . Let Σf denote the set of critical values of

f . A singular phenomenon at infinity can be formulated as follows. We say that f

is trivial at infinity at c ∈ K if there exist a small open disc D centered at c and a

compact set K ⊂ K2 such that the restriction of f to f−1(D) \ K is a C∞ trivial

fibration. Otherwise, we say that f has a singularity at infinity at c ∈ K and c is

called an atypical value of f at infinity. We denote the set of atypical values at infinity

by B∞,f . Obviously, Bf = B∞,f ∪ Σf .

There are many studies aiming to determine atypical values of polynomial maps

at infinity. In the case K = C, the results of Suzuki [26], Hà and Lê [9] and Hà and

Nguyên [10] are known to be pioneering works in these studies, where geometrical

and topological characterizations of the atypical values at infinity are given. For more
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details, we refer the reader to the survey [13] and the recent papers [11, 18] with the

references therein.

We now assume that K = R. Tibăr and Zaharia [27] characterized atypical non-

singular fibers of real polynomial functions from real smooth algebraic surfaces due to

their asymptotic behaviour at infinity. For real polynomial functions of two variables,

in [5] Coste and de la Puente gave another characterization of the atypical values at

infinity by using “clusters” and, in particular, they provided an algorithmic method

to determine them effectively. See [6, 12, 17] for further studies related to this topic.

In this paper, we study atypical values at infinity of real polynomial functions of

two variables using Newton polygons, associated toric compactifications and succes-

sive toric modifications. These techniques were used by the first author in [14] for

determining the bifurcation sets of complex polynomial functions algorithmically.

To state our results, we prepare some terminologies. Set f(x, y) =
∑

(m,n) am,nx
myn,

where m,n ≥ 0. Let ∆(f) be the convex hull of the integral points (m,n) ∈ R2 with

am,n ̸= 0. Remark that, following [19], it is usual to study the convex hull of these

integral points and the origin (0, 0). In this paper, we need to study the above different

polytope to get a necessary and sufficient condition in Theorem 1.1 below. A vector

P = t(p, q) ̸= (0, 0) consisting of coprime integers p and q is called a primitive covector.

For a given P , let d(P ; f) denote the minimal value of the linear function pX+qY for

(X,Y ) ∈ ∆(f). Set ∆(P ; f) := {(X,Y ) ∈ ∆(f) | pX+qY = d(P ; f)}, which is called

a face of∆(f) if dim∆(P ; f) = 1. The partial sum fP (x, y) :=
∑

(m,n)∈∆(P ;f) am,nx
myn

is called the boundary function for the covector P . If ∆(P ; f) is a face then it is called

the face function. Let Γ+
∞(f) (resp. Γ0

∞(f), Γ−
∞(f)) denote the set of faces ∆(P ; f)

of f such that P = t(p, q) satisfies either p < 0 or q < 0 and satisfies d(P ; f) > 0

(resp. d(P ; f) = 0, d(P ; f) < 0). For a set Γ(f) of faces of ∆(f), we say that f is

non-degenerate on Γ(f) if the system of equations ∂fP
∂x

= ∂fP
∂y

= 0 has no solutions in

(R \ {0})2 for any face ∆(P ; f) in Γ(f).

A face ∆(P ; f) in Γ0
∞(f) is called a bad face. For a bad face ∆(P ; f), let bP (t)

denote the polynomial of one variable t defined by

fP (x, y) = bP (t(x, y)), t(x, y) = x|q|y|p|,

where P = t(p, q). We say that fP is Morse if bP (t) is a Morse function on R \ {0}
(i.e., it has only non-degenerate critical points on R \ {0}) and f is Morse on Γ0

∞(f)

if fP is Morse for any bad face ∆(P ; f) ∈ Γ0
∞(f).

The following theorem can be seen as a real counterpart of the complex result

derived by Némethi and Zaharia [22, Proposition 6] (see also [2, Lemma 8] and [28]).
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Theorem 1.1. Let f(x, y) be a real polynomial map with f(0, 0) = 0 that is non-

degenerate on Γ+
∞(f) ∪ Γ−

∞(f) and Morse on Γ0
∞(f). Then, c ∈ Bf if and only if one

of the following holds:

(i) c ∈ Σf ;

(ii) c = 0 and there exists ∆(P ; f) ∈ Γ+
∞(f) such that fP (x, y) = 0 has a solution

in (R \ {0})2;
(iii) c is a critical value of bP |R\{0} for a bad face ∆(P ; f).

Remark that the assumptions in Theorem 1.1 are satisfied for generic choice of

coefficients of f .

It is worth mentioning that in the setting of (real, complex or mixed) polynomial

maps f of more than two variables, the results established by Némethi and Zaharia

[22, Theorem 1], Chen and Tibăr [3, Theorem 1.1], and Chen, Dias, Takeuchi and

Tibăr [4, Theorem 1.1 and Corollary 1.2] only give necessary conditions (in terms of

the Newton polyhedron of f) for a value c to be an element in the bifurcation set of

f.

Next we count the number of atypical values at infinity under the assumptions in

Theorem 1.1. It is known in [27, 5] that an atypical value c ∈ B∞,f is characterized

by the existence of a cleaving or vanishing family whose limit is f = c. The precise

definitions of these families are given in Section 2. In the next theorem, we deter-

mine the number of cleaving and vanishing families. A face function fP (x, y) has a

factorization of the form

fP (x, y) = Axαyβ
r∏

j=1

(xq − Ajy
p)νj ,

where P = t(p, q), α, β ∈ Z and A,Aj ∈ C \ {0} with Ai ̸= Aj for i ̸= j. If

xq − Ajy
p = 0 has a solution in (R \ {0})2 then we say that (xq − Ajy

p)νj is a factor

with real solution of multiplicity νj. We denote the number of such factors by r(P ; f),

that is, we set r(P ; f) = r. For each bad face ∆(P ; f) ∈ Γ0
∞(f), let r′(P ; f) denote

the number of non-zero real roots of dbP
dt

(t) = 0. Let cleav(f) and vanish(f) denote

the numbers of cleaving families and vanishing families of f , respectively.

Theorem 1.2. Suppose that f satisfies the conditions in Theorem 1.1. Suppose

further that f has only isolated singularities. Then

cleav(f) + vanish(f) = 2(R+ +R0) and 0 ≤ vanish(f) ≤ 2R0,

where

R+ =
∑

∆(P ;f)∈Γ+
∞(f)

r(P ; f), R0 =
∑

∆(P ;f)∈Γ0
∞(f)

r′(P ; f).

In particular, if there is no bad face then there is no vanishing family.
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Note that r(P ; f) is less than the number of lattice points on ∆(P ; f) if ∆(P ; f) ∈
Γ+
∞(f) and r′(P ; f) is also if ∆(P ; f) ∈ Γ0

∞(f). We remark that we cannot expect the

equality in Theorem 1.2 if we relax the conditions as degenerate case or non-Morse

case.

Even if f does not satisfy the assumptions in Theorem 1.1, by applying toric

modifications successively, we can obtain an upper bound of the number of elements

in B∞,f . For each face ∆(Ri; f) ∈ Γ−
∞(f), set µ(Ri; f) =

∑η
j=1(µj − 1), where

µ1, . . . , µη are the multiplicities of factors of fRi
(x, y) with real solution. Note that

µ(Ri; f) is less than the number of lattice points on ∆(Ri; f). Let R
+ and R0 be the

integers defined in Theorem 1.2. Let |B∞,f | and |Σf | denote the numbers of elements

in B∞,f and Σf , respectively.

Theorem 1.3. The following inequality holds:

|B∞,f | ≤ ϵ(R+) +R0 +
∑

∆(P ;f)∈Γ−
∞(f)

µ(P ; f),

where ϵ(R+) = 0 if R+ = 0 and ϵ(R+) = 1 if R+ > 0.

A similar result for complex polynomial functions had been obtained in [21]; see

also [7, 8, 14, 15, 16, 20] for related results.

The paper is organized as follows. In Section 2, we introduce the definition of

an admissible toric compactification with respect to primitive covectors, and give

the definitions of cleaving and vanishing families and their equivalence relations. In

the subsequent three sections, we give the proofs of Theorem 1.1, Theorem 1.2 and

Theorem 1.3. Two examples are given in the end of Section 3. The definition of an

admissible toric modification is given in the beginning of Section 5, before giving the

proof of Theorem 1.3.

2. Preliminaries

2.1. Toric compactification. We first recall some definitions given in [19] which will

be used in this work. Set f(x, y) =
∑

(m,n) am,nx
myn, where m,n ≥ 0. A boundary

function fP (x, y) is said to be non-degenerate if the system of equations ∂fP
∂x

= ∂fP
∂y

= 0

has no solutions in (R \ {0})2. Otherwise it is said to be degenerate. The polynomial

f is called convenient if ∆(f) intersects both positive axes.

Let Γ+
∞(f) (resp. Γ0

∞(f), Γ−
∞(f)) denote the set of faces ∆(P ; f) of f such that

P = t(p, q) satisfies either p < 0 or q < 0 and satisfies d(P ; f) > 0 (resp. d(P ; f) = 0,

d(P ; f) < 0). For a set Γ(f) of faces of ∆(f), we say that f is non-degenerate on Γ(f)

if fP is non-degenerate for any face ∆(P ; f) in Γ(f). Note that the non-degeneracy

condition in [19] corresponds to the non-degeneracy on Γ−
∞(f) in this paper.
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Let f : R2 → R be a polynomial function. We give the definition of an admissible

toric compactification with respect to the Newton polygon ∆(f). Let Qi =
t(pi, qi),

i = 1, 2, . . . , n, be primitive covectors that satisfy the following:

(1) either pi or qi is negative;

(2) ∆(Qi; f) is a face of ∆(f); and

(3) the indices are assigned in the counter-clockwise orientation.

Let Ri =
t(ri, si), i = 1, 2, . . . ,m, be primitive covectors that satisfy the following:

(1) R1 =
t(1, 0), R2 =

t(0, 1);

(2) either ri or si is negative for each Ri, i = 3, . . . ,m;

(3) {Qi} is contained in {R3, . . . , Rm};
(4) the indices are assigned in the counter-clockwise orientation; and

(5) the determinants of the matrices (Ri, Ri+1), i = 1, . . . ,m − 1, and (Rm, R1)

are 1.

For convenience, we set Rm+1 = R1. For each Cone(Ri, Ri+1), i = 2, . . . ,m, an affine

coordinate chart (ui, vi) ∈ R2 is defined by the coordinate transformation

x = uri
i v

ri+1

i , y = usi
i v

si+1

i .

Then a smooth toric variety X is obtained by gluing these coordinate charts, which

is described as

X = (R \ {0})2 ∪

(
m∪
i=1

E(Ri)

)
= R2 ∪

(
m∪
i=3

E(Ri)

)
,

where E(Ri) is the exceptional divisor corresponding to the covector Ri. The real vari-

etyX is called the admissible toric compactification of R2 associated with {R1, . . . , Rm}.
Let Ui denote the local chart with coordinates (ui, vi) corresponding to Cone(Ri, Ri+1)

for i = 2, . . . ,m. On Ui, the function f has the form

f(ui, vi) = u
d(Ri;f)
i v

d(Ri+1;f)
i (gi(vi) + uihi(ui, vi)), (2.1)

where gi is a polynomial of one variable vi and hi is a polynomial of two variables

(ui, vi). The divisor E(Ri) in this chart is given by ui = 0.

For an algebraic curve C in R2, its closure in X is called the strict transform of

C. Set f(x, y) = xαyβF (x, y), where α (resp. β) is a non-negative integer such that

x (resp. y) does not divide F . Let Vf , VF , V1 and V2 denote the strict transforms

of f(x, y) = 0, F (x, y) = 0, x = 0 and y = 0 in X, respectively. In particular,

Vf = VF ∪ V1 ∪ V2. Note that V1 (resp. V2) is empty if α (resp. β) is 0.

Lemma 2.1. (1) For i = 3, . . . ,m, VF does not intersect E(Ri) unless Ri ∈
{Q1, . . . , Qn}.

(2) For i = 3, . . . ,m− 1, VF does not intersect E(Ri) ∩ E(Ri+1).
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(3) If α ≥ 1 (resp. β ≥ 1) then V1 (resp. V2) intersects E(Rm) (resp. E(R3))

transversely.

Proof. All the assertions in this lemma are well-known. For instance, the explanation

in [24] restricted to the two variable case works for real polynomial maps also. We

only check the assertion (3) to confirm the usage of indices. The curves V1 and

E(Rm) are given on Um as {(um, vm) ∈ Um | vm = 0} and {(um, vm) ∈ Um | um = 0},
respectively. Hence they intersect transversely. Similarly, V2 and E(R3) are given on

U2 as {(u2, v2) ∈ U2 | u2 = 0} and {(u2, v2) ∈ U2 | v2 = 0}, respectively. Hence they

intersect transversely. □

Lemma 2.2. Let i be an index in {3, . . . ,m}. Suppose that Ri satisfies one of the

following:

(i) ∆(Ri; f) is not a bad face and fRi
is non-degenerate.

(ii) ∆(Ri; f) is a bad face and bRi
(t) = 0 has no non-zero real multiple root.

Then there is a one-to-one correspondence between the intersection points of E(Ri)

and VF and the non-zero real roots of gi(vi) = 0. Moreover, they intersect transversely

at these points.

Proof. The divisor E(Ri) is given on Ui as {(ui, vi) ∈ Ui | ui = 0}. On the other hand,

VF∩Ui is the set {(ui, vi) ∈ Ui | gi(vi)+uihi(ui, vi) = 0} with excluding isolated points

on ui = 0. Let (0, s) be an intersection point of ui = 0 and gi(vi) + uihi(ui, vi) = 0,

where s ∈ R \ {0}. Since s is a single root of gi(vi) = 0 in both of cases (i) and (ii),
∂(gi(vi)+uihi(ui,vi))

∂vi
(0, s) ̸= 0. Hence gi(vi)+uihi(ui, vi) = 0 is smooth at (0, s), i.e, (0, s)

is not an isolated point, and VF intersects ui = 0 transversely at (0, s). □

Remark 2.3. The assumption of non-degeneracy of fRi
is necessary. For example if

gi(vi) + uihi(ui, vi) = (vi − 1)2 + u2
i then the intersection point (0, 1) with ui = 0 is

isolated.

2.2. Cleaving and vanishing at infinity. Let N be a small, compact tubular

neighborhood of ∪m
i=3E(Ri) in X.

Definition 2.4. A continuous family {(γt, δt, ct)}t∈(0,1) of triples of a proper arc γt in

N \ ∪m
i=3E(Ri) whose endpoints lie on the boundary ∂N , a closed, connected subset

δt ⊂ γt, which is either a closed arc or a point, and a real number ct is called a cleaving

family of f if it satisfies the following:

(1) γt ⊂ f−1(ct); and

(2) c := limt→ 0 ct satisfies |c| < ∞ and δ := limt→0 δt ⊂ ∪m
i=3E(Ri).

If there exists a cleaving family with limit f = c, then we say that the curve f = c is

cleaving at infinity.
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Note that the definition of a cleaving family depends on the compactification X of

R2, though the existence of a cleaving family and its value c do not. In this sense,

the statement “f = c is cleaving at infinity” does not depend on the choice of X.

This definition coincides with that in [5, p.30] if we state it without compactification.

Obviously, if f = c is cleaving at infinity then c ∈ Bf .

Definition 2.5. A continuous family {(Ct, ct)}t∈(0,1) of pairs of a real number ct and

a connected component Ct of f = ct in R2 is called a vanishing family if it satisfies

the following:

(1) Ct ⊂ N \ ∪m
i=3E(Ri); and

(2) c := limt→ 0 ct satisfies |c| < ∞ and C := limt→0Ct ⊂ ∪m
i=3E(Ri).

If there exists a vanishing family with limit f = c, then we say that the curve f = c

is vanishing at infinity.

Note that the definition of a vanishing family depends on the compactification X

of R2, though the existence of a vanishing family and its value c do not. In this

sense, the statement “f = c is vanishing at infinity” does not depend on the choice

of X. In [27], the value c ∈ Bf is characterized by the first Betti numbers and Euler

characteristics of fibers and “vanishing” and “splitting” phenomena. The definition

of a vanishing family coincides with the “vanishing” in [27] if we state it without

compactification. Obviously, if f = c is vanishing at infinity then c ∈ Bf .

Lemma 2.6 ([27, 5], see p.31 in [5]). Suppose that c ∈ Bf . Then one of the following

holds:

(i) c ∈ Σf ;

(ii) f = c is cleaving at infinity;

(iii) f = c is vanishing at infinity.

Since the definitions of these families depend on the choice of the compact neigh-

borhoods N , the parameter t and the subsets {δt}t∈(0,1), we need to introduce an

equivalence relation to remove these ambiguities. The equivalence relation is defined

as follows.

Definition 2.7. (1) Two cleaving families {(γt, δt, ct)}t∈(0,1) and {(γ′
t, δ

′
t, c

′
t)}t′∈(0,1),

defined in compact tubular neighborhoods N and N ′ of ∪m
i=3E(Ri) respec-

tively, are equivalent if there exists ε > 0 such that for any s ∈ (0, ε) there

exists s′ ∈ (0, 1) such that cs = c′s′ and γs ∩ γ′
s′ ̸= ∅.

(2) Two vanishing families {(Ct, ct)}t∈(0,1) and {(C ′
t, c

′
t)}t′∈(0,1), defined in compact

tubular neighborhoods N and N ′ of ∪m
i=3E(Ri) respectively, are equivalent if

there exists ε > 0 such that for any s ∈ (0, ε) there exists s′ ∈ (0, 1) such that

cs = c′s′ and Cs = C ′
s′ .
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Later, we will count the numbers of cleaving and vanishing families up to these

equivalence relations.

3. Proof of Theorem 1.1 and examples

Theorem 1.1 will follow from the next proposition.

Proposition 3.1. Suppose that f(x, y) is non-degenerate on Γ+
∞(f) ∪ Γ−

∞(f) and

that bP (t) = 0 has no non-zero real multiple root for any bad face ∆(P ; f). Then,

0 ∈ Bf if and only if either (i) 0 ∈ Σf or (ii) there exists ∆(P ; f) ∈ Γ+
∞(f) such that

fP (x, y) = 0 has a solution in (R \ {0})2. Moreover, if it is in case (ii) then f = 0 is

cleaving at infinity.

We divide the proof into three lemmas. Note that the proofs of the first two lemmas

for complex polynomials are written, for example, in [23, 25], which are based on the

Curve Selection Lemma at infinity, and their arguments work in real case also. We

here give different proofs based on the toric compactification X. Let N denote a

small, compact tubular neighborhood of ∪m
i=3E(Ri) in X.

Lemma 3.2. Suppose that f is convenient and non-degenerate on Γ−
∞(f). Then

0 ∈ Bf if and only if 0 ∈ Σf .

Proof. Since Σf ⊂ Bf , it is enough to show that if 0 ∈ Bf then 0 ∈ Σf . Assume

that 0 ̸∈ Σf . By Lemma 2.6, it is enough to check that f = 0 is not cleaving and

not vanishing at infinity. Note that there is no bad face since f is convenient, and Vf

intersects ∪m
i=3E(Ri) transversely by Lemma 2.1 and 2.2.

We first prove that f = 0 is not cleaving at infinity. Assume that f = 0 is cleaving at

infinity. Then Vf must intersect E(Ri) for some i = 3, . . . ,m. Let p be an intersection

point of Vf and E(Ri). Note that p ∈ δ, where δ is the limit of closed, connected

sets {δt}t∈(0,1) in Definition 2.4. Since f is convenient, we have d(Ri; f) < 0. Then

any nearby fiber of Vf in N near p is a simple arc connecting a point near Vf ∩ ∂N

and the point p, see Figure 1. On N \
∪m

i=3E(Ri) ⊂ R2, we can construct a non-zero

smooth vector field that gives a C∞ locally trivial fibration at infinity with central

fiber Vf∩(N \
∪m

i=3E(Ri)) by choosing a family of smooth circles going to the infinity

and being transverse to the nearby fibers suitably. Hence the fibration at infinity near

p is trivial, which contradicts the assumption that f = 0 is cleaving at p.

Next we check that f = 0 is not vanishing at infinity. Since d(Ri; f) < 0 for any

i = 3, . . . ,m, if a vanishing family exists then there exists a sequence {(tj, s)}j∈N of

points on Ui for some i ∈ {3, . . . ,m} such that limj→∞ tj = 0, limj→∞ f |Ui
(tj, s) = 0

and gi(s) ̸= 0. However, from (2.1), we see that | limj→∞ f |Ui
(tj, s)| = ∞, which is a

contradiction. Thus 0 ̸∈ Bf by Lemma 2.6. □
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Vf
p

−

−

−

nearby fiber

E(Ri)

Figure 1. The triviality of the fibration at infinity in the case

d(Ri; f) < 0. The sign − means that E(Ri) satisfies d(Ri; f) < 0.

The painted region is the neighborhood N .

Lemma 3.3. Suppose that f(0, 0) ̸= 0 and f is not convenient. Suppose further that

f is non-degenerate on Γ−
∞(f) and bP (t) = 0 has no non-zero real multiple root for

any bad face ∆(P ; f). Then 0 ∈ Bf if and only if 0 ∈ Σf .

Proof. We assume 0 ̸∈ Σf and prove 0 ̸∈ Bf . By Lemma 2.6, it is enough to check

that f = 0 is not cleaving and not vanishing at infinity.

First we show that f = 0 is not cleaving at infinity. Let Ri be a covector such

that E(Ri) intersects Vf , where i = 3, . . . ,m. If d(Ri; f) = 0 then the condition (ii)

in Lemma 2.2 holds by the assumption. By Lemma 2.2, all nearby fibers of f = 0

near E(Ri) are transverse to E(Ri), see Figure 2. Hence the fibration at the infinity

is trivial. The triviality also holds if d(Ri; f) < 0 as we had seen in the proof of

Lemma 3.2.

Vf

0

+

−

nearby fiber

E(Ri)

Figure 2. The triviality of the fibration at infinity in the case

d(Ri; f) = 0. The sign 0 means that E(Ri) satisfies d(Ri; f) = 0.

Next we check that f = 0 is not vanishing at infinity. If there is a vanishing family

whose limit intersects E(Ri) with d(Ri; f) = 0 then, since f(ui, vi) in (2.1) has no

factor u−1
i , the limit in Ui should be given by f(ui, vi) = 0, which is nothing but

Vf ∩ Ui. If gi(vi) = 0 in (2.1) has a non-zero real solution then, since it is not a
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multiple root, the limit cannot be contained in E(Ri) with d(Ri; f) = 0. If gi(vi) = 0

has no non-zero real solution then Vf ∩E(Ri)∩Ui = ∅. Hence, in either case, there is

no vanishing family. The limit cannot intersect E(Ri) with d(Ri; f) < 0 by the same

reason as we had seen in the proof of Lemma 3.2. This completes the proof. □

Finally, we study the case where either x|f or y|f .

Lemma 3.4. Suppose that f is non-degenerate on Γ+
∞(f)∪Γ−

∞(f) and that bP (t) = 0

has no non-zero real multiple root for any bad face ∆(P ; f). Suppose further that

either x|f or y|f . Then, 0 ∈ Bf if and only if either (i) 0 ∈ Σf or (ii) there exists

∆(P ; f) ∈ Γ+
∞(f) such that fP (x, y) = 0 has a solution in (R \ {0})2. Moreover, if it

is in case (ii) then f = 0 is cleaving at infinity.

Proof. Set f(x, y) = xαyβF (x, y) with either α > 0 or β > 0. For convenience, we

choose R3, . . . , Rm such that d(Rm; f) > 0 and fRm is a monomial if α > 0 and that

d(R3; f) > 0 and fR3 is a monomial if β > 0. Since the indices of the covectors

{R1, . . . , Rm} are assigned in the counter-clockwise orientation, if α > 0 then there

exists an index k such that d(Rk; f) ≤ 0 and d(Ri; f) > 0 for i > k. Similarly, if β > 0

then there exists an index k′ such that d(Ri; f) > 0 for 3 ≤ i ≤ k′ and d(Rk′+1; f) ≤ 0.

Note that E(Rk) ∩ E(Rk′) = ∅ when α > 0 and β > 0.

Suppose that there exists ∆(Ri; f) ∈ Γ+
∞(f) with i ≥ k such that fRi

(x, y) = 0

has a solution in (R \ {0})2. Let i0 be the largest index such that d(Ri0 ; f) > 0 and

fRi
(x, y) has a solution in (R \ {0})2. We consider the real toric variety X obtained

by the admissible toric compactification of R2 associated with {R1, . . . , Rm}. Let

γ be a branch of Vf in N intersecting E(Ri0) and being nearest to E(Ri0+1). By

Lemma 2.1 (3), V1 ∩ N is a short arc in N intersecting E(Rm) transversely, see

Figure 3. Thus we can find a cleaving family between V1 and γ in N . If there exists

∆(Ri; f) ∈ Γ+
∞(f) with 3 ≤ i ≤ k′ such that fRi

(x, y) = 0 has a solution in (R \ {0})2

then there exists a cleaving family by the same reason. Thus, in either case, we have

0 ∈ Bf .

Now we prove the converse. Suppose that there does not exist ∆(P ; f) ∈ Γ+
∞(f)

such that fP (x, y) = 0 has a solution in (R \ {0})2. By Lemma 2.6, it is enough to

check that f = 0 is not cleaving and not vanishing at infinity. We first check that

f = 0 is not cleaving. For any ∆(Ri; f) ∈ Γ+
∞(f), since fRi

(x, y) = 0 has no solution

in (R\{0})2, VF does not intersect E(Ri) by Lemma 2.2. If VF intersects E(Ri) with

d(Ri; f) = 0 then by the same argument as in the proof of Lemma 3.3, the fibration at

infinity near E(Ri) is trivial, see Figure 2. The triviality also holds in the case where

VF intersects E(Ri) with d(Ri; f) < 0 as we have seen in the proof of Lemma 3.2, see

Figure 1. This shows that there is no cleaving family near the intersection of VF with

∪m
i=3E(Ri).
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+

cleaving

E(Ri0
)

V1

γ

+

E(Rm)

Figure 3. A cleaving family between V1 and γ. The sign + means

that E(Ri) satisfies d(Ri; f) > 0.

By Lemma 2.1, it remains to show that there is no cleaving family near the inter-

section of V1 with E(Rm) and near the intersection of V2 with E(R3). We only check

the former case. The latter case is proved similarly. On Um, f has the form

f(um, vm) = ud(Rm;f)
m vd(R1;f)

m (gm(vm) + umhm(um, vm)),

where Vf ∩ Um corresponds to the curve v
d(R1;f)
m (gm(vm) + umhm(um, vm)) = 0. Since

the covectors R3, . . . , Rm are chosen such that fRm is a monomial, Vf intersects E(Rm)

only at E(Rm) ∩ V1 by Lemma 2.1. If Γ0
∞(f) ̸= ∅ then a nearby fiber of f passing

near V1 intersects ∪m
i=3E(Ri) at a point near E(Rk−1) ∩ E(Rk) as shown on the

left in Figure 4. We can show that the fibration is trivial at infinity by choosing

a family of smooth circles going to the infinity and being transverse to the nearby

fibers suitably as in the proof of Lemma 3.2. If Γ0
∞(f) = ∅ then nearby fibers intersect

E(Rk−1) ∩ E(Rk) as shown on the right in Figure 4 since ∆(Rk−1; f) ∈ Γ−
∞(f) and

∆(Rk; f) ∈ Γ+
∞(f). Therefore, the fibration is again trivial at infinity. Thus f = 0 is

not cleaving at infinity.

+

nearby fiber

E(Rk)

V1

+

E(Rm)

E(Rk−1)

0

+

nearby fiber

E(Rk)

V1

+

E(Rm)

E(Rk−1)

−

Figure 4. The triviality of the fibration at infinity for nearby fibers

passing near V1.

Next we check that f = 0 is not vanishing at infinity. As we explained in the proof

of Lemma 3.3, a vanishing family does not exist in a neighborhood of E(Ri) with

d(Ri; f) = 0. It does not exist near E(Ri) with d(Ri; f) > 0 also since a nearby fiber
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cannot stay in N as we had seen in Figure 4. A vanishing family does not exist near

E(Ri) with d(Ri; f) < 0 by the same reason as we had seen in the proof of Lemma 3.2.

This completes the proof. □

Proof of Proposition 3.1. The assertion follows from Lemmas 3.2, 3.3 and 3.4. □

Proof of Theorem 1.1. If it is in case (ii), we have c = 0 ∈ Bf by Proposition 3.1. If

it is in case (iii) then f − c has the form

f(ui, vi)− c = v
d(Ri+1;f)
i (g̃i(vi) + uihi(ui, vi)),

where g̃i(vi) = gi(vi)−cv
−d(Ri+1;f)
i , and there exists a non-zero real root s of g̃i(vi) = 0

with multiplicity 2. That is, the strict transform Vf−c of f = c intersects E(Ri) at

(ui, vi) = (0, s) with multiplicity 2. Let U be a small neighborhood of (0, s) in N

such that U \E(Ri) consists of two connected components, say U ′ and U ′′. There are

three cases: (1) Vf−c intersects both of U ′ and U ′′; (2) Vf−c intersects one of them

and does not intersect the other; (3) Vf−c does not intersect both of U ′ and U ′′. In

case (2), there is a cleaving family and a vanishing family as shown in Figure 5. Thus

we have c ∈ Bf .

Vf−c

0

+

−

cleaving

E(Ri)

vanishing

Vf−c

0

+

−

cleaving

E(Ri)

vanishing

Figure 5. Cleaving and vanishing at infinity on E(Ri) with∆(Ri; f) ∈
Γ0
∞(f) (Case where Vf−c is in one side).

In case (1), since the multiplicity is 2, Vf−c in U consists of either two curves

intersecting each other transversely and also intersecting E(Ri) transversely, see on

the left in Figure 6, or one curve with multiplicity 2 intersecting E(Ri) transversely.

In the former case, f = c is cleaving at infinity from both sides as shown in the figure.

In the latter case, c ∈ Σf . In case (3), f = c has vanishing families from both sides,

see on the right in Figure 6. In any case, we have c ∈ Bf .

Conversely, if both of (ii) and (iii) are not satisfied then applying Proposition 3.1

to f(x, y)− c, we can conclude that c ̸∈ Bf unless c ∈ Σf . □

Remark 3.5. The “Morse condition” on bad faces is crucial especially in case (1) in

the above proof. For a non-zero real root s of g̃i(vi) = 0, let µ denote its multiplicity.
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Vf−c

0

+

−

cleaving

E(Ri)

cleaving

Vf−c

0

+

−

vanishing

E(Ri)

vanishing

Figure 6. Cleaving and vanishing at infinity on E(Ri) with∆(Ri; f) ∈
Γ0
∞(f) (Case where Vf−c is either in both sides or isolated).

If µ is odd then Vf−c can be one curve being tangent to E(Ri) with multiplicity µ and

intersects both of U ′ and U ′′. In this case, the fibration is trivial in this neighborhood.

Hence we cannot generalize the assertion in the case where µ is odd. On the other

hand, if µ is even then the assertion in Theorem 1.1 still holds by the same argument

as in the proof.

Example 3.6. Consider the polynomial function f(x, y) = x(1 + xmy2n), where

m,n ≥ 1. From the Newton polygon ∆(f), there are two covectors orthogonal to the

face of ∆(f), i.e.,

Q1 =

(
−2n

m

)
, Q2 =

(
2n

−m

)
.

We can easily check that the conditions (i) and (iii) in Theorem 1.1 are not satisfied.

If c ̸= 0 = f(0, 0) then (ii) is also not satisfied. When c = 0, only the covector Q2

satisfies ∆(Q2; f̃) ∈ Γ+
∞(f̃). We can easily check that (ii) is satisfied if and only if m

is odd. Thus Bf = {0} if m is odd and Bf = ∅ if m is even.

We here explain how the cleaving and vanishing families appear in a real toric

variety in the case where f(x, y) = x(1 + xy2). Set

R1 =

(
1

0

)
, R2 =

(
0

1

)
, R3 =

(
−1

1

)
, R4 = Q1 =

(
−2

1

)
,

R5 =

(
−1

0

)
, R6 = Q2 =

(
2

−1

)
, R7 = R1.

These primitive covectors satisfy the conditions in Section 2 and the associated ad-

missible toric compactification X becomes as shown in Figure 7. We can see from

the figure that there are two cleaving families up to equivalence relation defined in

Definition 2.7 and there is no vanishing family.
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V1
−cleaving

E(R4)

E(R3)

E(R5)

E(R6)

−

−

+

cleaving

x-axis

y-axis

Figure 7. A connected component of f = ε and a connected compo-

nent of f = −ε, with sufficiently small ε > 0, are described. Both of

them are cleaving as ε → 0.

Example 3.7. Consider the polynomial function

f(x, y) = x+
1

m
xmym +

2a

m+ 1
xm+1ym+1 +

1

m+ 2
xm+2ym+2

with m ≥ 2. It has no singular point and hence Σf = ∅.
From the Newton polygon ∆(f), the covectors orthogonal to the faces are

Q1 =

(
−m− 2

m+ 1

)
, Q2 =

(
1

−1

)
, Q3 =

(
m

1−m

)
.

Only the face ∆(Q2; f) is a bad face. To apply Theorem 1.1, we need to assume that

bQ2(t) = tm( 1
m
+ 2a

m+1
t + 1

m+2
t2) is a Morse function on R \ {0}. The critical points

are the roots of
dbQ2

dt
(t) = tm−1(1+ 2at+ t2) = 0. Thus bQ2 is Morse on R \ {0} if and

only if a ̸= ±1. If −1 < a < 1 then bQ2 has no critical point on R \ {0}. If |a| > 1

then t0 = −a −
√
a2 − 1 and t1 = −a +

√
a2 − 1 are the critical points of bQ2 . The

face ∆(Q3; f) is in Γ+
∞(f) and fQ3(x, y) = x + xmym = 0 has a solution (−1,−1) in

(R \ {0})2. Hence 0 ∈ Bf . The bifurcation set Bf is now determined for |a| ̸= 1:

Bf = {0, bQ(t0), bQ(t1)} if |a| > 1 and Bf = {0} if |a| < 1.
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Now we explain how the cleaving and vanishing families appear in a real toric

variety. Set

R1 =

(
1

0

)
, R2 =

(
0

1

)
, R3 =

(
−1

1

)
, R4 = Q1 =

(
−m− 2

m+ 1

)
,

R5 = Q2 =

(
1

−1

)
, R6 = Q3 =

(
m

1−m

)
,

R6+k =

(
m− k

1−m+ k

)
(k = 1, . . . ,m− 3), Rm+4 =

(
2

−1

)
, Rm+5 = R1.

These primitive covectors satisfy the conditions in Section 2 and the associated ad-

missible toric compactification X becomes as shown in Figure 8, which is in the case

where m = 8 and |a| > 1. If |a| < 1 then Vf does not intersect E(R5).

V1

0

cleaving

E(R4)

E(R3)

E(R5)

E(R6)

x-axis

y-axis

E(R7)

E(R8)

E(R9)
E(R10)

E(R11)
E(R12)

cleaving

vanishing

VF

Figure 8. A part of a connected component of f = ε and a part of

a connected component of f = −ε, with sufficiently small ε > 0, are

described. Both of them are cleaving as ε → 0.

On the local chart U5 with coordinates (u5, v5), for each j = 0, 1, we have

f(u5, v5)− f(tj) = (v5 − tj)
2ĝj(v5) + u5v

8
5

with ĝj(tj) ̸= 0. Thus Vf−f(tj) is tangent to E(R5) at (u5, v5) = (0, tj) with multiplicity

2. This is in case (2) in the proof of Theorem 1.1. Hence we see that there are a

cleaving family and a vanishing family for each j = 0, 1. Since a vanishing family does

not appear in the settings in Lemma 3.3 and 3.4, we see that there is no other vanishing

family. There are two cleaving families with limit f = 0 as shown in Figure 8. Here

we count the numbers of cleaving and vanishing families up to equivalence relations in

22 Jan 2019 16:33:24 PST
Version 4 - Submitted to J. Math. Soc. Japan



16 MASAHARU ISHIKAWA, TAT-THANG NGUYEN, AND TIÉ̂N-SO
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Definition 2.7. In summary, this example has four cleaving families and two vanishing

families. For other m’s more than 1, we can easily check that f also has the same

numbers of cleaving and vanishing families.

4. Proof of Theorem 1.2

In this section, we give the proof of Theorem 1.2, which determines the number of

cleaving and vanishing families counted up to equivalence relations in Definition 2.7.

Proof of Theorem 1.2. Let E+ and E0 denote the union of E(Ri)’s with ∆(Ri; f) ∈
Γ+
∞(f) and with ∆(Ri; f) ∈ Γ0

∞(f), and let N+ and N0 denote a small, compact

neighborhood of E+ and E0 in X, respectively. A cleaving family appears either in

N+ or N0, see Lemma 3.4 and the proof of Theorem 1.1. A vanishing family appears

only in N0, see the proof of Theorem 1.1.

First we observe it in N+. Suppose that E+ ̸= ∅. We may assume that f has the

form f(x, y) = xαyβF (x, y) with either α > 0 or β > 0. We set E+ = E+
x ∪E+

y , where

E+
x = ∪m

i=kE(Ri) and E+
y = ∪k′

i=3E(Ri). Here k is the index such that d(Rk−1; f) ≤ 0

and d(Rk; f) > 0 (cf. Figure 4) and k′ is the index such that d(Rk′ ; f) > 0 and

d(Rk′+1; f) ≤ 0. Note that if α = 0 (resp. β = 0) then E+
x (resp. E+

y ) is empty

and that E+
x ∩ E+

y = ∅. Let R+
x (resp. R+

y ) be the sum of r(Ri; f)’s for i ≥ k (resp.

3 ≤ i ≤ k′) with ∆(Ri; f) ∈ Γ+
∞(f). Note that R+ = R+

x +R+
y .

We first count the number of cleaving families in a compact neighborhood N+
x of

E+
x . Remark that R+

x is equal to the number of intersection points VF ∩E+
x . A nearby

fiber in N+
x yields a “cleaving” if and only if both of the endpoints of the fiber in

N+
x is on the boundary ∂N+

x . If an endpoint is not on ∂N+
x then it is on E(Rk−1) if

d(Rk−1; f) = 0 and on the intersection E(Rk−1) ∩ E(Rk) if d(Rk−1; f) < 0. Such an

endpoint can appear on all of the four quadrants on the chart Uk−1 corresponding to

Cone(Rk−1, Rk). Since V1 intersects E(Rm) at one point, Vf intersects E+
x at R+

x + 1

points. Adding the 4 endpoints on Uk−1, there are totally 4R+
x + 8 endpoints. Hence

the curve {f = ε} ∪ {f = −ε} has 2R+
x + 4 connected components in N+

x . However,

the endpoints lying on E(Rk−1) do not contribute to “cleavings”. Moreover, there

is no connected component both of whose endpoints are on E(Rk−1). This can be

checked as follows: Try to describe a curve in N+
x starting at one of the endpoints on

E(Rk−1). Then we meet Vf before coming back near E(Rk−1). Thus the curve must

go out from ∂N+
x . There are four connected components which do not contribute to

“cleavings”. Hence the number of cleaving families in N+
x is 2R+

x . This is true even

if E+
x = ∅ since there is no cleaving family in this case.

The number of cleaving families in a compact neighborhood N+
y of E+

y can be

counted by the same way and it becomes 2R+
y . Since E+

x ∩ E+
y = ∅, the countings
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in N+
x and N+

y do not conflict. Hence the total number of cleaving families in N+ is

2R+
x + 2R+

y = 2R+.

Next we observe it in N0. Since f has only isolated singularities, each critical point

of bP (t)|R\{0} corresponds to an intersection point of VF and E0 as shown in Figures 5

and 6. In either case, for each intersection point, the sum of the number of cleaving

families and that of vanishing families is 2. Hence the total number of cleaving and

vanishing families in N0 is 2R0. This completes the proof. □

5. An upperbound of B∞,f

In this section, we do not assume that f is non-degenerate on Γ+
∞(f) ∪ Γ−

∞(f) and

also do not assume that f is Morse on Γ0
∞(f).

We will prove Theorem 1.3 by applying successive admissible toric modifications

for each singularity on ∪m
i=3E(Ri) appearing due to degeneracies. We first introduce

an admissible toric modification. Though an admissible toric modification is usually

defined for a polynomial function or a locally analytic function, we define it for rational

functions given as in (2.1). Note that such a modification had been used in [14] for

studying singularities at infinity of complex polynomial functions.

Let U ⊂ R2 be a small neighborhood of the origin and let f̂ : U → R be a

real rational function on U whose expansion is given by f̂(x, y) =
∑

(m,n) am,nx
myn,

where (m,n) ∈ Z with m > −M for some non-negative integer M and n ≥ 0. We

define the Newton polygon ∆loc(f̂) of f̂ by the convex hull of ∪(m,n)((m,n) + R2
≥0),

where R≥0 = {x ∈ R | x ≥ 0} and the union is taken for all (m,n) such that

am,n ̸= 0. For a given primitive covector P = t(p, q) with p, q > 0, let d(P ; f̂)

denote the minimal value of the linear function pX + qY , where (X,Y ) ∈ ∆loc(f̂).

Set ∆(P ; f̂) := {(X,Y ) ∈ ∆loc(f̂) | pX + qY = d(P ; f̂)}, which is called a face if

dim∆(P ; f̂) = 1. The partial sum f̂P (x, y) =
∑

(m,n)∈∆(P ;f̂) am,nx
myn is called the

boundary function for the covector P . If ∆(P ; f̂) is a face then it is called the face

function. A boundary function f̂P is said to be degenerate if ∂f̂P
∂x

= ∂f̂P
∂y

= 0 has a

solution in (R \ {0})2. Otherwise it is said to be non-degenerate.

Let f̂ be a rational function given as above and let Q̂i =
t(p̂i, q̂i), i = 1, . . . , n̂, be

primitive covectors such that

(1) both p̂i and q̂i are positive;

(2) ∆(Q̂i; f̂) is a compact face;

(3) the indices are assigned in the counter-clockwise orientation.

Let R̂i =
t(r̂i, ŝi), i = 1, . . . , m̂, be primitive covectors which satisfy the following:

(1) R̂1 =
t(1, 0) and R̂m̂ = t(0, 1);

(2) both r̂i and ŝi are positive for each R̂i, i = 2, . . . , m̂− 1;

(3) Q̂i is contained in {R̂2, . . . , R̂m̂−1};
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(4) the indices are assigned in the counter-clockwise orientation;

(5) the determinants of the matrices (R̂i, R̂i+1), i = 1, . . . , m̂− 1, are 1.

For each Cone(R̂i, R̂i+1), i = 1, . . . , m̂−1, an affine coordinate chart (ui, vi) is defined

by the coordinate transformation

x = ur̂i
i v

r̂i+1

i , y = uŝi
i v

ŝi+1

i .

Then a real variety Y is obtained by gluing these coordinate charts, which is described

as

Y = U ∪

(
m̂−1∪
i=2

E(R̂i)

)
,

where E(R̂i) is the exceptional divisor corresponding to the covector R̂i. Let π : Y →
U be the associated proper mapping, which is called the admissible toric modification

associated with {R̂1, . . . , R̂m̂}. For further information about toric modifications,

see [24].

Suppose that f̂ has the form

f̂(x, y) = xd(y + c)d
′
(yµĝ(y) + xĥ(x, y)),

where d, d′ ∈ Z, c ̸= 0, ĝ(y) is the expansion of a rational function of one variable

y with ĝ(0) ̸= 0, and h(x, y) is the expansion of a rational function of two variables

(x, y) with |h(0, 0)| < ∞. Let ∆−(f̂), ∆0(f̂) and ∆+(f̂) denote the union of the

compact faces ∆(P ; f̂) of ∆loc(f̂) with d(P ; f̂) < 0, d(P ; f̂) = 0 and d(P ; f̂) > 0,

respectively. Set ℓ−(f̂) and ℓ0(f̂) to be −1 plus the number of lattice points in the

segment obtained by projecting ∆−(f̂) and ∆0(f̂) to the second axis of R2 on which

∆loc(f̂) is described, respectively. Set ℓ+(f̂) = µ− ℓ−(f̂)− ℓ0(f̂).

Definition 5.1. The integers ℓ+(f̂), ℓ0(f̂) and ℓ−(f̂) are called the (+)-, (0)- and

(−)-height of ∆loc(f̂), respectively.

These heights will be used in the proof of Theorem 1.3.

Let f be a polynomial function. We first apply an admissible toric compactification

Y1 ⊃ R2 associated with primitive covectors {R1, . . . , Rm} with respect to ∆(f).

Suppose that fRi
is degenerate for a face ∆(Ri; f) in Γ−

∞(f). On Ui, f is given as (2.1).

Let s1, . . . , sη be non-zero real roots of gi(vi) = 0 and µ1, . . . , µη their multiplicities.

For some ξ ∈ {1, . . . , η} with µξ ≥ 2, which exists since fRi
is degenerate, we apply

the change of coordinates

(x1, y1) = (ui, vi − sξ).
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We call (x1, y1) translated coordinates. The polynomial function f can be extended

to Y1 as a rational function, and is given on the chart (x1, y1) as

f 1(x1, y1) = x
d(Ri;f)
1 (y1 + sξ)

d(Ri+1;f)(y
µξ

1 g1(y1) + x1h
1(x1, y1)),

where g1(0) ̸= 0.

Assume that we have applied admissible toric modifications πi : Yi → Yi−1 for

i = 2, . . . , σ successively. Let Uσ be a neighborhood of the origin on the coordinate

chart (uσ, vσ) in Yσ obtained after the successive toric modifications and translations

of coordinates. We call (uσ, vσ) translated coordinates also. Let fσ be the restriction

of the pull-back of f to Uσ, which is given as

fσ(xσ, yσ) = xdσ
σ (yσ + sσξ )

d′σ(yµσ
σ gσ(yσ) + xσh

σ(xσ, yσ)),

where dσ, d
′
σ ∈ Z with dσ < 0, sσξ ̸= 0, µσ ≥ 2 and gσ(0) ̸= 0. Applying an admissible

toric modification πσ+1 : Yσ+1 → Yσ on Uσ with respect to ∆loc(fσ), we obtain a

sequence of admissible toric modifications inductively.

We say that a sequence Yτ → · · · → Y1 ⊃ R2 of successive toric modifications is

terminated if there are no translated coordinates for further toric modifications. Note

that a sequence of successive toric modifications is terminated in finite steps. The

finiteness is proved in [14, Lemma 4.3] for complex polynomial case and the same

proof works for real case also.

Let Yτ → · · · → Yσ → · · · → Y1 ⊃ R2 be a sequence of admissible toric modifica-

tions, which is not necessary to be terminated. Let {Rσ
1 , . . . , R

σ
mσ

} be the primitive

covectors for the toric modification πσ+1 : Yσ+1 → Yσ with respect to ∆loc(fσ),

containing primitive covectors {Qσ
1 , . . . , Q

σ
nσ
} orthogonal to the compact faces of

∆loc(fσ). For each j = 2, . . . ,mσ − 1, on the local chart Uσ
j in Yσ+1 correspond-

ing to Cone(Rσ
j , R

σ
j+1), the pull-back fσ

j of f is given as

fσ
j (uσ,j, vσ,j) = u

d(Qσ
j ;f

σ)

σ,j v
d(Qσ

j+1;f
σ)

σ,j (gσj (vσ,j) + uσ,jh
σ
j (uσ,j, vσ,j)).

Now we define an integer λ(Qσ
j ; f

σ) by

λ(Qσ
j ; f

σ) =


0 d(Qσ

j ; f
σ) > 0

r′(Qσ
j ; f

σ) d(Qσ
j ; f

σ) = 0∑
ξ∈Ξσ,j

(µξ − 1) d(Qσ
j ; f

σ) < 0,

(5.1)

where r′(Qσ
j ; f

σ) is the number of non-zero real roots of
∂bQσ

j

dt
(t) = 0, Ξσ,j is the set of

indices of non-zero real multiple roots of gσj (vσ,j) = 0 at which we did not apply further

successive toric modifications in Yτ → · · · → Y1 ⊃ R2, and µξ is the multiplicity of

the root with index ξ ∈ Ξσ,j. Set ϵσ = 1 if the (+)-height of ∆(fσ
j ) is more than or

equal to 2, and set ϵσ = 0 otherwise.
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Similarly, for the primitive covectors {Q1, . . . , Qn} orthogonal to the faces of ∆(f),

we define

λ(Qi; f) =


0 d(Qi; f) > 0

r′(Qi; f) d(Qi; f) = 0∑
ξ∈Ξi

(µξ − 1) d(Qi; f) < 0,

where r′(Qi; f) is the number of non-zero real roots of
∂bQi

dt
(t) = 0, Ξi is the set of

indices of real multiple roots of gi(vi) = 0 in (2.1) at which we did not apply further

successive toric modifications, and µξ is the multiplicity of the root with index ξ ∈ Ξi.

Set ϵ(R+) = 0 if R+ = 0 and ϵ(R+) = 1 if R+ > 0 as in Theorem 1.3.

Proposition 5.2. Let Yτ → · · · → Y1 ⊃ R2 be a sequence of successive toric modifi-

cations that is terminated. Then

|B∞,f | ≤ ϵ(R+) +
n∑

i=1

λ(Qi; f) +
∑
σ

(
ϵσ +

nσ∑
j=1

λ(Qσ
j ; f

σ)

)
,

where σ runs over all indices of translated coordinates appearing in the successive

toric modifications.

Proof. Since the sequence of successive toric modifications is terminated, Ξσ,j = ∅ for

any (σ, j).

We first check the contribution of the faces ∆(Qσ
j ; f

σ) with d(Qσ
j ; f

σ) > 0 to |B∞,f |.
Consider the variety Yσ+1 obtained by an admissible toric modification πσ+1 : Yσ+1 →
Yσ with respect to ∆loc(fσ). Let ℓ+(fσ) be the (+)-height of ∆loc(fσ). Suppose that

ℓ+(fσ) ≥ 2. If there are cleaving families near E(Qσ
j ) with d(Qσ

j ; f
σ) > 0 then their

limits correspond to the same value in B∞,f . Hence its contribution is at most 1. If

ℓ+(fσ) = 0 then there is no contribution. If ℓ+(fσ) = 1 and there is no face ∆(P ; fσ)

with d(P ; fσ) > 0 then there is no contribution also. Suppose that ℓ+(fσ) = 1 and

there is such a face, say ∆(Qσ
j0
; fσ). Then, as shown in Figure 9, we see that the

fibration of nearby fibers passing near E(Qσ
j0
) is trivial. Note that this can be shown

by choosing a family of smooth circles going to the infinity and being transverse to

the nearby fibers suitably as in the proof of Lemma 3.2. Hence the contribution of

the face ∆(Qσ
j0
; fσ) is 0. There is no vanishing family in a neighborhood of E(Qσ

j )

with d(Qσ
j ; f

σ) > 0 in Yσ+1. Thus the contribution of the faces ∆(Qσ
j ; f

σ) with

d(Qσ
j ; f

σ) > 0 is at most ϵσ.

Next we check the contribution of the faces ∆(Qσ
j ; f

σ) with d(Qσ
j ; f

σ) = 0. The

number of values appearing as their limits is at most the number of non-zero real

roots of
dbQσ

j

dt
(t) = 0. Hence the contribution is at most r′(Qσ

j ; f
σ).

The same observation can be applied to neighborhoods of the divisors E(Qi), i =

1, . . . , n, and we have the upper bound ϵ(R+) +
∑n

i=1 λ(Qi; f) of the contribution.

This completes the proof. □

22 Jan 2019 16:33:24 PST
Version 4 - Submitted to J. Math. Soc. Japan



BIFURCATION SETS OF REAL POLYNOMIAL FUNCTIONS 21

−

Vf

Yσ

−

Yσ+1

−

Vf

+ +

+

+
E(Qσ

j0
)

nearby fiber

Figure 9. The triviality of the fibration in the case ℓ+(fσ) = 1.

Remark 5.3. The phenomenon having the triviality of the fibration in the case ℓ+ = 1,

shown in Figure 9, appears in complex polynomial case also. A face ∆(P ; fσ) with

d(P ; fσ) > 0 in the case ℓ+ = 1 is called a stable boundary face in [14, Definition 5.5].

The exception of such a face is also pointed out in [1, Example 2.9 (3)].

Proof of Theorem 1.3. Let Yτ → · · · → Y1 ⊃ R2 be a sequence of successive toric

modifications that is not terminated. Set

Λτ = ϵ(R+) +
n∑

i=1

λ(Qi; f) +
τ∑

σ=1

(
ϵσ +

nσ∑
j=1

λ(Qσ
j ; f

σ)

)
.

We first prove that this sum does not increase after an admissible toric modification

πτ+1 : Yτ+1 → Yτ , i.e., prove the inequality Λτ+1 ≤ Λτ .

Apply a toric modification πτ+1 at the origin of translated coordinates (xτ , yτ ). The

pull-back f τ+1 = π∗
τ+1f

τ of f has the form

f τ+1(xτ+1, yτ+1) = x
dτ+1

τ+1 (yτ+1 + sξ)
d′τ+1(y

µξ

τ+1g
τ+1(yτ+1) + xτ+1h

τ+1(xτ+1, yτ+1)),

where dτ+1, d
′
τ+1 ∈ Z with dτ+1 < 0, sξ ̸= 0, µξ ≥ 2 and gτ+1(0) ̸= 0. Let ℓ+, ℓ0

and ℓ− denote the (+)-, (0)- and (−)-heights of ∆loc(f τ+1), respectively. Note that

ℓ+ + ℓ0 + ℓ− ≤ µξ.

We will prove that the total contribution of the faces ∆(Qτ+1
j ; f τ+1) to Λτ+1 is at

most ℓ := ℓ++ℓ0+ℓ−−1. From∆loc(f τ+1), we see that the contribution
∑

ξ∈Ξτ+1,j
(µξ−

1) in (5.1) in the case d(Qτ+1
j ; f τ+1) < 0 is at most ℓ−−1. The contribution in the case

d(Qτ+1
j ; f τ+1) = 0 is at most ℓ0 and the contribution in the case d(Qτ+1

j ; f τ+1) > 0

is ϵτ+1. Hence if ℓ− > 0 then the total contribution is at most ℓ. Suppose that

ℓ− = 0. If ℓ+ = 0 then the face ∆(P ; f τ+1) with d(P ; f τ+1) = 0 contains the origin

(0, 0) and the contribution in the case d(Qτ+1
j ; f τ+1) = 0 becomes at most ℓ0 − 1.

Hence the total contribution is at most ℓ. If ℓ+ ≥ 2 then the contribution in the case

d(Qτ+1
j ; f τ+1) > 0 becomes at most ℓ+−1, and hence the total contribution is also at
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most ℓ. If ℓ+ = 1 then ϵτ+1 = 0, i.e., the contribution in the case d(Qτ+1
j ; f τ+1) > 0

is 0. Hence the total contribution is at most ℓ. Since ℓ := ℓ+ + ℓ0 + ℓ− − 1 ≤ µξ − 1,

we have

Λτ+1 ≤ ϵ(R+) +
n∑

i=1

λ(Qi; f) +
τ∑

σ=1

(
ϵσ +

nσ∑
j=1

λ(Qσ
j ; f

σ)

)
− (µξ − 1) + ℓ ≤ Λτ .

Thus Λτ does not increase. By the same argument, we have Λ1 ≤ Λ0 := ϵ(R+) +∑n
i=1 λ(Qi; f).

Suppose that a sequence of successive toric modifications is terminated at τ = τ0.

By Proposition 5.2 we have |B∞,f | ≤ Λτ0 . We then apply the inequality Λτ+1 ≤ Λτ

inductively:

|B∞,f | ≤ Λτ0 ≤ Λτ0−1 ≤ · · · ≤ Λ1 ≤ Λ0 = ϵ(R+) +R0 +
∑

∆(P ;f)∈Γ−
∞(f)

µ(P ; f).

This completes the proof. □

Remark 5.4. Let Yτ → · · · → Y1 ⊃ R2 be a sequence of successive toric modifications

that is terminated. Then a vanishing family appears only in a neighborhood of a

divisor E(Qσ
j ) with d(Qσ

j ; f
σ) = 0.
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