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Preface

In order to construct good moduli spaces for vector bundles over algebraic
curves, Mumford introduced the concept of a stable vector bundle. This concept
has been generalized to vector bundles and, more generally, coherent sheaves
over algebraic manifolds by Takemoto, Bogomolov and Gieseker. As the dif-
ferential geometric counterpart to the stability, I introduced the concept of an
Einstein—Hermitian vector bundle. The main purpose of this book is to lay
a foundation for the theory of Einstein—Hermitian vector bundles. We shall
not give a detailed introduction here in this preface since the table of contents
is fairly self-explanatory and, furthermore, each chapter is headed by a brief
introduction.

My first serious encounter with stable vector bundles was in the summer
of 1978 in Bonn, when F. Sakai and M. Reid explained to me the work of
Bogomolov on stable vector bundles. This has led me to the concept of an
Einstein—Hermitian vector bundle. In the summer of 1981 when I met M. Liibke
at DMV Seminar in Diisseldorf, he was completing the proof of his inequality for
Einstein—Hermitian vector bundles, which rekindled my interest in the subject.

With this renewed interest, I lectured on vanishing theorems and Einstein—
Hermitian vector bundles at the University of Tokyo in the fall of 1981. The
notes taken by I. Enoki and published as Seminar Notes 41 of the Department
of Mathematics of the University of Tokyo contained good part of Chapters
I, III, IV and V of this book. Without his notes which filled in many details
of my lectures, this writing project would not have started. In those lectures I
placed much emphasis—perhaps too much emphasis—on vanishing theorems. In
retrospect, we need mostly vanishing theorems for holomorphic sections for the
purpose of this book, but I decided to include cohomology vanishing theorems
as well.

During the academic year 1982/83 in Berkeley and in the summer of 1984
in Tsukuba, I gave a course on holomorphic vector bundles. The notes of these
lectures (“Stable Vector Bundles and Curvature” in the “Survey in Geometry”
series) distributed to the audience, consisted of the better part of Chapters I
through V. My lectures at the Tsukuba workshop were supplemented by talks
by T. Mabuchi (on Donaldson’s work) and by M. Itoh (on Yang—Mills theory).
In writing Chapter VI, which is mainly on the work of Donaldson on stable
bundles over algebraic surfaces, I made good use of Mabuchi’s notes.

During the fall of 1985 in Berkeley, H.-J. Kim gave several seminar talks
on moduli of Einstein—Hermitian vector bundles. Large part of Chapter VII is
based on his Berkeley thesis as well as Itoh’s work on moduli of anti-self-dual
connections on Kéhler surfaces. While I was revising the manuscript in this
final form, I had occasions to talk with Professor C. Okonek on the subject of
stable bundles, and I found discussions with him particularly enlightening.

In addition to the individuals mentioned above, I would like to express my
gratitude to the National Science Foundation for many years of financial sup-
port, to Professor F. Hirzebruch and Sonderforschungsbereich in Bonn, where
I started my work on Einstein—Hermitian vector bundles, and to Professors



A. Hattori and T. Ochiai of the University of Tokyo and the Japan Society for
Promotion of Sciences for giving me an opportunity to lecture on holomorphic
vector bundles. I would like to thank also Professor S. Iyanaga for inviting me
to publish this work in Publications of the Mathematical Society of Japan and
Mr. H. Arai of Iwanami Shoten for his efficient co-operation in the production
of this book.

February, 1986
S. Kobayashi
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Chapter 1

Connections in vector
bundles

Although our primary interest lies in holomorphic vector bundles, we begin
this chapter with the study of connections in differentiable complex vector bun-
dles. In order to discuss moduli of holomorphic vector bundles, it is essential to
start with differentiable complex vector bundles. In discussing Chern classes it
is also necessary to consider the category of differentiable complex vector bun-
dles rather than the category of holomorphic vector bundles which is too small
and too rigid.

Most of the results in this chapter are fairly standard and should be well
known to geometers. They form a basis for the subsequent chapters. As general
references on connections, we mention Kobayashi-Nomizu [75] and Chern [22].

1.1 Connections in complex vector bundles (over
real manifolds)

Let M be an n-dimensional real C*° manifold and E a C* complex vector
bundle of rank (= fibre dimension) r over M. We make use of the following
notations:

AP = the space of C*° complex p-forms over M,

AP(F) = the space of C* complex p-forms over M with values in E.

A connection D in E is a homomorphism

D: AE) — AYE)
over C such that
(1.1.1) D(fo)=o0df + f - Do for fe A oec AYE),
Let s = (s1,--+, $r) be a local frame field of E over an open set U C M, i.e.,

1



2 CHAPTER 1. CONNECTIONS IN VECTOR BUNDLES

i) s; € A°(E|py) i=1---,r,
ii) (s1(x), -+ ,sr(x)) is a basis of E, for each z € U.
Then given a connection D, we can write

(1.1.2) Ds; = Zsng, where W] € Ay

We call the matrix 1-form w = (w’) the connection form of D with respect to
the frame field s. Considering s = (s1,---, s,) as a row vector, we can rewrite
(1.1.2) in matrix notations as follows:

(1.1.2) Ds=s-w.

If & = Zgisi, ¢ € Ay, is an arbitrary section of E over U, then (1.1.1)
and (1.1.2) imply

(1.1.3) DE = " si(dgh 4+ wied).

Considering ¢ = *(€1,--- €") as a column vector, we may rewrite (1.1.3) as
follows:
(1.1.3) D¢ = dé + w€.

We call D¢ the covariant derivative of €.
Evaluating D on a tangent vector X of M at x, we obtain an element of the
fibre E, denoted by

(1.1.4) Dx¢ = (D€)(X) € E,.

We call Dx€ the covariant derivative of € in the direction of X.
A section £ is said to be parallel if D€ = 0. If c = ¢(t),0 £t < a, is a curve
in M, a section £ defined along c is said to be parallel along c if

(1.1.5) Doy =0 for 05t <a,

where ¢/(t) denotes the velocity vector of ¢ at ¢(t). In terms of the local frame
field s, (1.1.5) can be written as a system of ordinary differential equations

(1.1.5) Cif; + ) wi(d ()¢ =0.

If § is an element of the initial fibre E ), it extends uniquely to a paral-
lel section £ along c¢, called the parallel displacement of & along c. This is a
matter of solving the system of ordinary differential equations (1.1.5") with ini-
tial condition &y. If the initial point and the end point of ¢ coincide so that
xo = ¢(0) = c(a), then the parallel displacement along ¢ induces a linear trans-
formation of the fibre E,,. The set of endomorphisms of E,, thus obtained
from all closed curves c starting at xy forms a group, called the holonomy group
of the connection D with reference point .
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We shall now study how the connection form w changes when we change the
local frame field s. Let s’ = (s, -, sl.) be another local frame field over U. It
is related to s by

(1.1.6) s=s"a,

where a : U — GL(r; C) is a matrix-valued function on U. Let v’ = (wg-i) be
the connection form of D with respect to s’. Then

(1.1.7) w=a"'w'a+a da.
In fact,
sw= Ds=D(s'a) = (Ds')a+ s'da = s'w'a+ s'da = s(a™*w'a+a 'da).

We extend a connection D : A°(E) — AY(E) to a C-linear map

(1.1.8) D : AP(E) — APTYE), p =0,
by setting
(1.1.9) D(o-p)=(Do)ANp+o-dp for oc A(E), p € AP.

Using this extended D, we define the curvature R of D to be
(1.1.10) R=DoD:A%E) — A*(E).
Then R is A% linear. In fact, if f € A° and o € A°(E), then
D?*(fo) = D(odf + f - Do) = Do Adf + df A Do + fD?*c = fD?o.

Hence, R is a 2-form on M with values in End(F). Using matrix notations of
(1.1.2"), the curvature form Q of D with respect to the frame field s is defined
by

(1.1.11) sQ = D?s.
Then

(1.1.12) Q=dw+wAw.
In fact,

sQ = D(sw) =Ds Aw + sdw = s(w Aw + dw).
Exterior differentiation of (1.1.12) gives the Bianchi identity:
(1.1.13) dQ=QANw—-QAQ.

If w’ is the connection form of D relative to another frame field 8’ = sa™! as in

(1.1.6) and (1.1.7), the corresponding curvature form €' is related to by
(1.1.14) Q=a'a.
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In fact,

sQ = D?s = D*(s'a) = D(Ds'a + s'da) = D*s'a — Ds' Ada + Ds' Ada

=s0a=sa"'Qa.

Let {U,V,---} be an open cover of M with a local frame field sy on each
U. fUNV # @, then

(1.1.15) sy =sygyy on UNYV,

where gyy : UNV — GL(r; C) is a C* mapping, called a transition function.
Given a connection D in E, let wy be the connection form on U with respect
to sy. Then (1.1.7) means

(1.1.16) wy = g;}]wvg\/U + g;bdQVU on UnNV.

Conversely, given a system of gl(r; C)-valued 1-forms wy on U satisfying (1.1.16),
we obtain a connection D in F having {wy} as connection forms.
If Qp is the curvature form of D relative to sy, then (1.1.14) means

(1117) Qu = g;IIJQVgVU on UnNV.

It is sometimes more convenient to consider a connection in E' as a connection
in the associated principal GL(r;C)-bundle P. In general, let G be a Lie group
and g its Lie algebra identified with the tangent space T.G at the identity
element e of G. Let P be a principal G-bundle over M. Let {U} be an open
cover of M with local sections {sy} of P. Let {gyy} be the family of transition
functions defined by {(U, sy)};gvv : UNV — G is defined by

su(z) = sy (x)gvu(x) zelUnV.

A connection in P is given by a family of g-valued 1-forms wy on U satisfying
(1.1.16).

A connection in P induces a connection in every bundle associated to P. In
particular, a connection in a principal GL(r; C)-bundle P induces a connection
in the vector bundle £ = P x pCN associated to P by any representation
p: GL(r;C) — GL(N;C).

For further details on connections in principal bundles, see Kobayashi-Nomizu
[75].

1.2 Flat bundles and flat connections

Let F be a C* complex vector bundle over a real manifold M as in the
preceding section. A flat structure in E is given by an open cover {U, sy} with
local frame fields such that the transition functions {gyvy} (see (1.1.15)) are all
constant matrices in GL(r;C). A vector bundle with a flat structure is said to
be flat. On the other hand, a connection D in a vector bundle F is said to be
flat if its curvature R vanishes.
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A flat vector bundle E admits a natural flat connection D; namely, if the
flat structure is given by {U, sy}, then D is defined by

(1.2.1) Dsy = 0.

Since the transition functions {gyy} are all constants, the condition Dsy = 0
and Dsy = 0 are compatible on U NV and the connection D is well defined.
We note that if wy is the connection form of D relative to sy, then (1.2.1) is
equivalent to

(1.2.1) wy = 0.

From (1.2.1) (or (1.2.1")), it follows that the curvature of D vanishes.
Conversely, a vector bundle F with a flat connection D admits a natural
flat structure {U, sy}. To construct a local frame field sy satisfying (1.2.1),
we start with an arbitrary local frame field s’ on U and try to find a function
a: U — GL(r;C) such that sy = s'a satisfies (1.2.1’). Let w’ be the connection
form of D relative to s’. By (1.1.7), the condition wy = 0 is equivalent to

(1.2.2) a*w'a+atda = wy =0.

This is a system of differential equations where w’ is given and a is the unknown.
Multiplying (1.2.2) by a and differentiating the resulting equation

w'a+da =0,
we obtain the integrability condition
0= (dw')a—w' ANda = (dw")a+ (W Aw')a = Qa.

So the integrability condition is precisely vanishing of the curvature ' = 0.

In general, if s and s’ are two local parallel frame fields, i.e., if Ds = Ds’ = 0,
then s = s’a for some constant matrix a € GL(r; C) since the connection forms
w and w’ vanish in (1.1.7). Hence, if Dsy = Dsy = 0, the gy is a constant
matrix. This proves that a flat connection D gives rise to a flat structure
{U, SU}.

Let E be a vector bundle with a flat connection D. Let xy be a point of
M and m; the fundamental group of M with reference point xy. Since the
connection is flat, the parallel displacement along a closed curve c starting at
xo depends only on the homotopy class of ¢. So the parallel displacement gives
rise to a representation

(1.2.3) p:m — GL(r;C).

The image of p is the holonomy group of D defined in the preceding section.
Conversely, given a representation (1.2.3), we can construct a flat vector
bundle E by setting

(1.2.4) E=Mx,C’,
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where M is the universal covering of M and M x » C" denotes the quotient of
M x C" by the action of m; given by

v i (@, v) € M x C s (3(x), p(1)v) € M x C", yem

(We are considering m; as the covering transformation group acting on M ). It
is easy to see that E carries a natural flat structure coming from the product
structure of M x C”. The vector bundle defined by (1.2.4) is said to be defined
by the representation p. In summary, we have established the following

Proposition 1.2.5 For a complex vector bundle E of rank r over M, the fol-
lowing three conditions are equivalent:

(1) E is a flat vector bundle,
(2) E admits a flat connection D,
(3) E is defined by a representation p : 11 — GL(r; C).

A connection in a vector bundle E may be considered as a connection in
the associated principal GL(r; C)-bundle. More generally, let G be a Lie group
and P a principal G-bundle over M. Let {U} be an open cover of M with local
sections {sy} of P. Let {gyu} be the family of transition functions defined by
{(U, sv)}; each gyy is a C* maps from U NV into G. A flat structure in P is
given by {(U, sy)} such that {gyy} are all constant maps. A connection in P
is said to be flat if its curvature vanishes identically.

Let M be the universal covering space of M it is considered as a principal
m1-bundle over M, where 7 is the fundamental group of M acting on M as
the group of covering transformations. Given a homomorphism p : 1 — G,
we obtain a principal G-bundle P = M x » G by “enlarging” the structure
group from 7; to G. Then P inherits a flat structure from the natural flat
structure of the product bundle M x G over M. The following proposition is a
straightforward generalization of (1.2.5).

Proposition 1.2.6 For a principal G-bundle P over M, the following three
conditions are equivalent:

(1) P admits a flat structure,
(2) P admits a flat connection,

(3) P is defined by a representation p: 7 — G.

Applied to the principal GL(r;C)-bundle associated to a vector bundle E,
(1.2.6) yields (1.2.5). We shall now consider the case where G is the projective
linear group PGL(r;C) = GL(r;C)/C*I,, (where C*I, denotes the center of
GL(r; C) consisting of scalar multiples of the identity matrix I,.). Given a vector
bundle E, let P be the associated principal GL(r; C)-bundle. Then P = P/C*I,
is a principal PGL(r;C)-bundle. We say that F is projectively flat when Pis
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provided with a flat structure. A connection D in E (i.e., a connection in P) is
said to be projectively flat if the induced connection in P is flat. As a special
case of (1.2.6), we have

Corollary 1.2.7 For a complex vector bundle E of rank r over M with the as-
sociated principal GL(r; C)-bundle P, the following three conditions are equiva-
lent:

(1) E is projectively flat,
(2) E admits a projectively flat connection,

(3) The PGL(r;C)-bundle P = P/C*I, is defined by a representation p :
m — PGL(r; C).

Let p : GL(r;C) — PGL(r;C) be the natural homomorphism and p’ :
gl(r; C) — pgl(r; C) the corresponding Lie algebra homomorphism. If R de-
notes the curvature of a connection D in F, then the curvature of the induced
connection in P is given by (R). Hence,

Proposition 1.2.8 A connection D in a complex vector bundle E over M is
projectively flat if and only if its curvature R takes values in scalar multiples
of the identity endomorphism of E, i.e., if and only if there exists a complex
2-form a on M such that

R = aIE.

Let V=C". If A: V — V is a linear transformation of the form al,,a €
C*, then A ®' A~! is the identity transformation of End(V) = V ® V*. Hence,

Proposition 1.2.9 If a complex vector bundle E is projectively flat, then the
bundle End(F) = E ® E* is flat in a natural manner.

1.3 Connections in complex vector bundles (over
complex manifolds)

Let M be an n-dimensional complex manifold and F a C'*° complex vector
bundle of rank r over M. In addition to the notations AP and AP(F) introduced
in Section 1.1, we use the following:

AP9 = the space of (p, q)-forms over M,

AP9(E) = the space of (p, ¢)-forms over M with values in F,

so that
AT = 3" AP9 AT(E)= Y APY(E).
p+q=r ptHq=r
d=d +d", where d’ : AP9 — APT1.4 and d" : APY9 —5 APIHL,
Let D be a connection in E as defined in Section 1.1. We can write
D = D'+ D", where D' : AP4(E) — APYL4(E) and D" : AP9(E) —
APTL(E).
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Decomposing (1.1.1) and (1.1.9) according to the bidegree, we obtain

(13.1) D'(cp)=D'oNp+oady
o D"(ocp)=D"oANp+ad'¢e ocA'E), pec AP,
Let R be the curvature of D, i.e., R = Do D € A?(End(E)) . Then
(1.3.2) R=D'oD +(D'oD"+D"oD')Y+D"oD",
where
D' oD’ € A*°(End(E)), D" o D" € A>?*(End(E)),
D'oD"+ D" oD € AV (End(E)).

Let s be a local frame field of F and let w and €2 be the connection and the
curvature forms of D with respect to s. We can write

(133) w = wl’o + wO,I’

(1.3.4) Q=020 4 Qb1 4002,

We shall now characterize in terms of connections those complex vector
bundles which admit holomorphic structures.

Proposition 1.3.5 Let E be a holomorphic vector bundle over a complex man-
ifold M. Then there is a connection D such that

(1.3.6) D" =d".
For such a connection, the (0,2)-component D" oD" of the curvature R vanishes.

Proof Let {U} be a locally finite open cover of M and {py} a partition of
1 subordinate to {U}. Let sy be a holomorphic frame field of E on U. Let Dy

be the flat connection in E|y defined by Dy(sy) = 0. Then D = ZpUDU

is a connection in F with the property that D” = d’. The second assertion is
obvious. Q.E.D.

Conversely, we have

Proposition 1.3.7 Let E be a C°° complex vector bundle over a complex man-
ifold M. If D is a connection in E such that D" o D" = 0, then there is a unique
holomorphic vector bundle structure in E such that D" = d".

Proof We define an almost complex structure on E by specifying a split-
ting of the complex cotangent spaces into their (1,0)- and (0, 1)-components
and verify the integrability condition. Intrinsically, such a splitting is obtained
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by identifying the horizontal subspace of each tangent space of E with the cor-
responding tangent space of M. But we shall express this construction more ex-
plicitly in terms of local coordinates. We fix a local trivialization E|y = U x C".
Let (2%, ---, 2z™) be a coordinate system in U, and (w!, ---, w") the natural
coordinate system in C". Let w = (w;) be the connection form in this trivial-

ization. Let
i
J

i

Wj

w; +w

be the decomposition into (1,0)- and (0,1)-components. Now we define an
almost complex structure on E by taking

(1.3.8) {dz*, dw" + Zw;’iwj}
as a basis for the space of (1,0)-forms on E. Since
dldw' +Y Ww?) = dw’ + Wl A WY = d'w"w’ =0
J J k J J

modulo the ideal generated by (1.3.8), this almost complex structure is inte-
grable. In order to show that this holomorphic structure of E has the desired
property, it suffices to verify that if a local section s of E satisfies the equation
D"s = 0, then it pulls back every (1,0)-form of E to a (1,0)-form of the base
manifold M. Let s be given locally by

s:U—UxC", s(z) = (2, &(2)).
Then the condition D"”s = 0 is given by
4’ + Y wigd = 0.

Pulling back the (1,0)-forms in (1.3.8) we obtain (1, 0)-forms:

§*(dz%) = dz“,
5*(dwz+zw§/zw]):d£z+zw;/z€j :dlgz

The uniqueness is obvious. Q.E.D.

Proposition 1.3.9 For a connection D in a holomorphic vector bundle E, the
following conditions are equivalent:

(a) D// — d//;
(b) For every local holomorphic section s, Ds is of degree (1,0);

(¢) With respect to a local holomorphic frame field, the connection form is of
degree (1,0).

The proof is trivial.
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1.4 Connections in Hermitian vector bundles

Let E be a C* complex vector bundle over a (real or complex) manifold M.
An Hermitian structure or Hermitian metric h in E is a C* field of Hermitian
inner products in the fibers of E. Thus,

h(&, n) is linear in &, where £, € F,,
h(&, f) fOI“ £#0
h(&, n)isa C°° function if £ and n are C* sections .
We call (E, h) an Hermitian vector bundle.
Given a local frame field sy = (s1, ---, ;) of E over U, we set
(142) hij = h(sia 5j)7 ivj = 1a e, T
and
(1.4.3) Hy = (h).

Then Hy is a positive definite Hermitian matrix at every point of U. When we
are working with a single frame field, we often drop the subscript U. We say
that sy is a unitary frame field or orthonormal frame field if Hy is the identity
matrix. Under a change of frame field (1.1.15) given by sy = sy gyu, we have

(1.4.4) Hy = thUHVEVU on UNV.

A connection D in (E, h) is called an h-connection if it preserves h or makes
h parallel in the following sense:

(1.4.5) d(h(¢, m) = h(DE, n) +h(¢, Dn) for &n e A (E).

Let w = (w}) be the connection form relative to sy defined by (1.1.2). Then
setting £ = s5; and ) = s; in (1.4.5), we obtain

(1.4.6) dhij = h(Ds;, s;) + h(si, Dsj) =Y wiha; + hipw!.
In matrix notation,

(1.4.6") dH ="'wH + Hw.

Applying d to (1.4.6") we obtain

(1.4.7) "OH + HQ = 0.
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Let H be the identity matrix in (1.4.6") and (1.4.7). Thus,
(1.4.8) fw+w=0,"04+0=0 if sy is unitary ,

that is, w and Q are skew-Hermitian with respect to a unitary frame. This
means that w and Q take values in the Lie algebra u(r) of the unitary group
U(r).

We shall now study holomorphic vector bundles. If E is a holomorphic vector
bundle (over a complex manifold M), then an Hermitian structure h determines
a natural h-connection satisfying (1.3.6). Namely, we have

Proposition 1.4.9 Given an Hermitian structure h in a holomorphic vector
bundle E, there is a unique h-connection D such that D" = d".

Proof Let sy = (s1, -+, 8:) be a local holomorphic frame field on U.
Since Ds; = D's;, the connection form wy = (w;) is of degree (1,0). From
(1.4.6) we obtain

(1.4.10) d'hij = nghaj or d'Hy ='wyHy.
This determines the connection form wy, i.e.,
(1.4.11) fwy = d Hy HE ',

proving the uniqueness part. To prove the existence, we compare *wy with
twy = d'Hy Hy,'. Using (1.4.4) we verify by a straightforward calculation that
wy and wy satisfy (1.1.16). Then the collection {wy} defines the desired con-
nection. Q.E.D.

We call the connection given by (1.4.9) the Hermitian connection of a holo-
morphic Hermitian vector bundle (E, k). Its connection form is given explicitly

by (1.4.11).
Its curvature R = DoD has no (0, 2)-component since D" o D" = d"od” = 0.
By (1.4.7) it has no (2,0)-component either. So the curvature

(1.4.12) R=DoD"4+D"oD'
is a (1, 1)-form with values in End(E).
With respect to a local holomorphic frame field, the connection form w =

(w?) is of degree (1,0), see (1.3.9). Since the curvature form € is equal to the
(1,1)-component of dw + w A w, we obtain

(1.4.13) Q=dw.
From (1.4.11) we obtain

(1.4.14) fO=d'dH-H'+dH' -H *ANd"H-H.
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We write
i i a =0
(1.4.15) Q=Y R -dz"Andz
so that
_ _ Dl _ _ ab _ _
(1.4.16) Ripas = Y higRig = —050ahz+ Y h*0uhz05h,z,

where 9, = 9/02* and 05 = 007",
The second part of the following proposition follows from (1.3.7).

Proposition 1.4.17 The curvature of the Hermitian connection in a holomor-
phic Hermitian vector bundle is of degree (1,1).

If (E, h) is a C™ complex vector bundle over a complex manifold with an
Hermitian structure h and if D is an h-connection whose curvature is of degree
(1,1), then there is a unique holomorphic structure in E which makes D the
Hermitian connection of the Hermitian vector bundle (E, h).

Proposition 1.4.18 Let (E, h) be a holomorphic Hermitian vector bundle and
D the Hermitian connection. Let E' C E be a C* complex vector subbundle
invariant under D. Let E" be the orthogonal complement of E' in E. Then both
E' and E" are holomorphic subbundles of E invariant by D, and they give a
holomorphic orthogonal decomposition:

E:EI®E/I

Proof Since E’ is invariant under D, so is its orthogonal complement E”.
Let s be a local holomorphic section of E and let s = s’ +s" be its decomposition
according to the decomposition £ = E’ & E”. We have to show that s’ and s”
are holomorphic sections of E. Since D = D'+d" by (1.4.9), we have Ds = D’s.
Comparing Ds = Ds' + Ds” with D’'s = D's' + D’s”, we obtain Ds’ = D’s’
and Ds” = D's”. Hence, d’s’ =0 and d"s"” = 0. Q.E.D.

In Riemannian geometry, normal coordinate systems are useful in simplifying
explicit local calculations. We introduce analogous holomorphic local frame
fields s = (s1, -+, s,) for an Hermitian vector bundle (E, h). We say that a
holomorphic local frame field s is normal at xo € M if

hi7 = 6ij at o)
1.4.19 ) —
( ) wj = Z hlkd’hjg =0 at xo.

Proposition 1.4.20 Given a holomorphic Hermitian vector bundle (E, h) over
M and a point xo of M, there exists a normal local frame field s at .

Proof We start with an arbitrary holomorphic local frame field s around z.
Applying a linear transformation to s, we may assume that the first condition
of (1.4.19) is already fulfilled. Now we apply a holomorphic transformation

s — Sa
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such that a = (aé») is a holomorphic matrix which reduces to the identity matrix
at zg. Then the Hermitian matrix H for h changes as follows:

H — 'GHa.

We have to choose a in such a way that d’(‘aHa) = 0 at xy. Since d''a = 0 and
aé = 6; at xg, we have
d'(*aHa) =d'H +d'a at .

It is clear that there is a solution of the form
aé = (5; + Zcékzk, where c}k eC. Q.E.D.

We shall now combine flat structures discussed in Section 1.2 with Hermitian
structures. A flat Hermitian structure in a C* complex vector bundle E is given
by an open cover {U} of M and a system of local frame fields {sy} such that
the transition functions {gyy} are all constant unitary matrices in U(r). The
following statement can be verified in the same manner as (1.2.5).

Proposition 1.4.21 For a C*° complex vector bundle E of rank r over M, the
following conditions are equivalent.

(1) E admits a flat Hermitian structure;
(2) E admits an Hermitian structure h and a flat h-connection D;
(3) E is defined by a representation p : m (M) — U(r) of m1(M).

Let P be the principal GL(r;C)-bundle associated to E. Then E admits a
flat Hermitian structure if and only if P can be reduced to a principal U(r)-
bundle admitting a flat structure in the sense of Section 1.2.

Let P be the principal PGL(r; C)-bundle associated to E as in Section 1.2,
ie, P= P/C*I,.. Let PU(r) be the projective unitary group defined by

PU(r) = U(r)/ UMW),

where U(1)I, denotes the center of U(r) consisting of matrices of the form
cl,, |c| = 1. Given an Hermitian structure h in E, we obtained a reduction of
P to a principal U(r)-bundle P’, which in turn gives rise to a principal PU(r)-
subbundle P’ = P'/U(1)I, of P. Conversely, a reduction P’ ¢ P (or P’ C P)
gives rise to an Hermitian structure h in E. If P’ is flat, or equivalently, if P’
admits a flat connection, we say that the Hermitian structure h is projectively
flat. From (1.2.6) we obtain

Proposition 1.4.22 For a complex vector bundle E of rank r over M, the
following conditions are equivalent:

(1) E admits a projectively flat Hermitian structure h;
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(2) The PGL(r;C)-bundle P = P/C*I, is defined by a representation p :
m (M) — PU(r) of m(M).

Letting A = al, |a] = 1, in the proof of (1.2.9), we obtain

Proposition 1.4.23 If a complex vector bundle E admits a projectively flat
Hermitian structure h, then the bundle End(F) = E® E* admits a flat Hermi-
tian structure in a natural manner.

1.5 Connections in associated vector bundles

Let E be a C* complex vector bundle over a real manifold M. Let E* be
the dual vector bundle of E. The dual pairing

(,):E;xE, —C
induces a dual pairing
(,):A%E") x AY(E) — A°.

Given a connection D in E, we define a connection, also denoted by D, in E*
by the following formula:

(1.5.1) d(&,m) = (D) + (€, Dn) for € € A°(E), n € A°(E").
Given a local frame field s = (s1, -+, s,) of E over an open set U, let t =
(t', .-+, t") be the local frame field of E* dual to s so that

(' s5) = 5; or (t,s) =1,

where s is considered as a row vector and ¢ as a column vector. If w = (w;)
denotes the connection form of D with respect to s so that (see (1.1.2))

(1.5.2) Ds; = Z sng or Ds = sw,
then
(1.5.3) Dt' = — Zwétj or Dt = —wt.

This follows from

0= d6§- = (Dt', s;)+ (', Ds;) = (Dt', s;) +w§-.

Itn= Zniti is an arbitrary section of E* over U, then (1.1.1) and (1.5.3)
imply

(1.5.4) Dy =" (dn; = > win;)t'.



1.5. CONNECTIONS IN ASSOCIATED VECTOR BUNDLES 15

Considering n = (n1, ---, ) as a row vector, we may rewrite (1.5.4) as
(1.5.4") Dn = dn —nw.

If Q is the curvature form of D with respect to the frame field s so that (see
(1.1.11))

(1.5.5) D?s = 5Q,
then with respect to the dual frame field ¢ we have
(1.5.6) D%t = —Qt.
This follows from
D*t = —D(wt) = —(dwt — wDt) = —(dw + w Aw)t = —Qt.

Now, let E denote the (complex) conjugate bundle of E. There is a natural
conjugation map

(1.5.7) E—F

such that A6 = X € for £ € E and A € C. The transition functions of E are the
complex conjugates of those for F in a natural manner. -
Given a connection D in E we can define a connection D in E by

(1.5.8) DE =DE  for ¢ € A°E).

If s = (s1, -+, sp) is a local frame field for E, then 3 = (51, ---,5,) is a
local frame field for E. If w = (w;) and {2 denote the connection and curvature
forms of D with respect to s, then we have clearly

(1.5.9) D5 =) 5@ orDs=350,

(1.5.10) D?5 = 3Q.

We shall now consider two complex vector bundles E and F' over the same
base manifold M. Let Dg and Dp be connections in F and F, respectively.
Then we can define a connection Dy @ D in the direct (or Whitney) sum E® F'
and a connection Dggp in the tensor product F ® F' in a natural manner. The
latter is given by

(1.5.11) Dpgr = Dp®Ip +1p ® Dp,
where I and Ir denote the identity transformations of E and F', respectively.

If we denote the curvatures of D and Dg by Rg and Rg, then

(1.5.12) Rp ® Rrp = the curvature of Dg & Dy,



16 CHAPTER 1. CONNECTIONS IN VECTOR BUNDLES

(1.5.13) Rep®Ir+ Ig ® Rp = the curvature of Dggp.

If s =(s1, -+, S) is a local frame field of E and ¢t = (¢1, ---, t,) is a local
frame field of F' and if wg,wp, Qg, Qp are the connection and curvature forms
with respect to these frame fields, then in a natural manner the connection and
curvature forms of Dg + Dp are given by

wWEg 0 QE 0
(1.5.14) ( 0 wF> and ( 0 QF) ,

and those of Dggp are given by
(1.5.15) wE®Ip—|—Ir®wp and QE®Ip+Ir®QF,

where I,, and I, denote the identity matrices of rank p and r.

All these formulas ((1.5.11)-(1.5.15)) extend in an obvious way to the direct
sum and the tensor product of any number of vector bundles. Combined with
formulas ((1.5.1)-(1.5.6)), they give formulas for the connection and curvature
in

EPQE®M-—F® - -QFE"® ---Q E*

induced from a connection D in E.
As a special case, we consider End(E) = F ® E*. With respect to a local
frame field s = (s1, -+, s,) of E and the dual frame field t = (¢!, --- | "), let

=) st
be a p-form with values in End(E), where &} are differential p-forms. Then
DE = (d&is; @ + (—1)P&§iDs; @t/ + (~1)P¢ls; @ DY)
=D (g + ()P Awp — ()P G Awk)si @t

The curvature R of D in E is a 2-form with values in End(E). Write

(1.5.16)

R=) Qs ot
Then
DR=> (dQ+> wp AQF =Y Q) Awh)s; @t/
Hence, by (1.1.13)
(1.5.17) DR =0,

which is nothing but the Bianchi identity.

The p-th exterior power APE of E is a direct summand of the p-th tensor
power E®P. Tt is easy to verify that the connection D in E®P induced by a
connection D of E leaves APE invariant, i.e.,

D(A°(APE)) c AY(APE).
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For example,

DY €% nsj Asp) =D VETEs NS A Sy,

Where .. .. . . . . ..
Vgljk‘ — df”k + szfajk + Zwégmk + Zwsgwa.
In particular, for the line bundle det(E) = A"E, called the determinant bundle
of £, we have
D(sy N+ Nsyp) = (ng)sl/wo#\sr,

i.e., the connection form for D in det(FE) is given by the trace of w:

(1.5.18) trw=>» ul.

Similarly, its curvature is given by

(1.5.19) trQ=> Q.

Let h be an Hermitian structure in E. Since it defines an Hermitian map
E, x E, — C at each point = of M, it may be considered as a section of

E* ®E*, ie., _
h=>Y hst'@F.

If D is any connection in F, then

(1.5.20) Dh =Y (dhg = hgwt =3 hg@t )t o 7.

Let E be a complex vector bundle over M and let N be a another manifold.
Given a mapping f : N — M, we obtain an induced vector bundle f*FE over
N with the commutative diagram:

FE L . Fp

(1.5.21) l l

N —

Then a connection D in F induces a connection in f*F in a natural manner;
this induced connection will be denoted by f*D. If s = (s1, ---, s,) is a local
frame field defined on an open set U of M, then we obtain a local frame field
f*s of f*E over f~'U in a natural manner. If w is the connection form of D
with respect to s, then f*w is the connection form of f*D with respect to f*s.
Similarly, if €2 is the curvature form with respect to s, f* is the curvature form
with respect to f*s.

Let h be an Hermitian structure in a complex vector bundle E. Then the dual
bundle E* has a naturally induced Hermitian structure h*. If s = (s1, ---, $,)
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is a local frame field and ¢t = (¢!, ---, t") is the dual frame field, then h and h*
are related by

(1.5.22) h=> hst' o, n =3 his®s5,
where (h%7) is the inverse matrix of (hg7) so that

S hikh g = o

This relationship is compatible with that between a connection in F and the
corresponding connection in E*. Namely, if a connection D in F preserves
h, then the corresponding connection D in E* preserves h*. In particular, if
FE is holomorphic and D is the Hermitian connection defined by h, then the
corresponding connection D in E* is exactly the Hermitian connection defined
by h*.

Similarly, for the conjugate bundle E, we have an Hermitian structure h
given by

(1.5.23) h=> hst @t/ =Y hit ot

Given Hermitian structures hg and hg in vector bundles ¥ and F over M,
we can define Hermitian structure hg @ hr and hg @ hp in E® F and E® F
in a well known manner. In the determinant bundle det(E) = A" E, we have a
naturally induced Hermitian structure det(h). If H = (h;5) is defined by (1.4.2),
then

(1.5.24) det(h)(sy A=+ ASp, S1A---As.)=det H.

If (E, h) is an Hermitian vector bundle with Hermitian connection D and
curvature form Q = (%) with respect to s = (s1, -+ , s,), then (det(E), det(h))
is an Hermitian line bundle with curvature form tr Q = ZQ:, (see (1.5.19)).
By (1.4.15) we have the Ricci form

(1.5.25) tr Q=) R,zdz" A dz’

where ‘
R, 5 Z R; 5 = —0a0gdet(hy).

Finally, given (E, h) over M, a mapping f : N — M induces an Hermitian
structure f*h in the induced bundle f*FE over N.

All these constructions of Hermitian structures in various vector bundles are
compatible with the corresponding constructions of connections.

What we have done in this section may be best described in terms of princi-
pal bundles and representations of structure groups. Thus, if P is the principal
GL(r, C)-bundle associated to E and if p : GL(r; C) — GL(k;C) is a repre-
sentation, we obtain a vector bundle £ = P ® p(Ck of rank k. A connection in
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FE is really a connection in P, and the latter defines a connection in every asso-
ciated bundle, in particular in £”. An Hermitian structure h in E corresponds
to a principal U(r)-subbundle P’. Considering E” as a bundle associated to
the subbundle P’ by restricting p to U(r), we obtain an Hermitian structure
h* in EP. A connection in E preserving h is a connection in P’ and induces a
connection in E? preserving h”.

1.6 Subbundles and quotient bundles

Let E be a holomorphic vector bundle of rank r over an n-dimensional
complex manifold M. Let S be a holomorphic subbundle of rank p of E. Then
the quotient bundle Q@ = E/S is a holomorphic vector bundle of rank r —p. We
can express this situation as an exact sequence

(1.6.1) 0—S—F—Q9—0.

Let h be an Hermitian structure in E. Restricting h to S, we obtain an
Hermitian structure hg in S. Taking the orthogonal complement of S in E with
respect to h, we obtain a complex subbundle S+ of E. We note that S+ may
not be a holomorphic subbundle of F in general. Thus

(1.6.2) E=S®S*

is merely a C* orthogonal decomposition of E. As a C*° complex vector bundle,
Q is naturally isomorphic to S*. Hence, we obtain also an Hermitian structure
hgo in a natural way.

Let D denote the Hermitian connection in (E, h). We define Dg and A by

(1.6.3) D¢ = Dgé + A¢ € € A%(9),
where Dg& € A'(S) and A¢ € AY(S1). Then
Proposition 1.6.4 (1) Dg is the Hermitian connection of (S, hg);
(2) Aisa (1,0)-form with values in Hom(S, S*), i.e., A € A%°(Hom(S, S1)).
Proof Let f be a function on M. Replacing € by f€ in (1.6.3), we obtain
D(f§) = Ds(f) + A(f§).
On the other hand,
D(f§) =df - £+ fD§ =df - § + fDs& + fAS.

Comparing the S- and S+-components of the two decompositions of D(f&), we
conclude

Ds(f§) =df - €+ fDs¢§, A(f§) = fAE.
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The first equality says that Dg is a connection and the second says that A is a
1-form with values in Hom(S, S*). If £ in (1.6.3) is holomorphic, then D¢ is a
(1, 0)-form with values in F and, hence, Dg¢ is a (1, 0)-form with values in S
while A is a (1, 0)-form with values in Hom(S, S*). Finally, if ¢, &' € A°(9),
then

d(h(&, €)) = h(DE, &)+ h(&, DE)
= h(Ds¢ + AE, )+ h(§, Ds&' + AL)
= h(DSSa 6/) + h(§5 Dsfl)v
which proves that Dg preserves hg. Q.E.D.

We call A € AYO(Hom(S, S*)) the second fundamental form of S in
(E, h). With the identification Q = S+, we consider A as an element of
A (Hom(S, Q)) also.

Similarly, we define Dg. and B by setting

(1.6.5) Dy = Bn+ Dgin, ne A%(SH),

where Bn € A'(S) and Dg.in € A'(S+). Under the identification Q = S+, we
may consider Dg1 as a mapping A°(Q) — A'(Q). Then we write Dg in place
of DsL .

Proposition 1.6.6 (1) Dg is the Hermitian connection of (Q, hg);
(2) B isa(0,1)-form with values in Hom(S+, S), i.e., B € A% (Hom(S+, 9));
(3) B is the adjoint of —A, i.e.,
h(AE, n)+h(€, Bn)=0 for £ A°(S), ne A°(St).

Proof Asin (1.6.4) we can see that Dg. defines a connection in S+ which
preserves hgi and that B is an element of A%!(Hom(S*, S)).

Let 77 be a local holomorphic section of Q,n the corresponding C'*° section
of S under the identification Q@ = S, and ¢ a local holomorphic section of F
representing 7). Let

(1.6.6) (=¢&¢+n with €€ A%9).
Applying D to (1.6.6) and making use of (1.6.3) and (1.6.5), we obtain

D¢ =D&+ Dnp=Dgé+ AE+ B+ Dgin

(1.6.7) = (Ds€& + Bn) + (A€ + Dg.n).

Since D( is a (1,0)-form with values in E, (Dg{ + Bn) and (A + Dgin)
are also (1,0)-forms with values in S and S, respectively. Since A¢ is a (1,0)-
form by (1.6.4), it follows that Dg.in is a (1,0)-form. This shows that the
corresponding connection Dg is the Hermitian connection of (Q, hg).
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Finally, if ¢ € A%(S) and € A°(S*), then

0 =dh(&, n) = h(DE, n)+ h(E, Dn)
= MDs& + A&, n) + h(§, Bn+ Dgin) = h(AE, 1) + h(, Bn).

This also shows that B is a (0, 1)-form since A is a (1, 0)-form. Q.E.D.

Let e1, -+ ,ep,€pt1, - , € be alocal C* unitary frame field for £ such that
e1, - ,ep is a local frame field for S. Then e,11, -+ , e, is a local frame field
for S+ = Q. We shall use the following convention on the range of indices:

1<a,b,c<p, p+1ZA p,vsr, 124,45, kS

If (w}) denotes the connection form of the Hermitian connection D of (E, h)
with respect to ey, - - ,e,., then

(1.6.8) De, = ZwZeb + Zwé‘e;w Dey = Zwiea + wa\‘e“.
It follows then that

Dge, = ZwZeb, Ae, = Zwée,\,

Bey = Zwiea, Dgey = ngeu.

Since e1, -+ - , €, is not holomorphic, w’ and w§ may not be (1,0)-forms. How-
ever, by (1.6.4) and (1.6.6), w) are (1,0)-forms while w§ = —w, are (0, 1)-forms.

(1.6.9)

a

We see from (1.6.9) that (w?) is the connection form for (S, hg) with respect
to the frame field e, --- , e, and that (wY) is the connection form for (Q, ho)
with respect to the frame field epy1,--- ,e,.

From (1.6.8) we obtain

DDe, =Y (dwh + Y wh Aws+ Y wl Awy)es
+ ) (dwy + > wd Awh + Y wp Awhen,
DDey = (dwf + > wi Aws + > wi Awh)eq
+ ) (dwh + ) W AW+ Y wh Awey.

Let R=DoD,Rg =DgoDg and Rg = Dg o Dg be the curvatures of the
Hermitian connections D, Dg and Dg in F, S and Q, respectively. They are of
degree (1,1). Making use of (1.6.9) we can rewrite (1.6.10) as follows:

(1.6.10)

Re, = (Rs+ BAA+ DAe,,

1.6.10
( ) ReA:(RQ—i-A/\B—i—DB)e,\.

Considering only the terms of degree (1, 1), we obtain

Rey, = (Rs+BANA+D"A)e, =(Rs — BAB*— D"B")e, ,

1.6.11
( ) Re)\:(RQ+A/\B+D/B)€,\=(RQ—B*/\B—FD/B)B)\.
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In matrix notation we can write (1.6.11) as follows:
(1.6.12)
R_(RSB/\B* D'B )_(RSA*/\A D’ A* )
- -D"B* Ro—B*ANB) —-D"A Ro —ANA*

These are vector bundle analogues of the Gauss-Codazzi equations.

Let g be an Hermitian metric on M. In terms of local unitary coframes
0L, 0" for (M, g), we can express part of (1.6.11) as follows: Setting the
(1,0)-forms w)

wé‘ = Z AQQOO‘,

a

we have

b b A 7
R aaB - Raag a Z A‘ZO‘Abﬁ’

(1.6.13) ) N
- I3
Ror =Ry -+ Y AlA,.

From (1.4.18) we obtain

Proposition 1.6.14 If the second fundamental form A wvanishes identically,
then S+ is a holomorphic subbundle and the orthogonal decomposition

E=S®S+

18 holomorphic.

1.7 Hermitian manifolds

Let M be a complex manifold of dimension n. Its tangent bundle TM will
be considered as a holomorphic vector bundle of rank n in the following manner.
When M is regarded as a real manifold, TM is a real vector bundle of rank 2n.
The complex structure of M defines an almost complex structure J € A° (End
(TM)), JoJ = —I, where I denotes the identity transformation of TM. Let
Tc M denote the complexification of T'M, i.e., TcM = TM ® C. It is a complex
vector bundle of rank 2n. Extend J to a complex endomorphism of T M. Since
J? = —1I, J has eigen-values /—1 and —+v/—1. Let

(1.7.1) TeM =T'M +T"'M

be the decomposition of TeM into the eigen-spaces of J, where T'M (resp.
T" M) is the eigen-space for /=1 (resp. —y/—1). Then 7'M is a holomorphic
vector bundle of rank n and T M is the conjugate bundle of M, i.e., T"M =
T M. We identify TM with T'M by sending X € TM to X —V/-1JX) €
T'M.

Perhaps, it would be instructive to repeat the construction above using local
coordinates. Let z',---, 2" be a local coordinate system for M as a complex
manifold. Let 2/ = 27 ++/—1y7 so that ', y!,--- , 2", y" form a local coordinate
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system for M as a real manifold. Then (8/dz', 8/dy', ---, 8/0z™, 8/Oy™) is
a basis for TM over R and also a basis for TcM over C. The almost complex
structure J is determined by

(1.7.2) J(0)0x7) = 0/oy?, J(0)y') = —(0)0x7).
Let
0 1/ 0 — 0 0 1/ 0 — 0
1- . —_ = = ~ . _17 - = = ~ _17 .
(17.3) Dz1 2 (&W 8yﬂ> TooE 2 <8x3 * 8y3>
Then (9/9z', ---, 9/02™) is a basis for T'M while (9/0z", ---, 9/07!) is a
basis for 7" M. The identification of TM with T"M is given by
0/0x? — 0/027.
Let _ _ '
dz? =dx? +V—1dy’.
Then (dz!, ---, dz™) is the holomorphic local frame field for the holomorphic
cotangent bundle 7*M dual to the frame field (9/9z, ---, 9/9z™).

To a connection D in the holomorphic tangent bundle 7'M, we can associate,
in addition to the curvature R, another invariant called the torsion T of D
defined by

(1.7.4) T(& 1) =Den—Dyé—1¢, n] for &ne AYTM).

Then T is A%bilinear and can be considered as an element of A?(TM) since it
is skew-symmetric in £ and 7.

Let s = (s1, +-+, Spn) be a holomorphic local frame field for TM and 6 =
(6, ---, ™) the dual frame field for the holomorphic cotangent bundle 7 M.
Let w = (w;) be the connection form of D with respect to s. Then

(1.7.5) T=s(d)+wA)=> si(df' +Y wine)
To prove (1.7.5), observe first that

§=Y &'si,  where & =6'(¢) sothat £=s-0(¢),

n= Znisi, where 7' = 60%() so that n=s-6(n).
Hence,

D= s(d(0(n) +w-0(n), Den=s(E(0(n)+wE)-0(n),

D¢ = s(d(0(8)) +w-0()),  Dn& = s(n(0(£)) +w(n) - 0(¢))-
Substituting these into (1.7.4), we obtain

T(&, m) = s(0(n)) +w(§)0(n) —n(0()) — w(n)o(§) — (¢, n)))
= S(dB(E, m)+ (@ AO)(E, 1)) QED.
From (1.7.5) and (c) of (1.3.9) we obtain

+
+
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Proposition 1.7.6 A connection D in TM satisfies D" = d" if and only if its
torsion T is of degree (2,0) i.e., T € A2°(TM).

Let g be an Hermitian structure in TM. It is called an Hermitian metric on
M. A complex manifold M with an Hermitian metric g is called an Hermitian
manifold . Then we can write (see (1.4.2))

(1.7.7) g= Zgﬁdzidfj, where g,z = g(8/9z", 9/07F).

(Following the tradition, we write dz'dz’/ instead of dz* ® dz’). Let D be the
Hermitian connection of g. It is characterized by the following two properties
(1) and (2). The latter is equivalent to (2), (see (1.4.9) and (1.7.6)).

(1) Dg =0,
(2) D// — dl/’
(2) T € A29(TM).

Let R be the curvature of D; it is in AM(End(TM)), (see (1.4.15)). In
terms of the frame field (9/92%, ---, 9/9z") and its dual (dz!, ---, dz"), the
curvature can be expressed as

i o 9 i i -
(1.7.8) R= ZdeZJ ® 2. where () = Z Rjkﬁdzk A dz".

Expressing (1.4.13) in terms of local coordinates, we have

' = Pox — 09 7 0g.-
1.7.9 R - = — ik jk ik _pg_“pk gjq.
(1.7.9) =2 o Y g T
If we set
(1.7.10) Rz = ng g

then (1.7.9) reads as follows:

g% 99,1, dg;
17.11 5 J va__tk 2953,
(1.7.11) Ryras = 92007 Z 029 9z

We define two Hermitian tensor fields contracting the curvature tensor R in two
different ways. We set

(1.7.12) R =Y RY:=> g"Rzz Ric=Y Rgd:* ®dz"

(1.7.13) =N " Rom K=Y Kgd'wds.
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To each of these, we can associate a real (1, 1)-form:
(1.7.14) p=V-1Y Rgd*ndz", k=+v=1) Kzdz'NdZ.

The Ricci tensor Ric has a simple geometric interpretation. The Hermitian
metric of M induces an Hermitian structure in the determinant bundle det(7'M),
whose curvature is the trace of R, (see Section 1.5). The Ricci tensor is therefore
the curvature of det(T'M). Clearly,

(1.7.14") p=V-1) Q.

Since Z Q! is the curvature form of det(7'M), it can be calculated by setting
H = det(g,5) in (1.4.14). Thus,

(1.7.15) p = V—1d"d log(det(g,5))-

The real (1,1)-form p is closed and, as we shall see later, represents the coho-
mology class 27cy, where ¢; denotes the first Chern class of M.

The tensor field K is a special case of the mean curvature of an Hermitian
vector bundle, which will play an essential role in vanishing theorems for holo-
morphic sections. We define the scalar curvature of the Hermitian manifold M
by

(1.7.16) o= g"Rz =3 ¢"K;.

Associated to each Hermitian metric g is the fundamental 2-form or the
Kahler 2-form ® defined by

(1.7.17) O =V=1) ggds' ndZ.
Then
(1.7.18) " = (v=1)"nldet(g;;)dz" Ndz' A--- Ad2" A dZ"

The real (1,1)-form ® may or may not be closed. If it is closed, then g is called
a Kdhler metric and (M, g) is called a Kdhler manifold .

Proposition 1.7.19 For an Hermitian metric g, the following conditions are
mutually equivalent:

(1) g is Kahler, i.e., d® = 0;

9.~ 891{'
o) Wi _ %,
2) Ozk 0zt
99,3 _ 993 .

ozF 9z’
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(4)  There exists a locally defined real function f such that ® = /—1d'd" f,
i.e.,
0% f
95 = i7"
0z'07
(5)  The Hermitian connection has vanishing torsion.

Proof Since (2) is equivalent to d’® = 0 while (3) is equivalent to d”"® =0
and since d’® = d'®, we see that (1), (2) and (3) are mutually equivalent.
Clearly, (4) implies (1). To prove the converse, assume d® = 0. By Poincaré
lemma, there exists a locally defined real 1-form 1 such that ® = diy. We can
write ¢ = ¢ + @, where ¢ is a (1,0)-form and @ is its conjugate. Since ® is of
degree (1,1), we have

de=0, dp=0 &=d'o+do.

Then there exists a locally defined function p such that ¢ = d'p. We have
© = d''p. Hence,

(b — d”g@"l_d/@: dl/d/p+ d/d”ﬁ: dld//(p_p) — /_1dld//f,
where
f=v-1p-p)
To see that (2) and (5) are equivalent, we write, as in (1.4.10), in terms of
coordinates. Then

(1.7.20) Wi =Y g*dgg.
We substitute (1.7.20) into (1.7.5). Since df? = d(dz') = 0, we obtain
+09:% N 0
_ ik _Jik ;5 _h

It is now clear that (2) and (5) are equivalent. Q.E.D.

By (1.7.11) and (1.7.19), the curvature components of a Kahler metric can
be written locally as follows:

o'f - 0% >Pf
1.7.21 Ryyfr=————— + Pd - - .
( ) akh T 92197 92k 07" 2.9 0zPO% 02k 979021 07"

Immediate from (1.7.21) is the following symmetry for the curvature of a Kéhler
metric:

(1.7.22) Rigin = Rynig-

This implies that, in the Kihler case, the two tensor fields Ric and K introduced
in (1.7.12) and (1.7.13) coincide:

(1.7.23) R; =K.

In the next chapter we use a special case (p = 1) of the following
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Proposition 1.7.24 A closed real (p,p)-form w on a compact Kihler manifold
M is cohomologous to zero if and only if w = id'd" ¢ for some real (p—1,p—1)-

form .

Proof Assume that w is cohomologous to zero so that w = da, where « is
a real (2p — 1)-form. Write o = § + 3, where S is a (p — 1, p)-form and § is its
complex conjugate. Then

w=da=dp+ (d"B+dB)+d"B.

Comparing the degrees of the forms involved, we obtain

w=da=d"B+dp, dB=0, d'=0.
We may write
B=HpB+d"y,
where Hf denotes the harmonic part of 8 and v is a (p — 1,p — 1)-form. Then
B=Hj+d7.

Hence, B
UJ:d”ﬁ‘i‘dlﬁ:d”dli‘i‘d/d”'}/:d/d”(’y_ﬁ) :id/d/lgﬁ,

where ¢ = —i(y — 7).
The converse is a trivial, local statement. Q.E.D.






Chapter 2

Chern classes

In order to minimize topological prerequisites, we take the axiomatic ap-
proach to Chern classes. This enables us to separate differential geometric
aspects of Chern classes from their topological aspects; for the latter the reader
is referred to Milnor-Stasheff [106], Hirzebruch [49] and Husemoller [52]. Sec-
tion 2.2 is taken from Kobayashi-Nomizu [75, Chapter XII]. For the purpose
of reading this book, the reader may take as definition of Chern classes their
expressions in terms of curvature. The original approach using Grassmannian
manifolds can be found in Chern’s book [22].

The Riemann-Roch formula of Hirzebruch, recalled in Section 2.4, is used
only in Section 5.10 of Chapter 5 and Section 7.8 of Chapter 7. Section 2.5
on symplectic vector bundles will not be used except in Sections 7.5 and 7.7 of
Chapter 7.

2.1 Chern classes

We recall the axiomatic definition of Chern classes (cf. Hirzebruch [49]). We
consider the category of complex vector bundles over real manifolds.

Axiom 1 For each complex vector bundle E over M and for each integer i 2 0,
the i-th Chern class ¢;(E) € H*(M;R) is given, and co(E) = 1.
We set ¢(E) = Z ¢i(E) and call ¢(E) the total Chern class of E.
i=0

Axiom 2 (Naturality) Let E be a complex vector bundle over M and f :
N — M a C* map. Then

(f*E) = f*(c(E)) € H*(M;R),

where f*E is the pull-back bundle over N.

29
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Axiom 3 (Whitney sum formula) Let Ei,--- ,E,; be complex line bundles
over M. Let B4 @ --- ® E; be their Whitney sum. Then

((Er@ - @ Eg) =c(Ey) - c(Ey).

To state Axiom (4), we need to define the so-called tautological line bundle
O(—1) over the complex projective space P,C. It will be defined as a line
subbundle of the product vector bundle P,C x C**t!. A point « of P,C is a
l-dimensional complex subspace, denoted by L, of C*"*!. To each z € P,C we
assign the corresponding line L, as the fibre over x, we obtain a line subbundle
L of P,C x C*1. It is customary in algebraic geometry to denote the line
bundle L by O(-1).

Axiom 4 (Normalization) If L is the tautological line bundle over P,C, then
—c1(L) is the generator of H?(P,C;Z); in other words, ci(L) evaluated (or
integrated) on the fundamental 2-cycle P,C is equal to —1.

In topology, ¢;(F) is defined for a topological complex vector bundle F as
an element of H%(M;Z). However, the usual topological proof of the existence
and uniqueness of the Chern classes holds in our differentiable case without any
modification, (see, for example, Husemoller [52]).

Before we explain another definition of the Chern classes, we need to gener-
alize the construction of the tautological line bundle L.

Let E be a complex vector bundle of rank r over M. At each point x of
M, let P(E,) be the (r — 1)-dimensional projective space of lines through the
origin in the fibre E,. Let P(E) be the fibre bundle over M whose fibre at x is
P(E,). In other words,

(2.1.1) P(E) = (FE — zero section )/C*

Using the projection p : P(E) — M, we pull back the bundle E to obtain the
vector bundle p*E of rank r over P(E). We define the tautological line bundle
L(E) over P(E) as a subbundle of p*E as follows. The fibre L(E)¢ at £ € P(E)
is the complex line in FE, ) represented by &.

We need also the following theorem of Leray-Hirsch in topology.

Theorem 2.1.2 Let P be a fibre bundle over M with fibre F and projection
p. For each x € M, let j, : P, = p~t(z) — P be the injection. Sup-
pose that there exist homogeneous elements ay,--- ,a, € H*(P;R) such that
for every x € M, jray, - ,jra, form a basis of H*(Py;R). Then H*(P;R)
is a free H*(M;R)-module with basis ai,--- ,a, under the action defined by
p*: H*(M;R) — H*(P;R), i.e.,

H*(P;R) = p"(H*(M;R)) - a1 & - - - & p*(H"(M;R)) - a.
Proof For each open set U in M, let Py = p~*(U) and jy : Py — P be

the injection. By the Kiinneth formula, the theorem is true over an open set
U such that Py is a product U x F. We shall show that if the theorem holds
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over open sets U,V and U NV, then it holds over U U V. Let d; = deg(a;) and
denote by z; an indeterminate of degree d;. We define two functors K™ and
L™ on the open subsets of M by

K™U) = iHm‘di(U;R) -,

i=1
L™(U) = H™(Py; R).
Define a morphism ay : K™(U) — L™(U) by

aU(Z siw;) = Zp* (si)a; fors; € Hm_di(U;R).

Then we have the following commutative diagram:

~K™(UNV)<—K™U)® K™(V)<—K™(U UV)<—K™ YU N V)<K™ Y (U) & K™ (V)
aynv J/QUQBOW ayuv aynv ayDay
~—L™(UNV)<—L™(U) & L™(V)<—L™(U UV )<—L™1(U N V)<—L™~Y(U) & L™~ 1(V)

where the rows are exact Mayer-Vietoris sequence. By our assumption, both
ayny and ay @ ay are isomorphisms. By the “5-lemma”, agyy is an isomor-
phism, which proves that the theorem holds over U U V. Q.E.D.

Let E be a complex vector bundle over M of rank r. Let E* be its dual
bundle. We apply (2.1.2) to the projective bundle P(E*) over M with fibre
P._1C. Let L(E*) be the tautological line bundle over P(E™*). Let g denote the
first Chern class of the line bundle L(E*)™!, i.e.,

g=—c1(L(E")) € H*(P(E");R).

From the definition of g it follows that g, restricted to each fibre P(E*) = P,._1C,
generates the cohomology ring H*(P(E});R), that is, 1, g,¢%,---,g" "}, re-
stricted to P(EZ), is a basis of H*(P(E%);R). Hence, by (2.1.2), H*(P(E*);R)
is a free H*(M;R)-module with basis 1,g, g%, ---,¢"~!. This implies that there

exist uniquely determined cohomology classes ¢; € H?/(M;R),i =1,--- ,r, such
that
(2.1.3) g =g Py = (=1)"¢, = 0.

Then ¢; is the i-th Chern class of F, i.e.,

For the proof, see, for example, Husemoller [52]. As Grothendieck did, this can
be taken as a definition of the Chern classes. In order to use (2.1.3) and (2.1.4)
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as a definition of ¢;(E), we have first to define the first Chern class ¢y (L(E*))
of the line bundle L(E*). The first Chern class of a line bundle can be defined
easily in the following manner. Let A (resp. A*) be the sheaf of germs of
C*° complex functions (resp. nowhere vanishing complex functions) over M.
Consider the exact sequence of sheaves:

(2.1.5) 0—ZLAS A —0,
where j is the natural injection and e is defined by
e(f) =€ for f e A
This induces the exact sequence of cohomology groups:
(2.1.6) HY(M; A) S HY(M; A% S H2(M;7) L H2(M; A).

Identifying H'(M;A*) with the group of (equivalence classes of) line bundles
over M, we define the first Chern class of a line bundle F' by

(2.1.7) ci(F)=6(F), Fe€H'(M;A").

We note that 6 : H*(M; A*) — H?(M;Z) is an isomorphism since H*(M; A) =
0,(k = 1), for any fine sheaf A.

Now the Chern character ch(E) of a complex vector bundle E is defined as
follows by means of the formal factorization of the total Chern class:

(2.1.8) If Zci(E)aci = H(l + &), then ch(E)= Zexp&.

While the Chern class ¢(F) is in H*(M;Z), the Chern character ch(F) is in
H*(M; Q). The Chern character satisfies (see Hirzebruch [49])

ch(E & E') = ch(E) + ch(E")

(2.1.9) ch(E @ E') = ch(E)ch(E").

The first few terms of the Chern character ch(E) can be expressed in terms
of Chern classes as follows:

(2.1.10) h(B) = 1+ c1(B) + 3(ca(B)? ~ 2ea(B)) + -+

where 7 is the rank of F.
The Chern classes of the conjugate vector bundle E are related to those of
E by the following formulas (see Milnor-Stasheft [106]):

(2.1.11) c(BE) = (-1)'ci(E), chy(E) = (~1)'chi(E).

An Hermitian structure h in E defines an isomorphism of E onto the dual
bundle E* of E; since h(§, n) is linear in £ and conjugate linear in 7, the map
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1+ h(-, n) defines an isomorphism of E onto E*. This is only a C* isomor-
phism even when FE is a holomorphic vector bundle. From this isomorphism
and (2.1.11) we obtain

(2.1.12) ci(E*) = (—1)ici(E), ch;(E™*) = (—1)ichi(E).
Hence,

(2.1.13)
ch(End(F)) = ch(E ® E*) = ch(E)ch(E™)
= (r 4 chy(F) 4 cha(E) + -+ )(r — chy () + chay(E) — - - )
= (r? 4+ 2r - chy(E) — (chy(E))* 4 ---).

In particular, from (2.1.10) and (2.1.13) we obtain
(2.1.14) c1(End(E)) =0, c2(End(E)) = 2rco(E) — (r — 1)ei(E)?

We conclude this section by a few comments on Chern classes of coherent
sheaves. The results stated below will not be used except in the discussion on
Gieseker stability in Section 5.10 of Chapter 5. We assume that the reader is
familiar with basic properties of coherent sheaves.

For a fixed complex manifold M, let S(M) (resp. B(M)) be the category of
coherent sheaves (resp. holomorphic vector bundles, i.e., locally free coherent
sheaves) over M. We indentify a holomorphic vector bundle E with the sheaf
O(E) of germs of holomorphic sections of E. Let Z[S(M)] (resp. Z[B(M))])
denote the free abelian group generated by the isomorphism classes [S] of sheaves
S in S(M) (resp. in B(M)). For each exact sequence

0—8—>8§—8"—0
of sheaves of S(M) (resp. B(M)), we form the element
—[8+ (8] - [8"]

of Z[S(M)] (resp. Z[B(M)]). Let A(S(M)) (resp. A(B(M))) be the sub-
group of Z[S(M)] (resp. Z[B(M)]) generated by such elements. We define the
Grothendieck groups

Ks(M) = Z[S(M)]/A(S(M)) ,

(2.1.15)
Kp(M) = Z[B(M)]/A(B(M)).

We define a multiplication in Z[S(M)] using the tensor product S; ® Sa
of sheaves. Then A(B(M)) is an ideal of the ring Z[B(M)], and we obtain a
commutative ring structure in Kp(M). On the other hand, A(S(M)) is not an
ideal of Z[S(M)]. We have only

ZIB(M)]- A(S(M)) C A(S(M)) ,  Z[S(M)]- A(B(M)) C A(S(M)).



34 CHAPTER 2. CHERN CLASSES

Hence, Kg(M) is a Kg(M)-module. The natural injection Z[B(M)] — Z[S(M)]
induces a Kp(M)-module homomorphism

(2.1.16) it Kp(M) — Kg(M).

It follows from (2.1.9) that the Chern character ch is a ring homomorphism of
Kp(M) into H*(M; Q). The following theorem shows that the Chern character
is defined also for coherent sheaves when M is projective algebraic.

Theorem 2.1.17 If M is projective algebraic, the homomorphism i of (2.1.16)
s an isomorphism.

We shall not prove this theorem in detail. We show only how to construct
the inverse of i. Given a coherent sheaf S over M, there is a resolution of S by
vector bundles, i.e., an exact sequence

0—& — - — & — & —S—0,

where &; are all locally free coherent sheaves. For a complex manifold M in
general, such a resolution exists only locally. If M is projective algebraic, a
global resolution exists, (see Serre [139]). Then the inverse of ¢ is given by

J ISl Y _(FD)E

The first Chern class ¢;(S) of a coherent sheaf S can be defined more directly
and relatively easily, see Section 5.6 of Chapter 5, and we shall need only ¢;(S)
in this book except in Section 5.10 of Chapter 5. Recently, a definition of Chern
classes for coherent sheaves on general compact complex manifolds has been
found, see O’Brian-Toledo-Tong [124].

2.2 Chern classes in terms of curvatures

We defined the i-th Chern class ¢;(E) of a complex vector bundle E as an
element of H?'(M;R). Via the de Rham theory, we should be able to represent
¢i(E) by a closed 2i-form ~;. In this section, we shall construct such a ~; using
the curvature form of a connection in E. For convenience, we imbed H?'(M;R)
in H?(M;C) and represent c;(E) by a closed complex 2i-form =;.

We begin with simple algebraic preliminaries. Let V be a complex vector
space and let

f:Vx..xV—C

be a symmetric multilinear form of degree k, i.e.,

fXq, -, Xi)eC  for Xy, , X €V,

where f is linear in each variable X; and symmetric in X7, -+, X. We write

fX)=fX, -+, X) forXeV.
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Then the mapping X — f(X) may be considered as a homogeneous polynomial
of degree k. Thus, every symmetric multilinear form of degree k on V' gives rise
to a homogeneous polynomial function of degree k on V. It is easy to see (for
instance, using a basis) that this gives an isomorphism between the algebra of
symmetric multilinear forms on V and the algebra of polynomials on V.

If a group G acts linearly on V, then we say that a symmetric multilinear
form f is G-invariant if

fla(X1), -+, a(Xy)) = f(Xq, -+, Xg) foraed.

Similarly, a homogeneous polynomial f is G-invariant if

fla(X)) = f(X) foraeg.

Then every G-invariant form gives rise to a G-invariant polynomial, and vice
versa.

We shall now consider the following special case. Let V' be the Lie algebra
gl(r; C) of the general linear group GL(r;C), i.e., the Lie algebra of all r x r
complex matrices. Let G be GL(r;C) acting on gl(r; C) by the adjoint action,
ie.,

X € gl(r;C) — aXa ' € gl(r;C), a€ GL(r;C).

Now we define homogeneous polynomials fj on gl(r; C) of degree k = 1,2,--- ,r
by

L.X) =14+ fi(X)+ fo(X)+ -+ f[r(X), X €gl(r;C).

2.2.1) det(I, —
(2.21)  det(lr — 5—

Since

1
7X)7

1 1
I, — —aXa ') = I, — —X)a 1) = I, —
det (I, 2m,a a™") = det(a(I, -X)a™") = det(I, 57

27
the polynomials f1,---, f.. are GL(r; C)-invariant. It is known that these poly-
nomials generate the algebra of GL(r; C)-invariant polynomials on gl(r; C).

Since GL(r;C) is a connected Lie group, the GL(r;C)-invariance can be
expressed infinitesimally. Namely, a symmetric multilinear form f on gl(r; C) is
GL(r; C)-invariant if and only if

f([}/? X1]7 X27 "'7Xk)+f(X17 [}/7 X2]7 Ty Xk)+

2.2.2
( ) +f(X17 X2a ) [K Xk]) =0 for Xl?"' 7Xk7Y Gg[(T,(C)

This can be verified by differentiating

Y Xie ™, o e Xpe ) = f(X0, -, Xp)

with respect to t at ¢t = 0.

Let E be a complex vector bundle of rank r over M. Let D be a connection in
E and R its curvature. Choosing a local frame field s = (s1, -+, ), we denote
the connection form and the curvature form of D by w and €2, respectively. Given
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a GL(r; C)-invariant symmetric multilinear form f of degree k on gl(r; C), we
set

(2.23) Y= F@Q) = f(Q - Q).
If s = sa~! is another frame field, then the corresponding curvature form €’
is given by aQa™!, (see (1.1.14)). Since f is GL(r; C)-invariant, it follows that
~ is independent of the choice of s and hence is a globally defined differential
form of degree 2k. We claim that + is closed, i.e.,

(2.2.4) dy = 0.
This can be proved by using the Bianchi identity (see (1.5.17)) as follows.

=f(DQ, -, D+---+ f(Q, ---, DQ)
=0

since D = 0. Or (see (1.1.13))

:f([Q, w], e, D+ Qe [97 w])
=0
by (2.2.2).

Since 7 is closed, it represents a cohomology class in H?*(M;C). We shall
show that the cohomology class does not depend on the choice of connection D.
We consider two connections Dy and D; in F and connect them by a line of
connections:

(2.2.5) Dy=(1—t)Dy+tD;, 0<t<1.

Let w; and §2; be the connection form and the curvature form of D; with respect
to s. Then

(2.2.6) wy = wp + tae,  where a=w; — wy,

(227) Qt = dwt —+ we N\ wy
so that (see (1.5.16))

dQd,

(2.2.8) -

=da+ aAw +wg ANa = D;a.

We set

1
(229) Y = ]6/0 f(Oé, Qt, Tty Qt)dt
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From (1.1.7) we see that the difference « of two connection forms transforms in
the same way as the curvature form under a transformation of the frame field
s. It follows that f(a, €4, ---, ) is independent of s and hence a globally
defined (2k — 1)-form on M. Therefore, ¢ is a (2k — 1)-form on M.

From D,); = 0, we obtain

k/’df(Oé, Qt7 Y Qt):thf(a’ Qta Ty Qt):kf(Dtaa Qt7 Ty Qt)
dd d
- kf (dt7 Qt7 Ty Qt) - %f(Qta Qta T Qt)
Hence,

1
d
(2:210)  dp=k [ LFQn e Q= F(Qu e ) = F(Sho,e+ ),
0
which proves that the cohomology class of 7 does not depend on the connection

D.
Using GL(r; C)-invariant polynomials f; defined by (2.2.1), we define

(2.2.11) Yk = fk(Q), k= 1, e, T

In other words,
1
(2.2.12) det(L«— %Q) =14+ +v+ -+
A simple linear algebra calculation shows
2.2.13 _ D Slvqh Qi
(2.2.13) Vki'iklzil"'ik g N AR
(2mi)F k!

In particular,

1 .
2.2.14 = —— J
( ) "M o It
1 . .
(2.2.15) V=53 (2 AQF - AQD).

Theorem 2.2.16 The k-th Chern class cix(E) of a complex vector bundle E is
represented by the closed 2k-form ~y defined by (2.2.11) or (2.2.12).

Proof We shall show that the cohomology classes represented by the ~y;’s
satisfy the four axioms given in Section 2.1. Axiom 1 is trivially satisfied.
(We simply set 79 = 1.) For Axiom 2, in the bundle f*FE induced from E
by f : N — M, we use the connection f*D induced from a connection D
in E. Then its curvature form is given by f*(, (see Section 1.5, Chapter 1).
Since fr(f*Q) = f*(fx(Q)) = f*yk, Axiom 2 is satisfied. To verify Axiom 3,
let Dy,---,D, be connections in line bundles Ey, ---, E,, respectively. Let
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Qq, -+ ,Q4 be their curvature forms. We use the connection D = D1 @---® Dy
in E=FE &---®E; Then its curvature form 2 is diagonal with diagonal
entries Oy, ---,Qg, (see (1.5.14)). Hence,

1 1 1
det (I, — —0) = (1- — ) r-n(1--—0,),
¢ ( omi > ( omi 1>A A( omi q)

which establishes Axiom 3. Finally, to verify Axiom 4, we take a natural Her-
mitian structure in the tautological line bundle L over P;C, i.e., the one arising
from the natural inner product in C?. Since a fibre of L is a complex line
through the origin in C2, each element ¢ € L is represented by a vector (¢°, (1)
in C2. Then the Hermitian structure h is defined by

h(¢, O =I¢"+ ¢

Considering (¢°, ¢') as a homogeneous coordinate in P;C, let z = ¢1/¢° be the
inhomogeneous coordinate in U = P,C — {(0,1)}. Let s be the frame field of L
over U defined by

s(z)=(1, ) € L, € C*
With respect to s, h is given by the function
H(z) = h(s(2), 5(2)) = 1+ 2]

The connection form w and the curvature form € are given by (see (1.4.11) and
(1.4.13))

" zdz

IREREE

—dz Ndz
Q=—".

(1+]2[*)

Hence,
dz Ndz
71

T 2mi(1 A [22)2

2mit

Using the polar coordinate (r, t) defined by z = re®™* we write

_ —2rdr Ndt on U
T a2 ‘

Then integrating v, over P;C, we obtain

/ _/ __/1(/00 2rdr )dt__l
Plc%_ U%_ 0 o (1+472)2 -

This verifies Axiom 4. Q.E.D.
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We shall now express the Chern character ch(E) in terms of the curvature.
Going back to (2.2.1), we see that if X € gl(r;C) is a diagonal matrix with
diagonal entries £y, - - - ,i&,, then

1 _ 51 §r

Consider now the GL(r; C)-invariant function defined by the power series

(2.2.18)  Tr (exp (2;1 )) (Z Alore k) for X € gl(r;C).

Again, when X is a diagonal matrix with diagonal entries iy, - - - , @&, (2.2.18)
reduces to

o0

T 5 1 T
(2.2.19) ZeXp == e Z(ﬁj)k
j=1 k=0 Jj=1

Comparing (2.1.8), (2.2.12), (2.2.17) and (2.2.19), we see that the Chern char-
acter ch(E) can be obtained by substituting the curvature form € into X in
(2.2.18). In other words, ch(E) € H*(M;R) is the cohomology class repre-
sented by the closed form

(2.2.20) Tr <exp Q)

In other words, chy(F) is represented by

J1 J2 . Jk
(2.2.21) <2m> S OQIAQEN - AQE

We shall denote the k-th Chern form ~j; of (2.2.13) by cx(E, D) when the
curvature form {2 comes from a connection D. Similarly, we denote the form
(2.2.21) by chi(FE, D). If E is a holomorphic vector bundle with an Hermitian
structure h and if D is the Hermitian connection, we write also ¢k (E, h) and
chi(E, h) for ¢x(E, D) and chg(E, D).

Let E be a holomorphic vector bundle over M with an Hermitian structure
h. Then the k-th Chern form cx(E, h) is a (k, k)-form since the curvature is
of degree (1, 1). In particular, the first Chern class ¢ (F) is represented by (see
(1.5.25))

1
ot I
(2.2.22) o (E, 2m§ k= 2m,§ R, 5dz" A dZ’.

Conversely,

Proposition 2.2.23 Given any closed real (1,1)-form ¢ representing c1(FE),
there is an Hermitian structure h in E such that ¢ = c1(E, h) provided that
M is compact Kahler. (In fact, given any b/, a suitable conformal change of h'
yields a desired Hermitian structure.)
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Proof Given
1
_ = _ g, =0
p=—5 ZSaﬁdz N dzZ”,
we wish to find an Hermitian structure h whose Ricci form is Z Sagdza AdZP.

Let ZR agdza A dZ® be the Ricci form of any given Hermitian structure A’

Since M is compact Kéhler, there is a real function f on M such that (see
(1.7.24))

> R zdz" ndz’ =) S gdz* NdZ =dd"f,
or

(o3

On the other hand, we know (see (1.5.25))

R.5— 8.5 = 0ad5f.

R, 5 = —0,05(log det(hgj)).
By setting h = e//"h so that det(h;5) = e/ det(h!-), we obtain a desired Her-
mitian structure h. Q.E.D.

2.3 Chern classes for flat bundles

In Section 1.2 of Chapter 1, we discussed flat and projectively flat complex
vector bundles. Such bundles must satisfy certain simple topological conditions.

Proposition 2.3.1 Let E be a complex vector bundle of rank r over a manifold
M.

(a) If E is flat (i.e., satisfies one of the three equivalent conditions in (1.2.5),
then all its Chern classes ¢;(E) € H*(M;R) are zero fori = 1;

(b) If E is projectively flat i.e., satisfies one of the three equivalent conditions
in (1.2.7), then its total Chern class c¢(E) can be expressed in terms of the first
Chern class c1(E) as follows:

)= (14 28

r

Proof (a) By Condition (2) of (1.2.5), F admits a connection with vanishing
curvature. Our assertion follows from (2.2.15).

(b) By (1.2.8), E admits a connection whose curvature form Q = (€}) sat-
isfies the following condition:

Q=al.,, or Q; :aéé,

where a is a 2-form on M. By (2.2.16), the total Chern class ¢(F) can be
represented by a closed form

(2.3.2) (1 - i)r.
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In particular, ¢ (E) is represented by the closed 2-form (—r/2mi)a. Substituting
this back into (2.3.2), we obtain our assertion (b). Q.E.D.

From (b) of (2.3.1) it follows that the Chern character ch(E) of a projectively
flat bundle F and the Chern character ch(E*) of the dual bundle E* are given
by

1 1

(2.3.3) ch(E) =1 -exp (cl(E)> , ch(E*)=r-exp (—cl(E)) .
r r

Hence, if F is projectively flat,

(2.3.4) ch(End(FE)) = ch(E) - ch(E*) = r?.

This is consistent with the fact that End(FE) is flat if F is projectively flat, (see
(1.2.9)). In particular, if E' is projectively flat, then

(2.3.5) 2r - co(E) — (r — 1)c1 (E)? = 0.

Let © = (9) be the curvature form of D with respect to a local frame field s
of E. Let D denote also the naturally induced connection in the dual bundle E*.
Then its curvature form with respect to the dual frame field ¢ is given by —(,
(see (1.5.5) and (1.5.6)). It follows that for a projectively flat connection, we
have the formulas of (2.3.1), (2.3.3), (2.3.4) and (2.3.5) at the level of differential
forms, i.e.,

(2.3.6) (B, D)= (1 + %cl(E, D)>T,

(2.3.7) ch(E, D) =r-exp <ic1(E, D)> . ch(E*) =r-exp <_icl(E, D)) :

(2.3.8) ch(End(E), D) = ch(E, D) -ch(E*, D) =r?
(2.3.9) 2r - co(E, D) — (r —1)ey(E, D)* =0.

2.4 Formula of Riemann-Roch

Let E be a holomorphic vector bundle over a compact complex manifold M.
Let H(M, E) denote the i-th cohomology of M with coefficients in the sheaf
O(E) of germs of holomorphic sections of E. We often write H'(M, E) instead
of HY(M, O(E)). The Euler characteristic x(M, E) is defined by

(2.4.1) x(M, E) =Y (~1)'dim H'(M, E).
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Let ¢(M) be the total Chern class of (the tangent bundle of) M, ¢(M) =
c¢(TM). We defined the Chern character ch(E) using the formal factorization
of the total Chern class ¢(E). Similarly, we define the total Todd class td(M)
of (the tangent bundle of) M as follows:

&i

The first few terms of td(M) are given by
(2.4.3) td(M) = 1+%C1(M)+ %(cl(M)2+Cz(M>)+-~-

Now, the Riemann-Roch formula states
(2.4.4) x(M, E) = / td(M)ch(E).
M

The formula was proved by Hirzebruch when M is an algebraic manifold. It was
generalized by Atiyah and Singer to the case where M is a compact complex
manifold. The Chern classes and character can be defined for coherent analytic
sheaves. The Riemann-Roch formula holds for any coherent analytic sheaf F:

(2.4.5) (M, F) = /M td(M)ch(F).

For all these, see Hirzebruch [49]. The formula for coherent sheaves has been
proved by O’Brian-Toledo-Tong [125].

2.5 Symplectic vector bundles

We recall first some basic facts about the symplectic group Sp(m). On the
vector space V = C?™, consider a skew-symmetric bilinear form given by the
matrix

(2.5.1) S — (_(}m 16") .

Then the complex symplectic group Sp(m; C) consists of linear transformations
of V leaving S invariant. Thus,

(2.5.2) Sp(m;C) = {X € GL(2m;C);'XSX = S}.

Its Lie algebra sp(m;C) is given by

(2.5.3) sp(m;C) = {X € gl(2m;C);' XS + SX = 0}.

Now, Sp(m) is a maximal compact subgroup of Sp(m;C) defined by

(2.5.4) Sp(m) = {X € U(2m);'XSX = S} = Sp(m; C) NU(2m).
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Its Lie algebra is given by
(2.5.5) sp(m) = {X € u(2m);' XS + SX = 0} = sp(m; C) Nu(2m).

By simple calculation we obtain

(2.5.6) Sp(m) = { <_/}3 i) "AA+'BB =1,,,"AB = tBA} ,
(2.5.7) sp(m) = {(_f; ﬁ) A= A, B = tB} .

We can regard V as a 4m-dimensional real vector space. We consider the real
endomorphisms Ji, Ja, J3 of V' defined by

s () #(0)-(2) +()-()

where z, w € C™. Each of Jp, Jo, J3 commutes with every element of Sp(m) and
sp(m).
Let
H = {ap + a1i + a2j + ask;ag, a1,a2, a3 € R}

denote the field of quaternions. Then the map H* = H — {0} — GL(4m;R)
given by

(2.5.9) ag + a1t + asj + ask — agl + a1J1 + asJs + asJs
is a representation. Every element of the form
(2.5.10) J =a1J1 + asJs + azJs, af+a§—|—a§ =1

(which corresponds to a purely imaginary unit quaternion) satisfies J? = —I
and defines a complex structure in V = R*™. In particular, J; defines the
given complex structure of V = C?™ and —J; defines the conjugate complex
structure.

Let E be a complex vector bundle of rank 2m over a (real) manifold M. If its
structure group GL(2m; C) can be reduced to Sp(m;C), we call E a symplectic
vector bundle. On a symplectic vector bundle E we have a non-degenerate
skew-symmetric form S:

S,:EyxE, —C, z€M,

and vice-versa. If the structure group is reduced to Sp(m; C), then an Hermitian
structure h in E reduces it further to Sp(m).
There are simple topological obstructions to reducing the structure group to

Sp(m).

Theorem 2.5.11 If E is a symplectic vector bundle, then its Chern classes
c2j+1(E) € HYT2(M, R) vanish for all j.
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Proof Let E denote the conjugate complex vector bundle. Let E* be the
complex vector bundle dual to E. Since an Hermitian structure h in E defines
a conjugate linear isomorphism between F and E*, it defines a complex linear
isomorphism between E and E*. We have, in general, c¢;(E*) = (—=1)i¢;(E),
(see (2.1.12)). Hence, ¢;(E) = (—1)7¢;(E). Let J; denote the given complex
structure of E. Then the complex structure of E is given by —.J;. But these two
complex structures are contained in a connected family of complex structures
which is homeomorphic to a 2-sphere, (see (2.5.10)). Since the Chern classes are
integral cohomology classes, they remain fixed under a continuous deformation
of complex structures. Hence, ¢;(E) = ¢;(E). This combined withe;(E) =
(—1)7¢;j(E) yields the stated result. Q.E.D.

We note that we have shown 2cg;41(E) = 0 in H*¥T2(M, Z). The following
differential geometric argument may be of some interest although it says nothing
about cg;11(F) as integral classes. We consider a connection in the associated
principal bundle P with the structure group Sp(m). It suffices to show (see
(2.2.16)) that the invariant polynomials corresponding to cz;41 are all zero. Let

1
F(t, X)=det (tI— 2_X) for X € sp(m),

(2.5.12) T

="+ LX) 4 fon(X).
Clearly, we have
(2.5.13) F(—t, X) =" — fil(X)*" "+ + fom(X).
On the other hand, using !X = —SXS™! (see (2.5.5)), we obtain
(2.5.14) F(—t, X)=F(t, —=X)=F(t, —'X)=F(t, SXS™) = F(t, X).
Hence,
(2.5.15) faj+1(X) =0 for X €sp(m).
This argument proves vanishing of the Chern forms
(2.5.16) c2i+1(E, h) =0

provided we use a connection in P (so that both the Hermitian structure h and
the symplectic structure are parallel).

What we have shown applies, in particular, to tangent bundles. Let M be a
complex manifold of dimension 2m. A holomorphic symplectic structure or form
is a closed holomorphic 2-form w on M of maximal rank, i.e., w™ # 0. If we
take an Hermitian metric g on M and a connection which makes w also parallel,
then all (25 + 1)st Chern forms vanish.

The remainder of this section makes use of vanishing theorems and vector
bundle cohomology which will be explained in the next Chapter.
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Assume that M is a compact K&hler manifold of dimension 2m. Then every
holomorphic form is automatically closed. In particular, every holomorphic 2-
form w of maximal rank defines a holomorphic symplectic structure on M. Since
the first Chern class ¢; (M) vanishes for such a manifold M, by the theorems
of Yau there is a Kédhler metric g with vanishing Ricci tensor. By (3.1.34),
every holomorphic form, in particular w, is parallel with respect to this Ricci-
flat Kéhler metric g. The argument above shows that, for such a metric g, not
only the first Chern form ¢; (M, g) but also all Chern forms cpj41(M, g) must
vanish.

There are other obstructions to the existence of a holomorphic symplectic
form w. The form w defines a holomorphic isomorphism between the (holomor-
phic) tangent bundle and cotangent bundle of M. This has some consequences
on the cohomology of M. For example, we have an isomorphism

(2.5.17) HP(M, N°T) ~ HP(M, NIT*),

where T" and 7™ denote the holomorphic tangent and cotangent bundles of M.
On the other hand, since the canonical line bundle of M is trivial, the Serre
duality (see (3.2.50)) implies

(2.5.18) HP(M, NT) i~ H*™P(M, NT*).
ua.

Combining (2.5.17) and (2.5.18), we obtain
(2.5.19) haP — pa2m—p.

There are other restrictions on Hodge numbers. In the classical argument
on primitive forms involving the operators L and A (see Section 3.2 of Chapter
3, also Weil [167]), let the holomorphic symplectic form w play the role of the
Kéhler form @ (which is a real symplectic form). Then we obtain inequalities

(2.5.20) hPt < P22 for p42 <m.

If M is irreducible, its holonomy group is Sp(m) according to Berger’s classi-
fication of the holonomy groups, (Berger [15]). Since every holomorphic form is
parallel, from the representation theory of Sp(m) we see that, for an irreducible
M (i.e., with holonomy group Sp(m)),

hl,O — h3,0 — h570 = ... :O7

(2.5.21) 00 _ p20 _ ph0 _ _q
On a 2-dimensional compact Kahler manifold M, a holomorphic symplectic
form exists if and only if the canonical line bundle is trivial. There are two
classes of such Kéhler surfaces: (i) complex tori and (ii) K3 surfaces.
Clearly, every complex torus of even dimension admits a holomorphic sym-
plectic form. The first higher dimensional example of a simply connected com-
pact Kéhler manifold with holomorphic symplectic structure was given by Fujiki.
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Given a K3 surface S, consider V' = (S x S)/Z2, where Zs acts by interchanging
the factors. Since the diagonal of S x S is fixed, V is a singular variety. By
blowing up the diagonal we obtain a 4-dimensional nonsingular Kahler manifold
which carries a holomorphic symplectic form. For a systematic study of holo-
morphic symplectic structures, see Beauville [13], [14], Fujiki [?] and Wakakuwa
[166].



Chapter 3

Vanishing theorems

In Section 3.1 we prove Bochner’s vanishing theorems and their variants. For
Bochner’s original theorems, see Yano-Bochner [170]. For a modern exposition,
see Wu [168]. These theorems are on vanishing of holomorphic sections or 0-th
cohomology groups of holomorphic bundles under some “negativity” conditions
on bundles. Vanishing theorems are proved also for Einstein-Hermitian vector
bundles which will play a central role in subsequent chapters.

In Section 3.2 we collect definitions of and formulas relating various opera-
tors on Kahler manifolds. The reader who needs more details should consult,
for example, Weil [167]. These operators and formulas are used in Section 3.3 to
prove vanishing theorems of Kodaira, Nakano, Vesentini, Girbau and Gigante,
i.e., vanishing of higher dimensional cohomology groups for “semi-negative” line
bundles.

In Section 3.4 we prove Bott’s vanishing theorem for line bundles over pro-
jective spaces. This is needed in Section 3.5 to relate vector bundle cohomology
to line bundle cohomology, (Le Potier’s isomorphism theorem). This isomor-
phism together with vanishing theorems for line bundle cohomology yields the
corresponding vanishing theorems for vector bundle cohomology.

Finally, in Section 3.6 we examine the concept of negativity for vector bun-
dles from view points of algebraic geometry and function theory as well as
differential geometry.

Results from Section 3.1 will be used extensively in subsequent chapters.
Although Kodaira’s original vanishing theorem will be used a little in Chapter
7, other more general vanishing theorems are not needed in the remainder of the
book. The reader whose main interest lies in Einstein-Hermitian vector bundles
and stability may skip Sections 3.2~3.6. The reader who is more interested in
cohomology vanishing theorems should consult also the recent monograph by
Shiffman-Sommese [145]. It contains also a more extensive bibliography on the
subject.

47



48 CHAPTER 3. VANISHING THEOREMS

3.1 Vanishing theorem for holomorphic sections

Throughout this section, let £ be a holomorphic vector bundle of rank r over
an n-dimensional complex manifold M. We recall (see (1.4.9)) that given an
Hermitian structure h in E, there is a unique connection D, i.e., the Hermitian
connection, such that

Dh =0.
et s = (s1, -+, S) be a holomorphic local frame fie or and t =
L ( ) b hol phic local fi field for E and
(t', .-+, t") the dual frame field for E*. Given a C™ section

E= &'s € A%E),
we can write
D§:D/§+d/'f, DIEZZ(d/fi-‘rZw;fj)sia d”fZZd”ﬁiSi.

Since D’¢ is a (1,0)-form and d”¢ is a (0, 1)-form, we may write

(3.1.1) A+ wied =) Valdz”,
(3.1.2) d'¢h = V5tidz’
in terms of a local coordinate system (2!, .-+, 2™) of M. The equation above

may be regarded as a definition of V¢! andvggi.

Let R be the curvature of D, i.e., R = Do D. The curvature form Q = (Qz)
with respect to the fraine field s is given by (cf. (1.1.11))

(3.1.3) R(s;) =Y _Qis;.
Since 2 is a (1,1)-form (see (1.4.15))
- . 8
(3.1.4) Q=) R =" Adz’.
We prove the following formula.

Proposition 3.1.5 If¢ is a holomorphic section of an Hermitian vector bundle
(E, h), then
d'd"h(&, §) = h(D'E, D'E) —h(R(E), &),

or, in terms of local coordinates,

9°h(&, €) - -
Tengst — 2 Vel VaE =) hgh T
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Proof 1If f is a function, it is a section of the trivial line bundle and hence
dl/d/f — DI/D/f
We apply this to f = h(€, ). Since £ is holomorphic,
D"¢ =0, or equivalently D'€ = 0.
Hence,

d/d//h(g, 5) — —d”d/h(g, f) — —D”D/h(€7 E) — —D//h(Dlg, g)
= -h(D"D’¢, §) +h(D's, D'E),

where, to derive the third and fourth equalities, we used the fact that h is
Hermitian and hence

D'h(p, ) = h(D'p, ) £ h(p, D",
D'h(p, 1) = (D", )+ hip, D). ¢ A B, el

(The signs + depend on the parity of the degree p). Since
D/IDIE — D//D/E + D/D// é» — DDE — R(é.) ,
we obtain

d'd"h(E, &) = —h(R(E), &) + h(D'E, D'E). Q.E.D.

Let g be an Hermitian metric on M and write

As usual, we denote the inverse matrix of (g,3) by (9°F). Let

(3.1.6) Ki=3 g"R 5 Kg=)> hgK;.

Then K = (K;) defines an endomorphism of E and K = (K,z) defines the
corresponding Hermitian form in £ by

(3.1.7) K(€) =) Ki¢si, K& n) =) Kz

for € = Z ¢'s;and n = Z n's;. We call K the mean curvature transformation

and K the mean curvature form of E (or more precisely, (E,h, M, g)). We call
also both K and K simply the mean curvature of E.

Taking the trace of the formula in (3.1.5) with respect to g, we obtain the
so-called Weitzenbock’s formula:
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Proposition 3.1.8 Let (E, h) be an Hermitian vector bundle over an Hermi-
tian manifold (M, g). If £ is a holomorphic section of E, then

50%h -
LM e - ke o)

where

ID'E|? =" hisg*" Vag'V5E .

We are now in a position to prove the following vanishing theorem of Bochner
type.

Theorem 3.1.9 Let (E, h) be an Hermitian vector bundle over a compact
Hermitian manifold (M, g). Let D be the Hermitian connection of E and R its
curvatures. Let K be the mean curvature of E.

(i) If K is negative semi-definite everywhere on M, then every holomorphic
section & of E is parallel, i.e.,

DE=0

and satisfies

K(¢, € =o0.

(i) If K is negative semi-definite everywhere on M and negative definite at
some point of M, then E admits no nonzero holomorphic sections.

The proof is based on the following maximum principle of E. Hopf.

Theorem 3.1.10 Let U be a domain in R™. Let f,g" h*(1 < i,5 < m), be
C*> real functions on U such that the matriz (g%) is symmetric and positive
definite everywhere on U. If

0% f Of
= § : ©j E L > U
L 9" oziow + h ozt = 0 on

and [ has a relative mazimum in the interior of U, then f is a constant function.

Proof of (3.1.9)

(i) Let f = h(&, &) and apply (3.1.10). Let A be the maximum value of f
on M. The set f~1(A) = {z € M; f(z) = A} is evidently closed. We shall show
that it is also open. Let xo be any point such that f(z¢) = A, and let U be a
coordinate neighborhood around z(. Since K <0, we have

L(f) = g*P0.05h(¢, €) = |D'E|> - K(€, €) 2 0.
By (3.1.10), f = A in U. Hence, f~!(A) is open. Thus we have shown that

f = A on M. This implies L(f) = 0, which in turn implies D'¢ = 0 and
K(¢, &) = 0. Since ¢ is holomorphic, D¢ = d”¢ = 0. Hence, D& = 0.
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(ii) If € is a nonzero holomorphic section of £, then it never vanishes on M
since it is parallel by (i). Since K (&, &) = 0, K cannot be definite anywhere on
M. Q.E.D.

We shall now derive several consequences of (3.1.9).

Corollary 3.1.11 Let (E, hg) and (F, hr) be two Hermitian vector bundles
over a compact Hermitian manifold (M, g). Let Kg and Kp be the mean
curvatures of E and F', respectively.

(i) If both Kg and Kp are negative semi-definite everywhere on M, then
every holomorphic section & of E® F' is parallel, i.e.,

DE®F§ = O

and satisfies .
Kpgr(§, € =0.

(ii) If both Kg and Kp are negative semi-definite everywhere and either one
is negative definite somewhere in M, then E® F admits no nonzero holo-
morphic sections.

Proof We know (see (1.5.13)) that the curvature Rggr of F ® F is given
by
Rpgr = Rg @ Ir + Ip @ Rp.

Taking the trace with respect to g, we obtain
(3.1.12) Kper=Kg®Ip+1p® Kp.

Choosing suitable orthonormal bases in fibres E, and F,, we can represent
Kp and Kr by diagonal matrices. If a;,--- ,a, and by, --- , b, are the diagonal
elements of Kr and K, respectively, then Kpgr is also a diagonal matrix with
diagonal elements a; + b;. Now our assertion follows from (3.1.9). Q.E.D.

Remark 3.1.13 From the proof above it is clear that (i) holds if a; +b; < 0
for all i, j everywhere on M and that (i) holds if, in addition, a; +b; < 0 for
all ,j at some point of M.

The following results are immediate from (3.1.11).

Corollary 3.1.14 Let (E, h) be an Hermitian vector bundle over a compact
Hermitian manifold (M, g).

(i) Iff( is negative semi-definite everywhere on M, then every holomorphic
section & of a tensor power E®™ is parallel and satisfies Kgom (€, £) = 0.

(ii) If, moreover, K is negative definite at some point of M, then E®™ admits
no nonzero holomorphic sections.
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We identify the sheaf QP(E) of germs of holomorphic p-forms with values
in E with the corresponding vector bundle F ® (APT*M). The latter is an
Hermitian vector bundle with the Hermitian structure induced by (E, h) and
(M, g). We denote its mean curvature by Kggarr.

Corollary 3.1.15 Let (E, h) and (M, g) be as in (3.1.14).

(i) If Kg is negative semi-definite and Krar is positive semi-definite every-
where on M, every holomorphic section § of QP(E) is parallel and satisfies
Kpgrr+ (€, §) =0.

(ii) If, moreover, either K is negative definite or Krag is positive definite at
some point of M, then QP(E) has no nonzero sections, i.e.,

HPO(M, E)=0 for p>0.

If F is an Hermitian line bundle, its curvature form §2 can be written locally
Q=) R,zdz* NdZ’.

If, at each point of M, at least one of the eigen-values of (RaE) is negative,
then we can choose an Hermitian metric g on M such that the mean curvature

K= Z gO‘ERaB is negative everywhere on M. From (3.1.9) we obtain

Corollary 3.1.16 Let (F, h) be an Hermitian line bundle over a compact com-
plex manifold M. If, at each point x of M, the Chern form c1(F, h) is negative
in one direction, i.e., c1(F, h)(X, X) < 0 for some vector X € T, M, then F
admits no nonzero holomorphic section.

If M is K&hler, we can express the condition of (3.1.16) in terms of the Chern
class ¢ (F'). Let g be a Kdhler metric on M and ® the associated Kahler form.
We define the degree deg(E) of a holomorphic vector bundle E by

(3.1.17) deg(E) = /M ci(E) Aot

We note that deg(E) depends only on the cohomology classes ¢1(E) and [®],
not on the forms representing them.
Let 61,--- 0™ be a local orthonormal coframe field on M so that

=iy 6°NG".
In general, for a (1,1)-form o = ZZ a,z9% A 5ﬁ, we have

1
(3.1.18) a NPl = E(Z Goz) D"
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Let £ be a holomorphic section of E. If we multiply the equation of (3.1.5) by
®"~1 we obtain

(3.1.19) id d"h(E, E) NE T = —(||D'E| - K (€, €))2",

1

n

which is nothing but the formula of Weitzenbdck in (3.1.8).
Going back to the case of an Hermitian line bundle F', let

1 o B
er(F, h) = o > R 0% NG
be its Chern form. Then from (3.1.18) we obtain

1
n—1 __ o n
ci(F, h) A D 7—2m(§ Row) .

In this case, we can rewrite (3.1.19) as follows:
1

(3.1.20)  id'd"h(€, ) ADO"TL = Z(|D'E)P@" — 2nx||€]|Pei (F, h) A D"TH).
n

If we choose a suitable Hermitian structure h, then ¢; (F, h) is harmonic (see
(2.2.23)) so that Z R, is a constant function on M. Set

c= Z R.&.
Then
(3.1.21) 2nmer(F, h) A" ™' = () Ram)®" = cd™.
Integrating (3.1.21) we obtain

(3.1.22) 2nm - deg(F) = / cd".
M

Substituting (3.1.22) into (3.1.20) and integrating the resulting equation, we
obtain

(3.1.23) 0= /M(HD’fHQ*CHSHz)@“

From (3.1.22) and (3.1.23) we obtain

Theorem 3.1.24 Let F' be a holomorphic line bundle over a compact Kahler
manifold M .

(a) Ifdeg(F) < 0, then F' admits no nonzero holomorphic sections;

(b) If deg(F') = 0, then every holomorphic section of F has no zeros unless it
vanishes identically.
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In fact, a holomorphic section £ in the case ¢ = 0 is parallel, i.e., D' = 0.

Corollary 3.1.25 Let M be a compact Kdhler manifold such that the degree of

its tangent bundle is positive. Then its pluri-canonical genera P, = dim H°(M, K7})
are all zero. (Here Ky = A"T*M is the canonical line bundle of M, and
K7 = K$™.) If the degree is zero, then P, < 1.

Proof This follows from (3.1.24) and the fact that ¢1(M) = —c1(Kp).
Q.E.D.

In order to generalize (3.1.25) to Hermitian manifolds, we shall show neg-
ativity of K in (3.1.9) may be replaced by negativity of the average of the
maximum eigen-value of K. For this purpose, we consider conformal changes of
h. Let a be a real positive function on M. Given an Hermitian structure h in a
holomorphic vector bundle E, we consider a new Hermitian structure A’ = ah.
With respect to a fixed local holomorphic frame field s = (s1, -+, s,.) of E, we
calculate the connection forms w = (w}) and w’ = (w'}) of h and b/, respectively.

By (1.4.10) we have
i ik
wh =Y h*d'hg,

i 1 ik ik d’a
Wi=>" ~h ' (ahg) =Y h*d b+

— 6.
a i

Hence,

(3.1.26) W' = wi + d'(log @)

The relation between the curvature forms Q = (%) and Q' = (Q’;) of h and I/
can be obtained by applying d” to (3.1.26). Thus,

(3.1.27) Q' = Qj +d"d (log a);.
In terms of local coordinates z!,--- 2™ of M, (3.1.27) can be expressed as
follows:
; , - 0%loga
e T s
(3.1.28) jaB = RjaE [y

Taking the trace of (3.1.28) with respect to the Hermitian metric g, we obtain
92

02007

Theorem 3.1.30 Let (E, h) be an Hermitian vector bundle over a compact

Hermitian manifold (M, g). Let K be the mean curvature of E and Ay < -+ <
A be the eigen-values of K. If

(3.1.29) K'; = K} +6/0(oga), where O=— Zgo‘ﬁ

/ MA@ <0, (D" = the volume formof M),
M

then E admits no nonzero holomorphic section.
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This follows from (3.1.9) and the following lemma.

Lemma 3.1.31 Under the same assumption as in (3.1.30), there is a real pos-
itive function a on M such that the mean curvature K' of the new Hermitian
structure h' = ah is negative definite.

Proof Let f be a C* function on M such that A\, < f and / fe"r =0.
M

Let u be a solution of
(3.1.32) Ou = —f.

From Hodge theory we know that (3.1.32) has a solution if and only if f is
orthogonal to all O-harmonic functions. But every [J-harmonic function on a
compact manifold is constant. Hence, (3.1.32) has a solution if and only if

f®" =0. We set a = e" so that d(loga) = —f Since A\, < f, K’ is negative
definite by (3.1.29). Q.E.D.

Corollary 3.1.33 Let M be a compact Hermitian manifold and o its scalar

curvature. If
/ o-Pd" <0,
M

then its pluri-canonical genera P,, = dim H*(M, K%) are all zero.

Proof We apply (3.1.30) to the Hermitian line bundle K}; = (A™T*M)™.
Then its mean curvature is given by —mo. Q.E.D.

We consider a compact Kéhler manifold (M, g), its tangent bundle (T'M, g)
and related vector bundles. Since the Ricci tensor of M coincides with the mean
curvature K of the tangent bundle (T'M, g), (see (1.7.23)), (3.1.9) applied to
E = (T*M)®? yields the following result of Bochner, (see Yano-Bochner [170]):

Theorem 3.1.34 If M is a compact Kdahler manifold with positive semi-definite
Ricci tensor, every holomorphic section of (T* M)®P (in particular, every holomor-
phic p-form on M) is parallel.

If, moreover, the Ricci tensor is positive definite at some point, there is no
nonzero holomorphic section of (T*M)®P (in particular, no nonzero holomor-
phic p-form on M).

If the Ricci tensor is negative semi-definite, applying (3.1.9) to E = (T'M)®?
we obtain the dual statement. The case p = 1 is of geometric interest.

Theorem 3.1.35 If M is a compact Kdhler manifold with negative semi-definite
Ricci tensor, every holomorphic vector field on M is parallel.

If, moreover, the Ricci tensor is negative definite at some point, then M
admits no nonzero holomorphic vector field.
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Applying (3.1.9) to E = APT*M, we can obtain vanishing of holomorphic
p-forms under an assumption weaker than that in (3.1.34).

Theorem 3.1.36 Let M be a compact Kdhler manifold and fiz an integer
p, 1 < p < n. If the eigen-values r1,--- , 1y, of the Ricci tensor satisfies the
inequality

Tiy o1y, >0 forall iy <o <y

at each point of M, then M admits no nonzero holomorphic p-form.

Instead of negativity of the mean curvature K we shall now consider the
following Einstein condition. We say that an Hermitian vector bundle (E, h)
over an Hermitian manifold (M, g) satisfies the weak Finstein condition with
factor ¢ if

(3.1.37) K =olg, ie, K;=¢b,

where ¢ is a function on M. If ¢ is a constant, we say that (E, h) satisfies
the Finstein condition. In Chapter 4 we shall study Einstein-Hermitian vector
bundles systematically. We shall see then that if (E, h) satisfies the weak
Einstein condition and if (M, g) is a compact Kéhler manifold, then with a
suitable conformal change h — h’ = ah of the Hermitian structure h the
Hermitian vector bundle (E, h') satisfies the Einstein condition. Here, we shall
prove only the following

Theorem 3.1.38 Let (E, h) be an Hermitian vector bundle over a compact
Hermitian mamfold (M, g). If it satisfies the weak FEinstein condition, then
every holomorphic section of E®™ @ E*®™ = (End(E))®™,m 2 0, is parallel.

Proof The curvature form of E* is related to that of E by (1.5.5) and
(1.5.6). Since the mean curvature of E is given by ¢lg, that of E* is given
by —@Ig. From (1.1.12) it follows that the mean curvature of E®™ @ E*®™
vanishes identically. Now, the theorem follows from (3.1.9). Q.E.D.

We shall make a few concluding remarks. Myers’ theorem states that the
fundamental group of a compact Riemannian manifold with positive definite
Ricci tensor is finite. Bochner’s first vanishing theorem showed that, under
the same assumption, the first Betti number of the manifold is zero. Although
Bochner’s result is weaker than Myers’ theorem in this special case, Bochner’s
technique is more widely applicable and has led to Kodaira’s vanishing theorem
which will be discussed in Section 3.3. For a survey on Bochner’s technique,
see Wu [168]. Combining vanishing of holomorphic p-forms by Bochner (see
(3.1.34)) with the Riemann-Roch-Hirzebruch formula and making use of Myers’
theorem, we see that a compact Kahler manifold with positive Ricci tensor is
simply connected, (Kobayashi [64]). Yau’s solution of the Calabi conjecture
allows us to replace the assumption on positivity of the Ricci tensor by the
assumption that ¢; (M) is positive.
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Bochner’s vanishing theorem on holomorphic p-forms will be generalized to
the cohomology vanishing theorem in Section 3.3 where the assumption is stated
in terms of the Chern class rather than the Ricci tensor. For vanishing theorems
of general holomorphic tensors such as (3.1.34), see Lichnerowicz [86]. The
reader interested in vanishing theorems for (non-Kéhler) Hermitian manifolds
should consult Gauduchon [28].

We may restate (3.1.35), (also proved first by Bochner), as a theorem on the
group of holomorphic transformations of M. If M is a compact Kahler manifold
with megative Ricci tensor, then the group of holomorphic transformations is
discrete. However, we know now that this group is actually finite even under
the assumption that M is a projective algebraic manifold of general type, (see
Kobayashi [65, pp.82-88]).

The concept of Einstein-Hermitian manifold was introduced to understand
differential geometrically Bogomolov’s semistability through (3.1.38), (see Kobayashi
[66]). If (E, h) is the tangent bundle (T'M, g¢) over a Kéhler manifold (M, g),
the Einstein condition means that (M, g) is an Einstein-Kéhler manifold. Hence,
the term “Einstein-Hermitian vector bundle”.

3.2 Operators on Kahler manifolds

Let M be an n-dimensional compact complex manifold with a Kéhler metric
g. Let ® be its Kéhler form. As before, AP*? denotes the space of C*®(p, q)-
forms on M. We choose (1,0)-forms 6, --- 6" locally to form a unitary frame
field for the (holomorphic) cotangent bundle 7* M so that

(3.2.1) g=> 00"

and

(3.2.2) o =v=1) 6" n0".

For each ordered set of indices A = {a1, ---, ap}, we write

(3.2.3) gL =0 A p g, G =G A A,

and denote by A" = {ap41, -+, an} a complementary ordered set of indices.
We might as well assume that o,y < --- < ay, although this is not essential.
We define the star operator

(3.2.4) %1 AP —y An—an—p

as a linear map (over A° = A%Y) satisfying

(3.2.5) L(0A N 07) = (V=D)e(A, B0 AT,
where ¢(A, B) = %1 is determined by

(3.2.6) €(A, B) = (—1)"+(n+1/25(AA") . 6(BB').
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Here, o(AA’) denotes the sign of the permutation (AA’), ie., it is 1 or —1
according as (AA’) is an even or odd permutation of (1,2,---,n). The reason
for the complicated definition (3.2.6) will become clear soon. It is simple to
verify

(3.2.7) x*xp=(=1)PTlp for e AP,
Next, we define the dual operator
(3.2.8) FLAPT o ATTPITG by Fp = 47 = 7.
The sign in (3.2.6) is so chosen that we have
(04 NOPYAFOANT") = (V=1)"0' AT A O™ AT
(3.2.9) ]
= —o",
n!
Given (p, q)-forms
1 A —B 1 A B
o= Mz%@e NG and ¢ = MZ%E& NG,

we have

_ 1 — 1
(3.2.10) OAFp = <@Z“’A§W§)E¢ )

We define an inner product in the space of (p, ¢)-forms on M by setting

(3.2.11) (p, V) = / o AT
M
Then
(v ¥) = (¥, ).
In general, e(1)) denotes the exterior multiplication by v, i.e.,
(3.2.12) e() - o= Ap.

In particular, we write L = e(®), i.e.,

(3.2.13) Lo=®d Ay
so that
L: APY .y Ap+La+l
We set
(3.2.14) A=xtoLox:APd — AP~La~1

If pisa (p, g)-form and ¢ is a (p+ 1, ¢ + 1)-form, then

(3.2.15) © ANFAY = Lo A *).
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Integrating (3.2.15) we obtain

(3.2.16) (s AY) = (L, 1),

showing that A is the adjoint of L. We note that both L and A as well as the
star operator * are algebraic operators in the sense that they are defined at each
point of M and are linear over A°.

Given a (p, ¢)-form

1 —B

we have
1
3.2.17 ANp=—— TN
(3247 ¢ DG P
where
g = (COPV=LY o eap
(The notation aA* stands for (o, ai, ---, ap_1) if A* = (a1, ---, ap_1).)

This formula may be derived, for instance, from (3.2.15).
The commutation relation between L and A is given by

(3.2.18) (AL-LA)p=(n—p—q)p for ¢e AP
We define
§ = —%dF = —xd"x: APT — APTLO
(3.2.19) 8 = —%d"¥ = —xd'x: APT — AP
§=06+10".

Then for differential forms ¢ and ¢ defined on M of appropriate degrees, we
have

(3.2.20) (dg, ¥) = (p, 6¢), (d'¢, ¥)=(p, §'¢), (d"p, ¥) = (, 6"¢).

Let (e1, -+, ey) be the local unitary frame field of the (holomorphic) tan-
gent bundle TM dual to (6, ---, ™). Corresponding to the formula
d=> e(0)Ve, (ie, dp=Y 0"AV.),
(3:221) d'="e(®")Ve, L d"=Y"0" AVzp)
we have

= Z t(ea)Ve,,

(3.2.22)
§" == uEa)Ve,
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We have the following commutation relations among the various operators
introduced above.

dL—Ld =0, d'L—Ld" =0,
YA —AY =0, "A—As"=0,
LY —6'L=+-1d", L§" -¢"L=—v-1d,
Ad —dA=+vV-18", Ad' —d'A=—/—16".

(3.2.23)

Corresponding to the well known formulas

(3.2.24) dd =0, d'd"=0, dd'+d'd=0,
which follow from dd = 0, we have

(3.2.25) 38 =0, 88 =0, &8 +66=0.
Further, we have

d/(SN — _5//d/ — —\/jl(SIIL(SH — _\/jldlAd//,
d's = -8'd" = /-16'Lé = V/—-1d"Ad'.

We recall that the Laplacian A is defined by

(3.2.26)

(3.2.27) A =db + 4d.

If we set

(3.2.28) O=d"6"+6"d",
then

(3.2.29) O=dé+8d = %A
and

(3.2.30) AL = LA, OL = L.

Let E be a holomorphic vector bundle of rank r on a compact Kahler man-
ifold M. Let AP%(E) denote the space of C*(p, ¢)-forms with values in E.
The operators x, L, and d” defined above extend to AP*4(FE). Consequently,
0" = — xd"x also extends to AP'9(E). In order to generalize d’ and 6" as opera-
tors on AP4(E), we choose an Hermitian structure h in E and use the Hermitian
connection D in E. We recall (1.4.9) that

(3.2.31) D=D +d',

where

D' : APY(E) — APTLA(E).
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Using D’ in place of d’, we define

(3.2.32) 8, =— % D'x: API(E) —s API"Y(E).
Using a local frame field s = (s1, -+, s,) of E, let ¢ = ng’sz Then
(3.2.33) 5;{(2 ©'si) = Z((Sugpi — % Zw,zc A xF)s;.

In fact, if ¢ is an r-form, then

5%(2 p'si) = —x D x (Z Q's) = — Z(*d' * p')s; — Z(—l)’” * (x@" A D's;)
= Z(— wd *x ot — (—1)" * Z xo® Awl)s;
= Z(é”g@i — *Zwlzc A ") s;.

We define the local inner product h(p, ) of ¢ = Z ©'s; and ¥ = Z z/;jsj
by

(3.2.34) Wi, ¥) =Y hge' Axi
and the global inner product (p, %) by

(32:35) (0. )= [ e, v,
Then

(D'p, ¥) = (p, 8'Y), (d"¢, V) = (¢, 6,1).

For example, to prove the last equality, let ¢ be a (p, ¢ — 1)-form and ¥ a
(p, q)-form. Then

d(h(p, ¥)) = d"(h(e, ¥))
:Zd//hﬁ/\@i/\*aj+Zhi3d”§0i/\*@j+Zhﬁ§0i/\**d”*@j
= h(d"gp, w) +Zhi§§0i /\**hk?d”hkm/\ *am +Zhi3@i /\**d//*aj
= h(d"p, ) — Z o' A *(—mj - Z swl A
= h(d"p, ) — ho, &), (using (3.2.33)).

We now list various commuting relations between these operators acting on
AP9(E). They all generalize the formulas for the operators acting on AP-9.

(3.2.37) (AL—LANp=Mn—-p—q)p forype APIU(E).

D'L—-LD =0, d'L—Ld" =0,

(3.2.38) FA—AS =0, &/A—A5=0.
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L8 —§'L=+/=1d", L&} —6/L=—/—1D,

(3.2.39) AD' — D'A = /=18, Ad" —d'A = —/=15".

Clearly, (3.2.38) and (3.2.39) generalize (3.2.23). The formulas involving
only, L,A, d’ and ¢’ follow immediately from the corresponding formulas in
(3.2.23). The remaining formulas can be obtained from the corresponding for-
mulas in (3.2.23) with the aid of normal frame fields (1.4.19). We can see their
validity also by observing that their adjoints involve only L, A,d” and ¢’. For
example,

(D'L = LD )p, ¥) = (p, (A" = 0"A)),

thus reducing the formula D'L — LD’ = 0 to the formula Aé’ — §A =0
Since

R: DOD — (D/+d//)(D/+d//) — D/DI+(D/d/I+d1/D/) +d/ld//
and since the curvature R is of degree (1, 1), we obtain
(3.2.40) D'D'=0, d'd"=0, D'd"+d"D' =R,

which generalizes (3.2.24). The last formula should be understood as follows.
It Q= (Qg) denotes the curvature form with respect to a local frame field
s=(s1, -+, ), then

(D'd"+d"'D)p =) Qingls; for o= ¢'si.

Thus, the curvature R in (3.2.40) represents a combination of the exterior mul-
tiplication and the linear transformation by R. Denoting this operator by e(R),
we write the last formula of (3.2.40) as follows:

(3.2.41) D'd" +d"'D = e(R).
From (3.2.40) (and (3.2.41)) we obtain the following
(3.2.42) S =0, &6 =0, 060+ =—xte(R)x*.

For example, the last formula in (3.2.42) follows from (3.2.41) with the aid of
(3.2.7). In fact, if ¢ is an r-form with values in E, then

(5;{ /+615;{)g0:(*DI**d”*—i‘*d//**D/*)@:(_1)T+1*(D/d”+d”D/)*g0
= ()" xe(R)xpo=—x""e(R)*p.

This last formula is known as Nakano’s formula.
Generalizing (3.2.28) to vector bundle valued forms, we define

(3.2.43) O, =d"6; + 6,d".

Let HP9(E) denote the space of [J,-harmonic (p, ¢)-forms with values in E,
ie.,

(3.2.44) HPU(E) = Ker(Oy, : APU(E) — AP9(E)).
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We recall that the d”-cohomology or the Dolbeault cohomology of M with
coefficients in F is defined to be

Ker(d” : AP9(E) — APITH(E))
p,q =
(3.2.45) H>(M, E) Image(d” : APa~1(E) — AP4(E))’

The Dolbeault isomorphism theorem states
(3.2.46) HP9(M, E)~ HY(M, QF(E)).

This is the d”-analogue of the de Rham isomorphism theorem.
The Hodge theorem states:

Theorem 3.2.47 (i) dim H?9(FE) < co; This allows us to define the orthog-
onal projection
H: AP9(FE) — HP9(E);

(ii) There is a unique operator (called the Green’s operator)
G: AP9(E) — APY(E)
such that G(H?9(E)) =0,d" oG =G od", )]l oG =6} oG and
H+4Op,o0G =1,
or more explicitly
o=Hp+d"(6;Go) + 8, (d"Gp) for ¢ € API(E).
This implies immediately the following isomorphism:
(3.2.48) HP(M, E) ~ HP(E).

For the proofs of the Dolbeault theorem and the Hodge theorem, see for
example Griffiths-Harris [38], where the theorems are proved when E is a trivial
line bundle.

We can define a product

APUE) x A™S(EY) —  APtrats
(o, V) +— @AY

in a natural way. If r =n — p and s = n — ¢, then we can define a pairing
L: API(E) x AVPPTUEY) — C
(o, ¥) +— / @ N
M
This pairing induces a pairing

(3.2.49) L HPO(M, E) x H"P"=9()M, E*) — C



64 CHAPTER 3. VANISHING THEOREMS

Theorem 3.2.50 (Duality Theorem of Serre) The pairing ¢ in (3.2.49) is
a dual pairing.

For the proof, see Serre [140] which contains also the proof of the Dolbeault
isomorphism theorem (3.2.46) for vector bundle cohomology. The reader can ob-
tain concise outlines of the proofs of (3.2.46), (3.2.48) and (3.2.49) in Hirzebruch
[49].

Summarizing the three preceding theorems, we have

sheaf cohomology d'-cohomology Op-harmonic forms

an(M, E) Hodge—é(odaira Hpa (E)

Serre duality

Hn=Pn=4()M, E)

Dolbeault

HY(M, QF(E))

3.3 Vanishing theorems for line bundle coho-
mology

Let F be a holomorphic line bundle over a compact complex manifold M of
dimension n. Let ¢;(F) € H?(M;R) denote the (real) first Chern class of F.
We say that ¢;(F) is negative (resp. semi-negative, positive, semi-positive,
of rank 2 k) and write ¢1(F') < 0 (resp. ¢1(F) £ 0,¢1(F) > 0,¢1(F) 2 0, rank
c1(F) 2 k) if the cohomology class ¢;(F) can be represented by a closed real
(1,1)-form
1

- _ o B
5 ngaﬁdz Ndz

SO:

such that at each point z of M the Hermitian matrix (¢,5(x)) is negative
definite (resp. negative semi-definite, positive definite, positive semi-definite, of
rank = k). We say that F' is negative (resp. positive) if ¢1(F) is negative (resp.
positive).

Vanishing theorems for higher dimensional cohomology began with Kodaira
[78].

Theorem 3.3.1 (Vanishing theorem of Kodaira) If ¢;(F) <0, then
HYM;Q(F)=0 for ¢q<n—1.

His theorem has been generalized as follows.
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Theorem 3.3.2 (Vanishing theorem of Nakano (Akizuki-Nakano [1]))
If e1(F) <0, then

HYM;QP(F))=0 for p+q<n-—1

Theorem 3.3.3 (Vanishing theorem of Vesentini [164]) If M is Kdhler
and c1(F) £ 0 with rank c1(F) 2 k, then

HYM, Q°F))=0 for ¢<k—1,
HO(M, QP(F)) =0 for p<k—1.

Theorem 3.3.4 (Vanishing theorem of Gigante [32] and Girbau [33] )
If M is Kdhler and ¢i(F) £ 0 with rank c1(F) 2 k, then

HYM, QP(F))=0 for p+q<k—1.

Since (3.3.4) implies the preceding three theorems, we shall prove (3.3.4). By
(2.2.23), there is an Hermitian structure h in F' such that ¢ 3 = R 5 so that
(R,5) is negative semi-definite and of rank 2 k everywhere on M. Throughout
the proof, we fix such an Hermitian structure h in F'. We fix also an arbitrarily
chosen Kéahler metric g on M and use various operators and formulas explained
in Section 3.2. In particular, H?*?(F') denotes the space of [J,-harmonic (p, ¢)-
forms with values in F.

Theorem 3.3.5 (Nakano’s inequahty) If ¢ € HP9(F'), then
VEI(Ae(R) — e(R)N)p, ) = |D'll? + 66 2 0.
Proof From e = 0, we obtain
dp=0, 5pp =0.

From (3.2.41), we obtain
e(R)p =d"D' .

Making use of (3.2.39), we obtain
V=1(Ae(R)p, @) =vV=1(Ad D'y, ¢)
=V-1(d"AD"p, )+ (§'D'p, )
= (D¢, D'op).
Similarly, we have
—V=1(e(R)Ap, @) = —V=1(d"D'Ap, ¢) = V=1(D'd"Ap, ¢)
=(D'd'p, ¢) = V-LD'Ad"p, ¢)
= (', 0'p).

This completes the proof of (3.3.5).
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Before we start the proof of (3.3.4) we should remark that (3.3.2) follows
immediately from (3.3.5). In fact, if (R 5) is negative definite, we can use
- ZRaEdzadEB as our Kéhler metric g. Then L = y/—1le(R) and the left

hand side of (3.3.5) is equal to —((AL — LA)p, ¢). Hence, (3.3.5) in this case
reads as follows:
(AL = LA)g, ¢) = 0.

On the other hand, by (3.2.18) we have

(AL = LA)p, ¢)=(n—p—q)(p, )

Hence, p =0if p+ g < n.

To prove (3.3.4), at each point = of M, we choose (1,0)-forms 0!, --- 0" to
form a unitary frame for the cotangent space Ty M as in Section 3.2. We may
choose them in such a way that the curvature R of h is diagonal with respect
to this frame, i.e.,

Rag(l’) = T.Oz(saﬂ «, B = ]-7 e, N
where rq, - - - , 1, are real numbers since (RQE) is Hermitian. For an ordered set of
.. . A —aQ,
indices A = {aq, ---, oy}, we write A =0 N A% and O =0 A---AOP

as in (3.2.3). Let p € APY(F') and write at x

—B
@:Z@AEGA/\Q , QDAEEFI
Then we have the following formula due to Gigante.

(3.3.6) V=I(Ae(R)p—e(R)A@) .5 =(— > rat+ > Ta)p,p atw.

a€ANB BE¢AUB

Proof of (3.3.6) Given two (p, ¢q)-forms ¢ and v at x, we denote their inner
product at = by (¢, ©). Thus,

n
n.

(o )2

Omitting exterior product symbols A in the following calculation, we have
V=I(Ae(R)0487, 6€87) = V—1(e(R)040", L(6°F"))
= ra(6°97049", 0°9°0°9").
a,f3
In this summation, a term does not vanish only when « and ( satisfy one of the
following two conditions:
(i) a ¢ AUB,B&CUD,a+#f and 0°8°648" = 9°9°9°8" with ¢ = +1,

or
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(i) a =B ¢ AUB, and 049" = e0°0" with ¢ = £1.

On the other hand, using

VI ((R)AAE”, 0997) 2 = TTe(R) (v L7049 )(650")

n
=V 1(e(R)¥°F", L?O“FB)(I)—',
n:

we obtain
—V=I(e(R)AGAT”, 6987 = =3 o (0°0°%0°8", 0°9"%0°9").
a,B

In this summation, a term does not vanish only when « and ( satisfy one of the
following two conditions:

(i) a € CND,Be ANB,a# B and 0°9°70°8"° = %8 7049", ¢ = +1,
or
(iv) a =B € AN B and 048" = e6°F", ¢ = +1.

Now we claim that the terms coming from (i) and the terms coming from (iii)
cancel each other out. In fact, we observe first that in both (i) and (iii) we have
(up to permutations)

(a, A) = (B, ), (a, B)=(B, D).
Calculation using (3.2.5) shows that the sign € in (i) agrees with € in (iii). Thus,
0°9°049" = 0°8°0°9",  0°6"%0°0" = 0°7 045" .
Hence,
0°8°049", 0°9°0°8") = ¢, (0°6°50°F", 0°0"%648") = e.

This proves our claim. Considering only the terms coming from (ii) and (iv),
we obtain

~1((Ae(R) — e(R)N04D”,6907) = | 30 vs— Y | (6497,6907).
BEAUB a€ANB

This proves (3.3.6).
To complete the proof of Theorem (3.3.4), we need the following

Lemma 3.3.7 Given real numbers ri,--- ,r, such that

rmSrg < S, 20, 7, -, T <0
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and a positive number p, let
T&:ra/(l_lfra)a a=1, -, n.

If p is sufficiently large, for any indices a1 < -+ < a5 and B < -+ < Pt
with s +t < k we have

!

Sl ) O e ) <0
Proof 1t follows easily that

M. Zr

<0, T, <O,
Hence it suffices to prove the following extreme case:
—(r 4 )+ (P ) <0
But
(M) = (Mg o i) 2 80 —ry) 2 s(r — )
=s(r1 =) /(1= pri)(1 = pry),
and
—(Miypepr o) 2 —(k—s =ty = —(k — s — )i/ (1 — pry).
Adding these two inequalities, we obtain

—(k—s—1t)ry s(r1 —g)
(1 — pry) (L= pr1)(1 = pry)

/ /

(ry e ) = (g ) 2

The first term on the right is positive and the second term on the right is
negative. By taking p sufficiently large, we can make the absolute value of the
second term smaller than the first term. Q.E.D.

We shall now complete the proof of Theorem (3.3.4). We fix a point x of
M. We choose 61, --- 6™ as above so that (RaB) is diagonal at = with diagonal
entries ry,--- ,r,. Since (RQB) is assumed to be negative semi-definite of rank
2> k, we may assume that

T1<"'§TTL§O; T17"'7Tk<0'

Using the curvature form €2 of the Hermitian structure h and the Kéhler form

® of g, we define
' =& — puv/-19Q,

where p is a positive constant. Since the curvature (2 is negative semi-definite,
®’ is a positive (1, 1)-form. It is obviously closed. Let ¢’ be the corresponding
Kihler metric on M. Making use of a unitary frame 6", - - -, '™ of the cotangent
space T.' M with respect to the new metric ¢’, we write
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Q= Z R;EG’Q/\@B at x.

Then the eigen-values of (R;B) are given by

ro=ro/(1 —pry), a=1,--- n.

Let A’ denote the adjoint of L’ = e(®’). Then it follows from (3.3.6) and (3.3.7)
that if p + ¢ < k, then the eigen-values of the linear transformation

V=1(Ne(R) — e(R)A') : APY(F), — APY(F),

are all negative. This holds, by continuity, in a neighborhood of z. Since M is
compact, by covering M with a finite number of such neighborhoods and taking
1 sufficiently large, we obtain in the range p + ¢ < k the following inequality:

V=1(Ae(R) — e(R)N)p,p) <0 for 0#pec API(F).

This contradicts Nakano’s inequality (3.3.5). Hence, ¢ = 0, showing that
HP9(F) =0 for p+ q < k. This completes the proof of (1.3.4).
By the Serre duality theorem, (3.3.4) can be dualized as follows.

Corollary 3.3.8 If M is Kahler and c1(F) 2 0 with rank ¢1(F) 2 k, then
HY(M, QP(F)) =0 for p+q=2n—k+1.

Corollary 3.3.9 Let M be a compact Kdhler manifold and F a line bundle
over M such that F®™ is generated by global sections for large m. Let

®,,: M — PyC (N +1=dim H*(M, F®™))

be the holomorphic mapping defined by the sections of FO™. If dim ®,,(M) = k,
then
HYM, Q(F™')=0 for p+q<k—1.

This follows from the fact that the Chern form of F®™ can be obtained by
pulling back (a suitable positive multiple of) the Fubini-Study Ké&hler form of
PnC by @,,,. (3.9) is due to Ramanujam [131] and Umemura [157].

There are various generalizations of the vanishing theorem proved in this
section. The following vanishing theorem, due to Kawamata [58] and Viehweg
[165], generalizes the vanishing theorem of Kodaira.

Theorem 3.3.10 Let M be a projective algebraic manifold of dimension n and
F a line bundle over M. If

(1) / c1(F)=20 for every curve C in M,
c

(ii) /M L (F) >0,
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then
HY(M, Q" (F))=0 for q=1.

Let D be a divisor defining the line bundle F. Then (i) says that D is
numerically effective while (ii) states that the highest self-intersection D" is
positive. We note that if ¢ (F) is semipositive, then (i) is satisfied. The converse
is probably true.

Nakano’s vanishing theorem has been generalized to certain non-compact
manifolds. A complex manifold M is said to be weakly 1-complete if there is a
smooth real function f on M such that

(i) f is plurisubharmonic, i.e., its complex Hessian (9% f/02%0%z") is positive
semidefinite;

(ii) {z € M; f(z) < c} is a relatively compact subset of M for every ¢ € R.

Every compact complex manifold is weakly 1-complete since a constant func-
tion satisfies the conditions above. On the other hand, it follows from Remmert’s
proper embedding theorem that every holomorphically complete manifold is
weakly 1-complete. Sometimes, the term “pseudoconvex” is used for “weakly
1-complete”.

A holomorphic line bundle over a (possibly noncompact) complex manifold
M is said to be positive if there is an Hermitian structure h with positive
definite curvature. A semipositive line bundle of rank = k can be defined in a
similar manner.

The following generalization of (the dual of) (3.3.2) is also due to Nakano
[116].

Theorem 3.3.11 If F' is a positive line bundle over a weakly 1-complete com-
plex manifold M of dimension n, then
HY(M, QP(F))=0 for p+qg=n+1.
The strongest result in this direction, due to Takegoshi-Ohsawa [149], gen-
eralizes (the dual of) (3.3.4):

Theorem 3.3.12 Let M be a weakly 1-complete Kdhler manifold of dimension
n and F' a semipositive line bundle whose curvature has at least n—k+1 positive
eigenvalues outside a proper compact subset K of M. Then

HYM, QP(F))=0 for p+qg=n+k.

Comparing (3.3.8) with (3.3.10), it is reasonable to conjecture the following:
Let M be a projective algebraic manifold of dimension n and F' a line bundle
over M. If

(i) / c1(F) 20 for every curve C' in M,
c

(ii) / ca(F)F Aok >0,
M

then
HYM, QP(F))=0 for p+g=2n—Fk+1.
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3.4 Vanishing theorem of Bott

We recall first the construction of the tautological line bundle L over the
projective space P, = P, C given in Section 2.1, Chapter 2 and calculate the
curvature of L with respect to the natural Hermitian structure to see that ¢y (L)
is negative.

Let V = C"*l. We recall that a point = of P, is a line through 0 of V
and that the fibre L, over z is the line represented by x. Thus, L may be
considered as a line subbundle of the product vector bundle P, x V over P, in
a natural manner. We use the Hermitian structure induced from the natural
inner product in V. Let (¢°, ¢!, ---, ¢™) be the natural coordinate system in
V', which is used as the homogeneous coordinate system for P,. In the open set
Uy of P, defined by ¢ # 0, we use the inhomogeneous coordinate system

=0 =
and a local holomorphic frame field s : -Uy — L given by
(3.4.1) s(zh, o, 2 =1, 2 o, M) e
With respect to this frame field, the Hermitian structure h of L is given by
(3.4.2) h(s, s) =1+ |22+ +[2"%
Its curvature form p is given by
p=d"d (log(1+ 3" |*2))

(343) 2 1 1 k|2

0220%"
It follows from (3.4.3) that ¢;(L) is negative according to the definition given
in Section 3.3. We note that the Fubini-Study metric of P, is given by

2 k|2
(3.4.4) 3y 4 log((; +6§|Z %) gzt
2207

Lemma 3.4.5

C-c1(L)?  for p=gq,
0 for p#q.

Proof By the Hodge decomposition theorem for Kéhler manifolds, we have

HYP,, QF) = {

H'(P,, C)= @@ HY(P,, ).
ptq=r

Since ¢1(L) is negative, ¢;(L)P defines a nonzero element of H?(P,, Q) =
HP?(P,, C). On the other hand, we know that

1 if r is even,

dim H"(P,, C) = o
0 if r is odd.
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Now (3.4.5) follows immediately. Q.E.D.

We constructed the tautological line bundle L as a line subbundle of the
product bundle P, x V. Now we shall show that the quotient bundle (P, xV')/L
is isomorphic to TP, ® L, where T P, is the tangent bundle of P,. In other words,
we shall constmct an exact sequence

(3.4.6) 0—L—P,xV—TP, L —0.

Setting V = P, x V and T = TP, for simplicity’s sake, we write (3.4.6) as
0—L—V —=T®L—0.

Tensoring this with L*, we have

(3.4.7) 0—1— Lt 7 0.

It suffices therefore to prove (3.4.7). Let fi € L%,i = 0,1,---,n. Then each
f%is a linear functional on the line L, in V. If (¢Y, ¢!, ---, (™) denotes the
coordinate system in V = C"*1 then each 9/9¢" is a holomorphic vector field on
V. Hence, each f(9/9¢") is a vector field defined along the line L,. This vector
field is invariant under the scalar multiplication by C* and hence projects down
to a tangent vector of P, at x by the projection V—{0} — P, = (V—{0})/C*.
We denote the projected tangent vector of P, by Z;. Define

Q:L*®n+1—>T, O‘(foafla"'7fn):ZZi.

Since V — {0} — P, is surjective, it is not hard to see that « is also surjective.
Hence, the kemel of @ must be a line bundle. Since the vector field Z ¢ (0/8¢")
is radial, it projects down to the zero vector field on P,. Hence,

O[(Cov Cla ) C’ﬂ) =0.

Since, for each x € P,, at least one of ¢* is nonzero on L,, it follows that

(¢Y, ¢, .-+, (™) defines a nowhere vanishing section of L*®"*! and hence
generates a trivial line subbundle which is exactly the kemel of a. This proves
(3.4.7).

Considering the determinant of the sequence (3.4.7), we obtain
L@t = det T.
Dualizing this, we can write
(3.4.8) Lt = Kp |

where Kp, denotes the canonical line bundle (det T')* of B,.

Let W be a hyperplane of V = C"*! and P(W) the (n — 1)-dimensional
projective space defined by W. With the natural imbedding ¢ : P(W) —
P, P(W) is a hyperplane of P,. Let L(IW) denote the tautological line bundle
over P(W).
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Lemma 3.4.9 (i) The line bundle L(W) is the restriction of L to P(W), and
the curvature form p of the natural Hermitian structure h of L, restricted
to P(W), coincides with the curvature form pw of h|rmw).

(ii) The dual bundle L* of L is isomorphic to the line bundle determined by
the divisor P(W) of P,. (In other words, L*has a holomorphic section
whose zeros define the divisor P(W).)

Proof (i) is obvious. To prove (ii), let f : V — C be a linear functional
with kernel W. Then f can be considered as a holomorphic section of L* since
it is linear on each line L,,x € P,. As a section, it vanishes exactly on P(W)
to the first order. Q.E.D.

For each integer k, we set

L®k if k>0,
LF = trivial line bundle  if k=0,
(L*)®(=F) if k<O0.

We are now in a position to prove the vanishing theorem of Bott [20]. The
following proof using the induction on the dimension of P, is due to Enoki.

Theorem 3.4.10 If L is the tautological line bundle over P,, then
HY(P,, (L") =0 for p, ¢20 and k€ Z,
with the following exceptions:
(1) p=q and k=0,
(2) ¢g=0 and k>p,
(3) g=n and k<p-—n.
Proof

(a) n=1.
Since |
HY(Py, Q7(L7%)) ' HO(Py, Q'P(LF))
by the Serre duality, it suffices to consider the case ¢ = 0.

For p = 0,H°(Py, Q°(L7F)) = 0 for k < 0 by (3.1.14) or (3.3.1) since
L is negative. (Or more directly, by (ii) of (3.4.9) the sheaf Q°(L) can
be identified with the sheaf Q°(—p) of germs of holomorphic functions
vanishing at one point p(= P(W)) of P;. Hence, if k < 0,Q°(L~") has no
nonzero sections).

For p = 1, noting Q! = Q(Kp,) and using (3.4.8), we obtain

HO(Py, QYL™) =H (P, Q°(L*> %) =0 ifk<1.
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(b) n—1=n.
Again, by the duality theorem, we have
HI(P,, Q°(LF)) ~ H" (P, Q"7P(L7")).

It suffices therefore to consider the case k = 0. The case k = 0 is proved
in (3.4.5). In order to complete the proof by induction on k, we fix a
hyperplane D = P(W) in P,. By (ii) of (3.4.9), QP(L=™"1) can be
identified with the sheaf of L~™-valued meromorphic p-forms with pole
of order 1 at D. Then we have the following exact sequence of sheaves:

(3.4.11) 0— QP(L™) — QP(L~™ 1) L 0Bl (Lm) — 0,
where R is the residue map which may be defined as follows. If f = 0 defines
D locally, write p € QP(L™™71), as
1
¢ = ?(dfmp +on), YEeQTHIT),
where the dots indicate the terms not involving df. Then

R(p) =i,

where i : D — P, is the imbedding. From (3.4.11) we obtain the following
long exact sequence:

(3.4.12)
HY(D, Qr~Y(L7%) 25 HY(P,, QP(L7F))
— HY(P,, QP(L7* 1)) L5 gu(D, or—1(L7%))

To prove (3.4.10) for k =1, we set k =0 in (3.4.12) and show that

HYD, =Y S 9P, Q) and HY(D, Q1) & HTY(P,, QP)

are both isomorphisms. We consider the first one; the second one is obtained
from the first by shifting ¢ by 1. By (3.4.5), the problem reduces to showing
that

(3.4.13) C-cr (L)~ = H=Y(D, Qr=1) & HP(P,, QP) = C - 1 (L)?

is an isomorphism. (Here, L denotes the tautological line bundle of P, and its
restriction to D = P(W) at the same time). We recall the construction of the
connecting homomorphism 6. Given a cohomology class in HP~Y(D, QP~1),
represent it by a d”-closed (p—1, p—1)-form w on D. Then find an L~!-valued
(p, p—1)-form & on P, such that R(®) = w. Then d[w] = [d"®]. We apply this
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construction to w = pf}, 1, where py denotes the curvature of the tautological
line bundle (Lp, h) over D = P(W). By (i) of (3.4.9), pw = p|p. By (ii) of
(3.4.9), there is a holomorphic section f of L=! which vanishes exactly on D to
the first order. If we set

@ = h(f, /)7 d (h(f, ) A"

3oty '] = [d"a] = [p")-
Since p represents ¢1(L) up to a constant factor, this shows that (3.4.13) is an
isomorphism.

Now assume (3.4.10) for some k = 1. Then (3.4.12) implies immediately
(3.4.10) for k + 1. This completes the induction. Q.E.D.

What we proved here is a very special case of Bott’s general results on homo-
geneous vector bundles, see Bott [20]. This special case will play an important
role in the next section.

3.5 Vanishing theorems for vector bundle coho-
mology

Let E be a holomorphic vector bundle of rank r over a complex manifold
M of dimension n. We defined in (2.1.1) the bundle

P(E) = U P(E,) = (E — zero section)/C*
zeM

and the tautological line bundle

over P(E).

In order to obtain vanishing theorems for vector bundle cohomology, we
prove the following theorem of Le Potier which relates vector bundle cohomol-
ogy to line bundle cohomology. Here we follow Schneider’s [136] proof which
simplifies the original proof of Le Potier [84], (cf. Verdier [163]).

Theorem 3.5.1 Let E* denote the dual of a holomorphic vector bundle E over
M. Then there is a natural isomorphism

HI(M, 04, (E") ~ HU(P(E), Q3 (L(E)")).

Proof Let m: P(E) — M be the projection. We consider a subsheaf
FP = Q) (7" (APT*M) @ L(E)*)
of Q

Pmy (L(E)).
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Lemma 3.5.2 (i) For each open set U of M, the inclusion FP C Q?,(E) (L(E)Y)
induces an isomorphism

HO(r (), F?) ~ HO(x ™\ (U), Q) (L(E)).

(ii) There is a natural isomorphism
H(r71(U), FP) = H°(U, O}, (E")).
Proof

(i) For each x in U, L(E)|;-1(z) = L(E;) and the bundle (7 A* T*M)| ;-1 (4

is a product bundle. From the decomposition

(NPT P(E)lw 1y = @D (7" A* TEM & N'T*P(E,)),
s+t=p
we obtain
HO(n (), @(L(E)")) = @ (WT;M) @ HO(P(E,), O'(L(E,)"))
s+t=p

= (NPT M) @ H(P(E,), Q°(L(E,)")),

where the last equality is a consequence of the vanishing theorem of Bott
(see (3.4.10)):

H(P(E,), Q' (L(E,)*)) =0, t>0.

(ii) Using the identifications
7 (ANPT*M) @ L(E)* = Hom(L(E), ©* AP T*M)
and
APT*M ® E* = Hom(E, APT*M),

we define an isomorphism f : H(x='(U), F?) — H°(U, Q4,(E*)) by
setting

(3.5.3) (f(n)(@)(e)) = {77([6])(6) for e#0

0 for e =0,

where n € H(n=Y(U), FP),x € U,e € E,. (On the right hand side, e is
regarded as an element of L(E).) Q.E.D.

Lemma 3.5.4 If U C M is a Stein manifold and E|y is holomorphically a
product bundle, then

(i) HY(x=Y(U), F?)=0 for p=0,q>0,
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(i) HYx ' (U), D (L(E)*) =0 for p=0,g>0,

Proof Fixing a trivialization 7~ 1(U) ~ U x P._;C, we let
p:m Y U) — P._,C

be the projection onto the second factor. Then L(E)|r-1) ~ p*L, where L
denotes the tautological line bundle over P._;C.
(i) Since
FP =0O((m* NP T*M)® p*L) on 7 YU),

we have (by Kiinneth formula for sheaf cohomology (see Kaup [56], [57]))
Hi(x ' (U), F*)= @ H'(U, O8,)&H! (P,_,C, O(L")),
i+j=q

where @ denotes the topological tensor product. Since U is Stein, H*(U, o) =
0 for ¢ > 0. On the other hand, by the vanishing theorem of Bott (see (3.4.10)),
HI(P,_1, O(L*)) =0 for j > 0. Hence, HY(7=1(U), F?) =0 for ¢ > 0.

(ii) Since

T (APT*M) @ L(E)* ~ @ 7" (A°T*M) @ p*((N'T*P,_1) ® L¥)
s+t=p
on 7 HU),

as in (i) we have

Hi(x Y (U), @(LE)) ~ @ € HI(U, Q)@ H (P,_1, QYL*)) =0.
i+j=q s+t=p

Q.E.D.

We need also the following theorem of Leray (for the proof, see for example,
Godement [34]).

Theorem 3.5.5 Let X and Y be topological spaces and m: X — Y a proper
map. Given a sheaf F of abelian groups over X,R4m,F denotes the sheaf over
Y defined by the presheaf

UcCY — HY(r Y (U), F).

If, for some fized p,
Rinr, F =0 for all q#p,

then for every i there is a natural isomorphism

HY(X, F)~ H™P(Y, RP7,F).
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Using the preceding two lemmas and the theorem of Leray, we shall now
complete the proof of (3.5.1). By (ii) of (3.5.2) and (i) of (3.5.4), we have

R, FP — 8, (E*)  for ¢=0,
* 0 for ¢ # 0.

By (3.5.5), we have a natural isomorphism
(3.5.6) HY(M, QP(E*)) =~ H1(P(E), FP).

Take a Stein open cover {U;} of M such that each E|y, is a product.
Let {V;} be the open cover of P(E) defined by V; = 7=1(U;). Then (3.5.4)
means that {V;} is a Leray covering for the sheaves FP and QP(L(E*)) so that
H*(P(E), FP) and H*(P(E), Q(L(E)*)) can be calculated using the open
cover {V;}. From (i) of (3.5.2) we obtain an isomorphism

(3.5.7) HYP(E), FP)~ HY(P(E), QP(L(E)")).
Composing the two isomorphisms (3.5.6) and (3.5.7) we obtain (3.5.1). Q.E.D.

We remark that the isomorphism (3.5.6) generalizes as follows. Let W be
any holomorphic vector bundle over M and let S* E* denote the k-th symmetric
tensor power of E*. Replacing APT*M by W, E* by S¥E*, and L(E)* by L(E)**
in the proofs of (ii) of (3.5.2) and (i) of (3.5.4), we obtain a natural isomorphism
(see Bott [20], Kobayashi-Ochiai [76]):

(3.5.8) HYM,Q°(W @ S¥(E*)) ~ HY(P(E), Q°(7*W ® L(E)*")).

We define negativity of a vector bundle F by negativity of the line bundle
L(E). Thus, we say that a holomorphic vector bundle E over M is negative
(resp. semi-negative of rank = k) if the first Chern class ¢1(L(E)) of the line
bundle L(E) satisfies ¢1(L(E)) < 0 (resp. ¢1(L(E)) £ 0 with rank ¢; (L(E)) 2
kE +r —1) in the sense of Section 3.3. We say that E is positive (resp. semi-
positive of rank 2 k) if its dual E* is negative (resp. semi-negative of rank = k).
The extra 7 — 1 in the definition of rank comes from the fact that ¢;(L(E)) is
always negative in the direction of fibres which have dimension r — 1; this point
will be clarified in the next section.

Theorem 3.5.9 Let E be a holomorphic vector bundle of rank r over a compact
Kdhler manifold of dimension n. If it is semi-negative of rank = k, then

HYM, QP(E)) =0 for p+q<k—r.

Proof We have

HY(M, Q/(E)) ~ H"9(M, Q"""(E*)) ~ H*~(P(E), @"~"(L(E)"))
~ H™ 7 (P(E), QP7HL(E))),

where ~ indicates the Serre duality and = is the isomorphism given by (3.5.1).
Now the theorem follows from the vanishing theorem (3.3.4). Q.E.D.
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Corollary 3.5.10 If E is a negative holomorphic vector bundle of rank r over
a compact complex manifold M of dimension n, then

HI(M;QP(E))=0 for p+q<n—r.

Corollary 3.5.11 Let E be a holomorphic vector bundle of rank r over a com-
pact Kahler manifold M of dimension n. If it is semi-positive of rank 2 k,
then

HYM;QP(E) =0 for p+qg22n—k-+r.

Proof This follows from (3.5.9) and the Serre duality theorem (3.2.50).
Q.E.D.

Corollary 3.5.12 If E is a positive holomorphic vector bundle of rank r over
a compact complex manifold M of dimension n, then

HI(M;QP(E))=0 for p+qZ=n—+r.

3.6 Negativity and positivity of vector bundles

In Sections 3.3 and 3.5 we defined the concepts of negativity and positivity
for line bundles and vector bundles. In this section we reexamine these concepts.

Let (F, h) be an Hermitian line bundle over a complex manifold M. Writing
iL({“) for h(¢, &), we consider h as a function on F satisfying

>

(§) >0 for every nonzero & € F,

(3.6.1) R R
h(c€) = |c|*h(€) for ceC, &€ F.

Conversely, a function h satisfying (3.6.1) defines an Hermitian structure in F'.
We recall that the first Chern class ¢; (F') may be represented by (cf. (2.2.22))

_ —1 1" g1 _ 1 e’ B
(3.6.2) n=5—d'dlogH = —— > R,zdz" ndz".

(Since we are in the line bundle case, H is given by h(s, s) for a non-vanishing
local holomorphic section s of F'.)
Proposition 3.6.3 Let (F, h) be an Hermitian line bundle over M. Then v, is
negative, i.e., the curvature (RQB) is negative definite if and only if the function
h on F is strongly plurisubharmonic outside of the zero section of F.
We recall that a smooth real function on a complex manifold is said to be
strongly plurisubharmonic if its complex Hessian is positive definite everywhere.
Proof We fix a point xg in M. To compare the curvature (Raﬁ) at zy and

the complex Hessian of & at a point in the fibre Fy,, it is most convenient to
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use a normal holomorphic local frame field s at zo (see (1.4.19)) and (1.4.20)).
Since we are in the line bundle case, this simply means that we choose s such
that H =1 and dH = 0 at zg. Then

d'dlogH =d'dH at z.

To calculate the complex Hessian of ﬁ, let U be a small neighborhood of xg
where s is defined and let F|y =~ U x C be the trivialization using s. Thus,
(z, A) € U x C corresponds to A - s(z) € F,, and

h(X-s(x)) = H(x) M.
Hence the complex Hessian of h at & = (9, Ao) € U x C is given by
(d'd"h)eo = (d'd"H)zyAoAo + H(wo)(dX A dX) o

This shows that the complex Hessian of his positive definite at & if and only if
the complex Hessian of H is positive definite at z. From (3.6.2) it is clear that
the complex Hessian of H is positive definite at g if and only if the curvature
(R,3) is negative definite at zo. Q.E.D.

For € > 0, let
Ve={¢&€ Fih(é) < e}

If the curvature of h is negative, h is strongly plurisubharmonic outside of the
zero section of F' and V. is a strongly pseudoconvex neighborhood of the zero
section in F'.

Conversely, suppose that there exist a neighborhood V of the zero section
with smooth boundary 9V which is stable under multiplication by e®,t € R,
and a smooth strongly plurisubharmonic function f defined in a neighborhood
W of OV in F such that VN W = {£& € W; f(§) < 1}. Replacing f by the
function

27
L7 peteyar

2T 0

which is also strongly plurisubharmonic in a neighborhood of V', we may as-
sume that f(e®®¢) = f(£). Write each £ € F as € = A\, where A € C and
n € OV. (It is clear that |A| is uniquely determined and 7 is unique up to a
multiplicative factor e, ¢ € R.) Then define a function hon F by setting

Then h satisfies (3.6.1) and comes from an Hermitian structure h in F. As
easily seen, h is strongly plurisubharmonic outside of the zero section.
We have established
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Proposition 3.6.4 Let ' be a holomorphic line bundle over a compact complex
manifold M. Then ¢ (F) is negative if and only if there exist a neighborhood
V' of the zero section in F with smooth boundary OV which is stable under

multiplication by e, t € R, and a smooth strongly plurisubharmonic function
f defined in a neighborhood W of OV such that

VoW ={¢eW;f() <1}.

This means that ¢ (F') is negative if and only if the zero section of F' has a
strongly pseudoconvex neighborhood in F. It follows furthermore that ¢; (F') is
negative if and only if the zero section of F' can be collapsed (i.e., blown down)
to a point to yield a complex analytic variety, the point coming from the zero
section being possibly an isolated singular point, see Grauert [35].

We shall now consider a holomorphic vector bundle E over M. We recall (see
Section 3.4) that the tautological line bundle L(E) over P(FE) is a subbundle of
the pull-back bundle p*E, where p : P(E) — M. The natural map p : p*E —
E restricted to L(E) gives a map

p:L(E)— E

which is biholomorphic outside of the zero sections of L(E) and E and col-
lapses the zero section of L(FE) (identified with P(FE)) to the zero section of E
(identified with M). In summary, we have the following diagram:

LE)c p'E L~ E

L

P(E)—2—~ M.
In Section 3.5 we defined F to be negative if the line bundle L(E) is negative,
i.e., ¢1(L(E)) is negative.
Since p : L(F) — E is biholomorphic outside of the zero sections, (3.6.4)
generalizes immediately to E. Applied to L(E), (3.6.4) yields the following

Proposition 3.6.5 Let E be a holomorphic vector bundle over a compact com-
plex manifold M. Then E is negative if and only if there exist a neighborhood
V' of the zero section in E with smooth boundary OV which is stable under the
multiplication by e™,t € R, and a smooth strongly plurisubharmonic function f
defined in a neighborhood W of OV such that

VW ={{eW; () <1}

Grauert [35] uses the existence of a strongly pseudoconvex neighborhood of
the zero section in E as the definition of negativity of E.

The map p : L(E) — E leads us to the following definition. A Finsler
structure f in F is a smooth positive function defined outside of the zero section
of F such that

(3.6.6) FOAE) = f(OM for nonzero A€ C, (€ E.
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If we set h = f o p, then h is a function on L(F) satisfying (3.6.1). Conversely,
every function h on L(E) satisfying (3.6.1) arises from a Finsler structure f
in E. Thus, there is a natural one-to-one correspondence between the Finsler
structures in F and the Hermitian structures in L(E).

From (3.6.3) we obtain

Proposition 3.6.7 A holomorphic vector bundle E is negative if and only if it
admits a Finsler structure f which is strongly plurisubharmonic on E outside
of the zero section.

In Kobayashi [67] it is shown that if f is strongly plurisubharmonic, then the
Finsler connection can be defined and its curvature is negative. Although there
is a natural correspondence between the Finsler structures in F with negative
curvature and the Hermitian structures in L(E) with negative curvature, it is
much harder to deal with Finsler structures than with Hermitian structures.

In order to discuss semi-negative bundles , we need the concept of g-pseudo-
convexity. A real smooth function f on an N-dimensional complex manifold is
said to be strongly g-pseudoconvez if its complex Hessian has at least N — ¢+ 1
positive eigenvalues at every point. An N-dimensional complex manifold V' is
said to be strongly q-pseudoconvex if there is a real smooth function f such that

(1) f is strongly g-pseudoconvex outside of a compact subset K of V,
(2) {x € V; f(x) < ¢} is relatively compact for every c.

If (R,3) in (3.6.3) is negative semi-definite of rank = k, then the function h
on F is strongly (n + 1 — k)-pseudoconvex outside of its zero section, and vice-
versa. Hence a holomorphic vector bundle F is semi-negative of rank = k if and
only if it admits a Finsler structure f which is strongly (n+1— k)-pseudoconvex
outside of its zero section. Thus,

Proposition 3.6.8 If a holomorphic vector bundle E over a compact complex
manifold M is semi-negative of rank 2 k, then E is a strongly (n+1—k)-pseudo-
convex complex mamfold.

Andreotti and Grauert [2] proved the following finiteness theorem.

Theorem 3.6.9 If V is a strongly q-pseudoconvex manifold and F is a coher-
ent analytic sheaf over V', then

dime HY(V, F) <oo for i2>q.
In particular,

Corollary 3.6.10 If a holomorphic vector bundle E over a compact complex
manifold M is semi-negative of rank 2 k, then, for any coherent sheaf F on F,

dime HY(E, F) <oo for i=n+1—k.
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From this they derived the following vanishing theorem.

Corollary 3.6.11 Under the same assumption as in (3.6.10), for any holomor-
phic vector bundle W on M, we have

HY (M, Q%S"E@W))=0 for i<k—1 and m = my,

where S™E denotes the m-th symmetric tensor power of E and my is a positive
integer which depends on E and W.

The case k = n will be proved later (see (3.6.26)).

Now, going back to an Hermitian structure h in E, we shall relate the cur-
vature of h to the curvature of the naturally induced Hermitian structure in the
tautological line bundle L(E). We fix a point z¢ in M and choose a normal
holomorphic local frame field s = (s1, ---, ;) as defined in (1.4.19). With re-
spect to a local coordinate system z!,--- | 2™ around o, the curvature of (E, h)

is then given by (see (1.4.16))
(3612) RanE = —8a83hjg at Zo-

Let &y be a unit vector in the fibre E,, and Xo = [£o] the point of P(E) repre-
sented by &y. In order to calculate the curvature of (L(E), h) at Xy, we apply
a suitable unitary transformation to s = (s1, -+, s,) so that & = s,.(xp). Ex-
pressing a variable point £ of F as £ = Zgjsj, we take(z!, -, 2™ €L €T
as a localcoordinate system in E. Since L(FE) coincides with E outside of their
zero sections, (z!,---,2"; &1 ... [ €7) may be used also as a local coordinate
system for L(E) outside of its zero section. From the way we constructed s, we
have

fl=...=¢1=0 and ¢ = at .
Setting
(3.6.13) ut =4/, a=1,---,r—1,
we take (2!, .-+, 2%ul, .-+, u"1) as a local coordinate system around X, =

[€0] in P(E). Then the map ¢t : P(E) — L(E) given by
(3.6.14) t:(2h oo, 2ty oo WY — (&Y -, 2t o W)

is a normal holomorphic local frame field of L(F) at Xy. With respect to ¢, the
Hermitian structure of L(E) is given by the following function:

(3.6.15) H=> hg(2)u"@ +>  har(2)u® + > _ hg(2)@" + hew(2).

Since s and t are normal holomorphic local frame fields, the curvature compo-
nents of H at X, are given by the following Hermitian matrix of order n+r—1.
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_82 log H _62 log H B 0’H B 0’H
8220‘82'3 82z“8ﬂb — 8229zP dzoou?
_0%logH  J%logH _0*H 0’H
duadz? ouedn® / x, ouedz?  ouednt/ x,
2
B . 0 hrr 0
= 82297°
0 _5ab

Xo

We can write this more invariantly, i.e., without singling out the last coordinate
£ in fact, we have

*hyy _ i g
T om0 ) (Z R7,58"¢ ) xo-

Hence, we set
ifj a—,@ _ 7 _ @ a
(3.6.16) R(,, Z2) =Y Rz,58€2°7° for &= &, Z=)Y 7 5o

and we say that the curvature R of (E, h) is semi-negative of rank 2 k if, for
each fixed ¢ # 0, R(§, Z) is negative semi-definite of rank 2= k as an Hermitian
form in Z. Then the following is clear.

Theorem 3.6.17 Let (E, h) be an Hermitian vector bundle of rank r over M.

(1) The curvature of (E, h) is semi-negative of rank 2 k if and only if the cur-
vature of the corresponding Hermitian structure in L(E) is semi-negative
of rank 2 k+r — 1.

(2) If the curvature of (E, h) is semi-negative of rank 2 k, then E is semi-
negative of rank 2 k.

(3) If the curvature of (E, h) is semi-negative of rank 2 k, then
HY(M, QP(E))=0 for p+q<k—m,
provided that M is compact Kdhler.

We note that the extra » — 1 for the rank of the curvature of L(E) in (1)
comes from (—d,p) in the expression for the curvature given above. This explains
the definition of “semi-negative of rank = k” given in Section 3.5, and (2) is
immediate from that definition. Finally, (3) follows from (3.5.9).

We cannot claim the converse of (2); we can show only that if F is semi-
negative of rank = k, then it admits a Finsler structure whose curvature is
semi-negative of rank 2 k.

Let (E, h) be an Hermitian vector bundle and (E*, h*) the dual Hermitian
vector bundle. Fixing a point  of M, let s = (sy, -+, s,) be a normal
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holomorphic local frame field of E at z. Let t = (t!, ---, ") be the dual frame
field for E*. Then t is also normal. If h is given by (hﬁ) with respect to s, then

h* is given by the inverse matrix (hﬁ) with respect to t, i.e., thjhﬁ = ok,
Hence,

thki 92h —
3.6.18 — | + ik =0.
( ) <8z‘18z5 ) . <8z‘18z5 ) .

We say that the curvature R of (E, h) is semi-positive of rank = k if, for each
fixed £ # 0, R(§, Z) is positive semi-definite of rank = & as an Hermitian form
in Z. We have

Theorem 3.6.19 Let (E, h) be an Hermitian vector bundle of rank r over M.

(1) The curvature of (E, h) is semi-positive of rank 2 k if and only if the
curvature of the dual Hermitian vector bundle (E*, h*) is semi-negative
of rank 2 k.

(2) If the curvature of (E, h) is semi-positive of rank 2 k, then E is semi-
positive of rank 2 k.

(3) If the curvature of (E, h) is semi-positive of rank = k, then
HYM, QP(E)=0 for p+qg=2n—Fk+r.
provided that M is compact Kahler.

Proof (1) follows from (3.6.18); (2) from (1); and (3) from (2) and (3.5.11).
Q.E.D.

Before we prove more vanishing theorems and discuss the algebraic notion
of ampleness, we have to relate the canonical line bundle Kp gy of P(E) to the
canonical line bundle K,; of M.

Proposition 3.6.20 Let E be a holomorphic vector bundle of rank r over M.
Then
KP(E) = L(E)T . W*(K]V[ det E*) s

where det E* = A"E* and 7 : P(E) — M is the projection.

Proof Let Tp = T(P(E)), Ty = 7*TM and Tr be the subbundle of Tp
consisting of vectors tangent to fibres of the fibration = : P(F) — M. Then
we have an obvious exact sequence:

0—Tp —Tp — Ty — 0.

Hence,
det Tp = (det Tr)(det Thy).
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So the problem is reduced to showing
(det Tr) ™' = L(E)" - 7*(det E).
In other words, we have to construct a non-degenerate pairing
p:detTp x L(E)" — n*(det E).

Let u€ P(E)and ( = Zo A+~ ANZ, € N""'Tr = det Tk, where Z; € (Tr),. Let
x = w(u) and represent u by a nonzero element e; € E,. Since E, is a vector
space, we identify T, (E,) with E, in a natural manner. Let ey, - - ,e, €
E, be elements which, considered as elements in T, (F,), are mapped onto
Zy, -+, Zy € (Tr), by the projection E, — {0} — P(E),. Let ¢ € L(FE)!, and
write

p=ae1® --Qe1, (e1:7 times), acC.
We define
w(C, v) =aer A--- Nep.

It is easy to verify that p is well-defined, independently of all the choices in-
volved, and that it is non-degenerate. Q.E.D.

Before we start the proof of the next vanishing theorem, we point out the
following trivial fact.

Proposition 3.6.21 If E is a holomorphic vector bundle and F' is a holomor-
phic line bundle over M, then

P(F™ @ E) = P(E) and L(F" ® E) = 7*F" @ L(E) for m€ Z.

We called a holomorphic vector bundle E positive or negative if it is semi-
positive or semi-negative of maximal rank n. This means that a holomorphic line
bundle F' is negative if its Chern class ¢1 (F) is represented by a negative definite
closed real (1,1)-form and that a holomorphic vector bundle FE is negative if
L(FE) is negative.

Theorem 3.6.22 Given a positive holomorphic line bundle F' and an arbitrary
holomorphic vector bundle W over a compact complex manifold M, there is a
positive integer mqg such that

HYM, QX F"@W))=0 for ¢=1 and m = my.

Proof For the sake of convenience, we set F = W*and N =n+r—-1=
dim P(E). Then

(3.6.23)

(
= HY(P(E), Q°(x*F™ - L(E)™"))
= HI(P(E), OV (Kplp -7 F™ - L(E)™))
= H1(P(E), QY (7" (K, - (det E) - F™) - L(E) ")),
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where the second isomorphism is by (3.5.1) and (3.6.21), the third makes use of
Qg(E) = Q%K p(g)) and the fourth is by (3.6.20).

We calculate the curvature of the line bundle 7*(K},'-(det E)-F™)-L(E)~"~!
as in the proof of (3.6.17), (see calculation following (3.6.15)), and we claim that
it is positive definite if m is sufficiently large. In fact,

curvature of 7*(K3,' - (det E)) = <0 8)

curvature of 7*(F™) = (mlgaﬁ 8)

curvature of L(E)™""! = (0 (r —Sl)I) ,

where * stands for an (n x n)-matrix, I is the identity matrix of order r — 1 and
(R,5) is the curvature matrix for F'. Now we see our assertion by adding these
three matrices.

Applying (3.3.8) to the last term of (3.6.23), we see that our cohomology
vanishes for g+ N 2 2N — N + 1, i.e., for ¢ 2 1. Q.E.D.

Corollary 3.6.24 Given a negative holomorphic line bundle F' and an arbitrary
holomorphic vector bundle W over a compact complex manifold M, there is a
positive integer mqg such that

HYM, QX F"@W))=0 for ¢<n—1 and m=my.
Proof By the Serre duality theorem, we have

HY(M, QUF"@W))~ H" UM, Q"(F"™ @ W"))
=H" UM, QF ™ Ky W)).

Apply (3.6.22) to the last term. Q.E.D.

Now we extend (3.6.22) to vector bundles.

Theorem 3.6.25 Given a positive holomorphic vector bundle E and an arbi-
trary holomorphic vector bundle W over a compact complex manifold M, there
s a positive integer mqg such that

HYM, QU S"E@W))=0 for ¢=1 and m =my.
Proof By (3.5.8), we have
HYM, Q°(S"E®@W)) = HY(P(E*), Q" (L(E*)™"™ @ m*W)).

Since E is positive, L(E*)~! is positive. Apply (3.6.22) to the right hand side.
Q.ED.
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Corollary 3.6.26 Given a negative holomorphic vector bundle E and an arbi-
trary holomorphic vector bundle W over a compact complex manifold M, there
s a positive integer mqg such that

HYM, QX(ST"E@W))=0 for ¢<n—1 and m > my.

The proof is exactly the same as that of (3.6.24).

We shall now explain the fact that a holomorphic vector bundle is positive if
and only if it is ample in the sense of algebraic geometry. Let F' be a holomorphic
line bundle over a compact complex manifold M. Let V = T'(M, F) be the space
of holomorphic sections of F. To each point x of M, we assign the subspace
V(z) of V consisting of sections vanishing at x. Since F is a line bundle, either
V(z) =V or V(x) is a hyperplane of V. The latter occurs if and only if there
is a section which does not vanish at x. Assuming the latter case for every =,
we define a mapping

p: M — P(V"),

where P(V*) is the projective space of hyperplanes in V| i.e., lines in the dual
space V*, by setting

p(z)=V(x) e P(V*), ze€ M.

Let sqg, s1,- -+, sy be a basis for V. Since the fibre F}, is 1-dimensional, the ratio
(so(x) :s1(x): -+ : sn(x)) is well defined as a point of PyC. Then ¢ is given
also by

o(z) = (so(x) : s1(x) : -+ : sy(x)) € PyC.

If this mapping ¢ gives an imbedding of M into P(V*), we say that F' is very
ample. A line bundle F is said to be ample if there is a positive integer m such
that F™ is very ample.,

Let L = L(V*) be the tautological line bundle over P(V*); it is a line
subbundle of the product vector bundle P(V*) x V*. If the mapping ¢ : M —
P(V*) is defined, then

(3.6.27) L' =F.
To prove (3.6.27), we start with the dual pairing ( , ):
V*xV —C.
Since L, C V*, restricting the pairing to L, X V', we obtain a bilinear mapping
(&, 0)e L, xV — (£ o) eC.

We claim that (£, 0) depends only on & and o(x). In other words, if o/ € V is
another section of F' such that ¢'(x) = o(z), then (£,0’) = (£, 0). In fact, since
o' —o € V(x)and L, C V* is, by definition, the annihilator of V(x), we obtain
(¢,0" — o) = 0. Thus we have a dual pairing

w:Ly x F, — C
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given by
u(§, ofx)) = (&, o).

This proves (3.6.27).

We know (see (3.4.3)) that the line bundle L over P(V*) has negative cur-
vature. Hence, L~! has positive curvature. Its pull-back F' = ¢*L~! has also
positive curvature if ¢ is an imbedding. We have shown that if F' is very ample,
then F' is positive. If F' is ample, then F™ is very ample and hence positive for
some m > 0. Then F itself is positive. This shows that every ample line bundle
is positive.

Theorem 3.6.28 A holomorphic line bundle F over a compact complex man-
ifold M is positive if and only if it is ample.

The non-trivial part of (3.6.28), which states that every positive line bundle
is ample, is known as Kodaira’s imbedding theorem. For the proof, see, for
example, Kodaira-Morrow [112] or Griffiths-Harris [38].

A holomorphic vector bundle E over M is said to be ample if the line bundle
L(E*)~! over P(E*) is ample. From the definition of positivity for £ and from
(3.6.28) we see immediately the following

Corollary 3.6.29 A holomorphic vector bundle E over a compact complex
manifold M is positive if and only if it is ample.

We conclude this section by strengthening (3.6.25) as follows:

Theorem 3.6.30 Let E be a positive holomorphic vector bundle over a compact
complex manifold M. Then, given a coherent analytic sheaf F over M, there is
a positive integer mg such that

HYM, Q°(ST"E)®@ F)=0 for ¢=1 and m = mo.

Proof Without starting a discussion on coherent analytic sheaves (which
will be studied in Chapter 5), we shall only outline the way we derive (3.6.30)
from (3.6.25). Since E is positive, the line bundle det(E) = A" E is positive. By
the imbedding theorem of Kodaira, M is projective algebraic. Given a coherent
analytic sheaf F, there is an exact sequence

(3.6.31) 0—e&ly . e el r o

where &; are all locally free coherent analytic sheaves, i.e., they are of the form
Q%(E;) for some holomorphic vector bundles E;, (see Borel-Serre [19]); the local
version of this will be proved in Chapter 5. Set

F; = Image f; = Kernel f;
so that

(3.6.32) 0—F, —& — Fia —0, 1=1,--- 5,
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are all exact, where Fyp = F and Fs = &,. Since E is positive,

HY (M, Q°(S"E)®&))=0 for ¢=1 and m =my

by (3.6.25). Hence, the long cohomology exact sequence derived from (3.6.32)
gives isomorphisms

HYM, Q°(S™E)® Fi_1) ~ H™Y (M, Q°(S"EY® F;), i=1, -, s.
Hence,

HI(M, Q°(S™E)® F) = HI"Y(M, Q°(S™E)® F) =
o= HITS(M, Q°%S™E)® &) = 0. Q.E.D.

There are several equivalent definitions of ampleness by Grothendieck, see
Hartshorne [46], [47].



Chapter 4

Einstein-Hermitian vector
bundles

Given an Hermitian vector bundle (E, h) over a compact Kéhler manifold
(M, g), we have a field of endomorphisms K of E whose components are given
by K; = Z g*P Réaﬁ' This field, which we call the mean curvature, played
an important role in vanishing theorems for holomorphic sections, (see Section
3.1 of Chapter 3). In this chapter we consider the Einstein condition, i.e., the
condition that K be a scalar multiple of the identity endomorphism of E. When
the Einstein condition is satisfied, F is called an Einstein-Hermitian vector
bundle. In Section 4.1 we prove some basic properties of Einstein-Hermitian
vector bundles. The reader who is familiar with stable vector bundles will
recognize in many of the propositions proven in Section 4.1 a close parallel
between the Einstein condition and the stability condition. Much of the results
in Section 4.2 on infinitesimal deformations of Einstein-Hermitian structures
will be superceded in Chapters 6 and 7.

In Section 4.3 we shall see that an Einstein-Hermitian structure arises as the
minimum of a certain functional. The reader familiar with Yang-Mills theory
will immediately see a close relationship between Einstein-Hermitian structure
and Yang-Mills connections. These close ties with stable bundles and Yang-Mills
connections will become more apparent in subsequent chapters.

In Section 4.4 we prove Liubke’s inequality for Einstein-Hermitian vector
bundles. This generalizes Bogomolov’s inequality for seini-stable bundles over
algebraic surfaces and is analogous to the inequality of Chen-Ogiue for Einstein-
Kéhler manifolds.

In Section 4.5 we consider the concept of approximate Einstein-Hermitian
structure, ( already implicit in Donaldson’ s work but pointed out explicitlyby
Mabuchi). As we will see in Chapter 6, this is a differential geometric counter-
part of the notion of semistability in algebraic geometry.

Sections 4.6 and 4.7 give some examples of Einstein-Hermitian vector bun-
dles. The results in these two sections will not be used in later chapters.

91
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4.1 Einstein condition

Throughout this section, (E, h) will denote a holomorphic Hermitian vector
bundle of rank 7 over an Hermitian manifold (M, g) of dimension n. We recall
(see 1.4.9) that the Hermitian connection D is a unique connection in E such
that

Dh=0 and D"=4d".

Its curvature R= Do D = D'o D" 4+ D" oD’ is a (1,1)-form with values in the
bundle End (E). If s = (s1, -+, ;) is a local frame field for E, the curvature
form Q = (%) with respect to s is given by (see (1.1.11) and (1.4.15))

R(sj) =) Qsi, Q=3 R zdz"rdz’
in terms of a local coordinate system (2!, ---, 2") of M. As before, we write

hig = h(si; ),

As in (3.1.6) we define the mean curvature K of (E, h) by

(4.1.1) Kj=Y g"'R 5 Kg=Y hgK;.

Then (K}) (resp. (K 7)) defines an endomorphism K (resp. an Hermitian form

K) in E. By means of the operator A defined in (3.2.14) we can define the mean
curvature K by

(4.1.2) K =iAR,
or equivalently by (see (3.1.18))
(4.1.3) Ko" =inRA " .

As in (3.1.37), we say that (E, h) satisfies the weak Einstein condition (with
factor ) if

K =plp, ie, K; = @5},

where ¢ is a real function defined on M. If ¢ is a constant, we say that
(E, h) satisfies the Finstein condition. Then we say that (E, h) is an Finstein-
Hermitian vector bundle over (M, g).

We list some simple consequences of the Einstein condition.

Proposition 4.1.4 (1) Every Hermitian line bundle (E, h) over a complex
manifold M satisfies the weak Einstein condition (with respect to any Her-
mitian metric g on M).
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(2) If (E, h) over (M, g) salisfies the (weak) Einstein condition with factor
©, then the dual bundle (E*, h*) satisfies (weak) Einstein condition with
factor —¢.

(3) If (E1, h1) and (E2, hg) over (M, g) satisfy the (weak) Einstein condi-
tion with factor w1 and s, respectively, then their tensor product (E; ®
Es, hi ® ha) satisfies the (weak) FEinstein condition with factor v1 + @a.

(4) The Whitney sum (E1®FE>, h1®hs) satisfies the (weak) Einstein condition
with factor ¢ if and only if both summands (Ey1, hy) and (E2, h2) satisfy
the (weak) Einstein condition with the same factor .

Proof
(1) Trivial.
(2) This follows from (1.5.5) and (1.5.6).

(3) By (1.5.13), the mean curvature K of E; ® E5 can be expressed in terms
of the mean curvatures Ky and K5 of Ey and FE, as follows:

K=Ki®L+IL®K,,
where I} and I> denote the identity endomorphisms of F; and Es, respec-
tively.
(4) By (1.5.12), the mean curvature K of E; @ Es is given by
K=K ¢ Ks.
This implies (4). Q.E.D.

Proposition 4.1.5 Let (E, h) over (M, g) satisfy the (weak) FEinstein con-
dition with factor ¢. Let p : GL(r;C) — GL(N;C) be a representation such
that the induced Lie algebra representation p’ : gl(r; C) — gl(INV;C) sends the
identity I, € gl(r;C) to cIy € gl(N;C) for some ¢ € C. Let E*) be the vector
bundle of rank N induced by E and p, and let h?) be the induced Hermitian
structure in E1P). Then (E®) | h(P)) satisfies the (weak) Einstein condition with
factor cp.

Proof The Lie algebra homomorphism p’ induces a bundle homomorphism
¢ : End(E) — End(E®)) in a natural way. The curvature R € AV (End(E))
of E and the curvature R € AMY(End(E®)) of E(®) are related by

RP) = (R).

Their mean curvatures K € A°(End(F)) and K(*) € A°(End(E(®))) are related
by
K — o (K).

If K = ¢Ig, then p/(K) = cplgr(p). Q.E.D.

The following corollary may be derived from (4.1.4) as well as from (4.1.5).
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Corollary 4.1.6 If (E, h) over (M, g) satisfies the (weak) FEinstein condition
with factor ¢, then

(1) the tensor bundle E®P @ E*®4 with the induced Hermitian structure sat-
isfies the (weak) Einstein condition with factor (p — q)p;

(2) the symmetric tensor product SPE with the induced Hermitian structures
satisfies the (weak) Einstein condition with factor py;

(3) the eaterior power NPE with the induced Hermitian structure satisfies the
(weak) Einstein condition with factor py.

Let E; and E5 be holomorphic vector bundles over M. We denote a sheaf
homomorphism f : QY(E;) — Q°(Ejy), i.e., a holomorphic cross section of
Hom(E;, Es) simply by f: Ey — E5. A bundle homomorphism f : Fy — FE»
is a sheaf homomorphism which has a constant rank.

Proposition 4.1.7 Let (E1, h1) and (E2, ha) be Hermitian vector bundles over
a compact Hermitian manifold (M, g) satisfying the (weak) Einstein condition
with factor 1 and @2, respectively.

(1) If p2 < @1, then there is no nonzero sheaf homomorphism f : By — Es.

(2) Assume pa < ¢1. Then every sheaf homomorphism f : Ey — Fs is a
bundle homomorphism. If we set E{ = Kerf and E5 = Imf, then we have
direct sum decompositions

E,=E| & E/ and By = E}& EJ

as Hermitian vector bundles. The bundle isomorphism f : Ef — E)
sends the Hermitian connection of E| to the Hermitian connection of Ef.

Proof Let f: Ey — Es be a sheaf homomorphism. It is a holomorphic
section of the Hermitian vector bundle Hom(E;, E2) = Ef ® Es, which satisfies
the Weak Einstein condition with factor ¢o — @1, (see (4.1.4)). If o — 1 < 0,
then Hom(FE;, E») has no nonzero holomorphic sections by (3.1.9).

Assume @3 — 1 £ 0. Then every holomorphic section f of Hom(F;, Es) is
parallel with respect to the Hermitian connection of Hom(F;, FE) by (3.1.9).
Since f is parallel, the rank of f is constant and both Ej and F} are sub-
bundles of F; and FEs, respectively, invariant under the parallelism defined by
the Hermitian connections. By (1.4.18) we obtain the holomorphic orthogonal
decompositions above. The last assertion follows also from the fact that f is
parallel. Q.E.D.

Proposition 4.1.8 Let (E, h) over (M, g) satisfy the (weak) Einstein condi-
tion with factor ¢. If p: M — M is a unramified covering, then the pull-back
bundle (p*E, p*h) over (M, p*g) satisfies the (weak) Einstein condition with
factor p* .
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The proof is trivial.

Proposition 4.1.9 Let p : M —» M be a finite unramified covering of an
Hermitian manifold (M, g) and ¢ a real function on M. If an Hermitian vector
bundle (E,h) over (M, p*g) satisfies the (weak) Einstein condition with factor
p*p, then its direct image bundle (p*E,pJL) over (M, g) satisfies the (weak)

Einstein condition with factor .

Proof We recall that the direct image sheaf p, F is the sheaf over M defined
by the presheaf

U+ H(p~'U, E) for opensets U C M.

In our case where p is a covering projection, p.E is a vector bundle of rank
kr if r = rankF and if p : M — M is a k-fold covering. For z € M, let
p~1(x) ={x1, -+, zx}. Then we have a natural isomorphism

The Hermitian structure i in E induces an Hermitian inner product in (psE),.
Applying (4) of (4.1.4) locally, we obtain (4.1.9). Q.E.D.

Proposition 4.1.10 Let p : 71 (M) — U(r) be a representation of the funda-
mental group into the unitary group U(r). Let M be the universal covering space
of M. Then the natural Hermitian structure in E = M x ,C" is flat and hence
satisfies the Einstein condition with factor 0 (with respect to any Hermitian
metric g on M).

This is immediate from (1.4.21). More generally, we consider projectively
flat structures, (see (1.4.22)).

Proposition 4.1.11 Let (E, h) be a projectively flat vector bundle over M.
Then, for any Hermitian metric g on M,(E, h) satisfies the weak Finstein
condition.

Proof This follows from the fact (see (1.2.8)) that (E, h) is projectively
flat if and only if R = alp for some (1, 1)-form o Q.E.D.

4.2 Conformal invariance and deformations
Let (E, h) be an Hermitian vector bundle of rank r over an n-dimensional

Hermitian manifold (M, g). We denote the Kéhler form of (M, g) by ®. In
terms of a unitary frame field 61, --- 0™ for T*M, ® is given by

O=i) 0% AG".
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Proposition 4.2.1 If (E, h) over (M, g) satisfies the (weak) Einstein condi-
tion with factor ¢ and if M is compact, then

/ a1(E, A" = L/ ",
M 2nm M

a(E, h) = %tr(R)

where

is the first Chern form of (E, h).
Proof By (4.1.3),

in-trRA®" 1 = Ko™ = pIgd™ € AV (End(E)).
Taking the trace, we obtain
in-tr(R) A" = rpd™,
Q.E.D.

We remark that if (M, g) is a Kéhler manifold, the integral on the left hand
side of (4.2.1) depends only on the cohomology classes of ® and ¢;(FE). Hence,
in this case, the average of ¢ over M is determined by the cohomology classes
of ® and ¢ (F).

Let a be a real positive function on M, and consider a new Hermitian struc-
ture A’ = ah in E. Under the conformal change h — h/ = ah of the Hermitian
structure, the mean curvature K changes to K’ by the following formula (see
(3.1.29))

(4.2.2) K' =K +0O(loga)lg.
Hence,

Proposition 4.2.3 If (E, h) over (M, g) satisfies the weak Einstein condition
with factor ¢, then (E, h') with ' = ah satisfies the weak Einstein condition
with factor ¢’ = ¢ +O(loga).

Making use of (4.2.3) we prove

Proposition 4.2.4 If an Hermitian vector bundle (E, h) over a compact Kdhler
manifold (M, g) satisfies the weak Finstein condition with factor ¢, there is a
conformal change h — h' = ah such that (E, h') satisfies the Einstein con-
dition with a constant factor c. Such a conformal change is unique up to a
homothety.

Proof Let ¢ be the constant determined by

c/ @":/ pd",
M M
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the average of ¢ over M. By (4.2.3), the problem is reduced to showing that
given a function f(=c¢— ) on M such that

(4.2.5) / for =0,
M
there is a function u satisfying

(4.2.6) f =0

(Then a = e is the desired function). We know that (4.2.6) has a solution if
and only if f is orthogonal to all O-harmonic functions. Since M is compact,
a function is O-harmonic if and only if it is constant. Since (4.2.5) expresses
exactly the condition that f is orthogonal to the constant functions, (4.2.6) has
a solution. The last assertion about the uniqueness follows from the fact that a
O-harmonic function is constant. Q.E.D.

As we have already remarked above, the constant factor ¢ in (4.2.4) is de-
termined by

n—1 cr n
(4.2.7) /M a1 (E)AND =5 M<I>
and depends only on the cohomology classes of ® and ¢;(E).

We shall now consider deformations of an Hermitian structure h on a fized
holomorphic vector bundle E. Let h; be a l-parameter family of Hermitian
structures on E such that h = hg. We consider the infinitesimal deformation
induced by h;:

(428) v = atht|t:0.

We do our calculation using a fixed local holomorphic frame field s = (s1, -+, $;).
Let w; = (wf;) be the connection form h;. We set w = wp. Then

(4.2.9) > hygwi; =d'hy .

Differentiating (4.2.9) with respect to t at ¢ = 0, we obtain

1 _ i g,
§ :Uikwj + § :hikatwtj|t:0 =dvg,

which can be rewritten as

(4.2.10) > hgwisli—o = D'v .
Setting
(4.2.11) vi= Z hvzk%’

we can state (4.2.10) as follows:

(4.2.12) dywijli—0 = D'}
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We note that D’ v} should be regarded as (the components of) a section of
AY(End(E)). Applying D" = d" to (4.2.12), we obtain

(4.2.13) 0,2 |t—0 = D" D'v}.
With the usual tensor notation, we may write

(4.2.14) D'D'vi=—->" vl 5d2* Nz, where vl 5 = V5zVau;.

Then (4.2.13) can be written as follows:

i

(4.2.15) AR, Slimo = —v' 2.

Taking the trace of (4.2.15) with respect to g, we obtain

(4.2.16) O Kijli—0 = — Zgaﬁ §aﬁ~

We are now in a position to prove

Theorem 4.2.17 Let E be a holomorphic vector bundle over a compact Kahler
manifold (M, g). Let hy be a 1-parameter family of Hermitian structures in E
satisfying the Finstein condition (withfactorc). Then

(1) the infinitesimal deformation v = Ophy|i—o of h = hg is parallel with respect
to the Hermitian connection D defined by h;

(2) the infinitesimal deformation 0;D¢|i—o of D is zero.

Proof Since K; = cIg, we obtain 0;Kt|t—o = 0. From (4.2.16) we obtain

(4.2.18) S gl o=

Jaﬁ

Set
i i
va v},  where Vjo = Vavj

and use the following general formula (cf. (3.2.22)):
(Y fadz®) = =Y ¢*7f,5, where f,5 = Vz/a.
Then we obtain
J aB J
B harts) = = 5 gl + )

_ aB, i 0

- Z 9 vﬁavzﬁ

== Z gaﬁhlkhjm”jﬁa”imﬁ

— Z gaﬁhikhjmngaﬁmgg
= —|D"v|*.
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Integrating this over M, we obtain
(4.2.19) ‘/ | D'v||*®™ = 0.
M

Hence, D'v = 0. Since D”vﬁ = D'v;; = 0, we obtain also D"v = 0. The second
assertion follows from (4.2.12). Q.E.D.

According to (4.2.17), the space V}, of infinitesimal variations v of an Einstein-
Hermitian structure h within the space of Einstein-Hermitian structures consists
of Hermitian forms v = (vﬁ) on E which are parallel with respect to the Her-
mitian connection D of A, i.e.,

(4.2.20) Vi={v=(v3);Dv=0 and wvj; =70;}.

We shall show that every infinitesimal variations v € V} of an Einstein-
Hermitian structure h generates a l-parameter family of Einstein-Hermitian
structures h;. Set

(4.2.21) hy = h+ to.

If ¢ is sufficiently close to 0, h; remains positive definite and defines an Her-
mitian structure in E. Let D be the Hermitian connection defined by h. It is
characterized by the two properties:

Dh=0 and D"=4d".

Since Dv = 0, we have Dh; = 0. This means that D is also the Hermitian
connection of h;. It follows that the curvature R; of h; is independent of ¢
since Ry = D o D. Hence the mean curvature K; is also independent of ¢ and
K, = cIg. (This is, of course, consistent with (2) of (4.2.17).)

Whether an Hermitian structure h satisfies the Einstein condition or not,
we can still define the space V}, of parallel Hermitian forms v by (4.2.20). Let
U(z) denote the holonomy group of (E, h) with reference point © € M. Each
parallel form v € V}, defines a ¥(x)-invariant Hermitian form on the fibre F,,
and conversely, every ¥ (z)-invariant Hermitian form on E, extends by parallel
displacement to a unique element v of V},. It follows that if the holonomy group
U(z) is irreducible, i.e., leaves no proper subspace of E, invariant, then V}, is
1-dimensional and is spanned by h. More generally, let

(4.2.22) E,=E® 4+ EW 4 ... 4 EW

be the orthogonal decomposition of E, such that ¥(z) is trivial on EY and
irreducible on each of Eg(cl), cen 7Eg(gk). (Of course, EG(CO) may be trivial.) By
parallel displacement of (4.2.22) we obtain an orthogonal decomposition

(4.2.23) E=EO® g0 4...4 gk,
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By (1.4.18), the decomposition above is not only orthogonal but also holomor-
phic. It is clear that E(® is a product bundle as an Hermitian vector bundle.
Corresponding to the decomposition (4.2.23), we obtain the decomposition of
Vh:

(4.2.24) Vi =V 4 vy

where
dimV? =72 dimVY =... =dimVF =1

with 7 = rank (E(©).

In (4.2.17) we showed that an Einstein-Hermitian connection is rigid. In
Chapter 6 we shall see a stronger result. Namely, no holomorphic vector bun-
dle over a compact Kéahler manifold admits more than one Einstein-Hermitian
connection.

4.3 Critical Hermitian structures

We fix a holomorphic vector bundle E of rank r over a compact Kahler
manifold (M, g). Given an Hermitian structure h in E, we consider the function

(4.3.1) K| = W WK Ko = > KIK] = tr(K o K)

where K is the mean curvature of (E, h), (see (4.1.1)). Let ® denote the Kéhler
2-form of g. We consider the integral

(4.3.2) J(h) = %/M | K|2®"

as a functional on the space of Hermitian structures h in E. We shall study
critical points of this functional.
Let o be the scalar curvature of h defined by

(4.3.3) o= K=Y ¢"R ;=3 ¢"R,3

Let ¢ be a constant determined by

(4.3.4) rc/ " = / o®", (r =rankF).
M M

Then

(4.3.5) 0 < ||K —clg|* = |K|]? + rc* — 2co.

Integrating (4.3.5) and using (4.3.4), we obtain

(4.3.6) /M | K|2®" = rc? /M P = (/M aq>">2/<r/M @”).
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On the other hand, taking the trace of (4.1.3) we obtain

(4.3.7) / od" = er/ c1(B) A"
M M

Hence,

(4.3.8)  J(h) = %/M | K|?®" = 2 (nﬂ'/M c1(E) /\<1>"—1)2/<r/M @”).

where the equality holds if and only if we have the equality in (4.3.5), i.e., we
have K = cIg. In summary, we have

Theorem 4.3.9 The function J(h) is bounded below as in (4.3.8) by a constant
which depends only on c¢1(E) and the cohomology class of ®. Moreover, this
lower bound is attained by h if and only if h satisfies the Einstein condition
with constant factor c.

In order to study other critical points of J(h), let hy be a 1-parameter family
of Hermitian structures in E such that h = hg. Let D; = D} + d’ be the
Hermitian connection defined by h;. We write

(4.3.10) D, =D+ A4;, where A, € AYY(End(E)).

In terms of connection forms with respect to a holomorphic local frame field
s=(s1, -+, Sr), (4.3.10) may be written

(4.3.11) wi; = w! + aj;.

Applying d”’ to (4.3.11), we obtain
(4.3.12) O = +d aj;.

Let v be the infinitesimal variation of h defined by h; as in (4.2.8). Comparing
(4.3.11) with (4.2.12), we have

(4.3.13) dray;li—o = D'v}.

We define b;- by

(4.3.14) Ofajli—o = by with by = b’ d=".
Differentiating (4.3.12) with respect to ¢ at ¢t = 0, we obtain (see (4.2.15))

(4.3.15) O R

tjaghzo =~V 5 where Vo3 V5V o]

and (see (4.2.16))

(4.3.16) K jli—0 =~ g*Pvl 5.
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Taking the second derivative of (4.3.12) with respect to ¢ at ¢t = 0, we obtain

(4.3.17) O’R! b~ with b _ = Vb

tjaBlt=0 = ~Yj.5 joB Blja
and
(4.3.18) 07K} |1—o = Zgaﬁbzaﬁ

We shall calculate the first variation of J(h:). Using the general formula
(see (3.2.22))

§ (O fadz®) ==Y g°Pf.5. where f5=V5fa
and (4.3.16), we obtain

(4.3.19) O = Ou(tx( 0 Klemo = =23 0”0 5K
o :26’(ZU§Qdez +2290‘5 : KJ

Integrating (4.3.19) over M, we obtain
(4.3.20) OpJ (hy)|i—o = / > 9Pt KJ " = (D'v, D'K).
M

Theorem 4.3.21 For a fized holomorphic vector bundle E over a compact
Kahler manifold (M, g), an Hermitian structure h is a critical point of the
functional J if and only if K is parallel with respect to the Hermitian connec-
tion D defined by h.

Proof From (4.3.20) it is clear that if D'K = 0, then h is a critical point
of J. Conversely, if h is a critical point of J, consider h,;; = h;; + tK ;5 so that
v;7 = K;7. Then (4.3.20) implies (D'K, D'K) = 0. Hence, D'K = 0. Since K
is Hermitian, D" K = 0. Q.E.D.

Next, we shall calculate the second variation of J(h;). Using (4.3.16) and
(4.3.18) we obtain

(43.22) 92 J(he)lt=o = (9'D'v, &'D'v) + (&'b, K)
o = (0'D'v, §'D'v) + (b, D'K).

If h is critical, then D'K = 0 and the second variation is given by

(4.3.23) 02J(ht)|t=0 = (8'D'v, &' D'v),

which is clearly non-negative. If the second variation above is zero, then ¢’ D'v =
0 and

(4.3.24) (D'v, D'v) = (8'D'v, v) =0,

which implies D’v = 0. Since v is Hermitian, D'v = 0 implies D"v = 0 and
Dv = 0. We have shown



4.3. CRITICAL HERMITIAN STRUCTURES 103

Theorem 4.3.25 Let E be a holomorphic vector bundle over a compact Kahler
manifold (M, g). If h is a critical point of the functional J, then

index(h) = 0,
nullity (h) = dim V4,

where Vi, is the space of parallel Hermitian forms v = (vﬁ) m K.

If A is critical so that K is parallel, we can decompose E according to the
eigen-values of K. Decomposing E further using the holonomy group ¥(z) as in
Section 4.2, we obtain a holomorphic orthogonal decomposition (see (4.2.23)):

(4.3.26) E=F9Y+FE®D 4+...4 E®)
where ¥(z) acts trivially on EY and irreducibly on Efcl), e ,Eg(gk). Hence,

Theorem 4.3.27 Let E be a holomorphic vector bundle over a compact Kahler
manifold (M, g). Assume that h is a critical point of the functional J. Let

E=E® 4+ g0 4. ...4 gk

be the holomorphic and orthogonal decomposition of (E, h) obtained in (4.3.26).

Let hg,h1,- -+, hi be the restrictions of h to E®,EMW ... E®)  respectively.
Then (E©), hgy),(EM, hy),---,(E®) | hy) are all Einstein-Hermitian vector
bundles with constant factors, say 0,cy,- - , Cp.

Remark 4.3.28 Although we can consider another functional

1 n
10) =5 [ IR0
M
this differs from J(h) by a constant. In fact, we have

(4.3.29) I(h) = J(h) + 2r*n(n — 1) / (2¢2(E) — ¢1(E)*) A ™2,
M

This follows easily from the formula
n(n—1)) QU AQ A" = (|R|? — ||K|*)®"

which will be proved in (4.4.5) of the next section and from the formulas for

c1(E) and co(E) given in (2.2.14) and (2.2.15).

Considering J as a function on the space of Hermitian structures h in E, we
want to calculate its gradient field. Integrating (4.3.20) by parts, we obtain

(4.3.30) ;T (he)lt=0 = — /M PRV S
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We define an Hermitian form 0K on E by setting

afB aB
(4.3.31) (OK); ==Y v*V5VaKz(==> g°"Kz,3).
Then, (4.3.30) may be written as
(4.3.32) A J(he)le=o = (OK, v).

Since V' can be considered as a tangent vector to the space of Hermitian struc-
tures at h = hg, (4.3.30) can be written also as

(4.3.33) dJ(v) = (0K, v).

Thus, OK can be considered as the gradient vector field of J.

4.4 Chern classes of Einstein-Hermitian vector
bundles

Let (E, h) be an Hermitian vector bundle of rank r over a compact Hermitian
manifold (M, g) of dimension n. The main purpose here is to derive Liibke’s
integral inequality involving c¢;(E) and co(F). We shall first establish a few
general formulas without assuming the Einstein condition.

Throughout this section, we shall use local unitary frame fields s = (s1, -+, s;)
for (E, h) and 0, --. 0" for the cotangent bundle T*M rather than holo-
morphic ones. We write

o =V=1) 0*n0",

IRI* = IR 5° = ZIRWEI2

K| =D K =Y 1K =Y IR osl,
loll> = IRy5l* = ZIRMIQ,

0= Rig=> K=Y R

We shall use the following formula repeatedly:

—®" if a=f#y=4,
(441) -1 AT AOAT AT 2=  if a=d%£8=7,

0 otherwise.

This follows from the fact that 6* and 5)\ appear in pair in ®"2.
In (4.2.13) we introduced the closed 2k-form 7 = ¢ (E, h) representing the
k-th Chern class ci(F) of E. We shall now prove the following two formulas.

1

(4.4.2) (B, h)? A" 72 = T drZn(n—1)

(@ = llol*)®"
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1

(44.3) (B, A" 2 = ~ 8m2n(n—1)

(@ = lloll* = 1 K[> + | R|I*) 2"

Explicit expressions for ¢1(E, h) = 1 and co(E, h) = 72 in terms of the
curvature form Q = (€2}) are given in (2.2.14) and (4.2.15). Therefore it suffices
to prove the following two formulas.

(4.4.4) n(n—1)Y QA AS? = (0% —||p]*) "

(4.4.5) n(n—1) 3 QL AQI A2 = —(|K|? — |R|?)®"

Both (4.4.4) and (4.4.5) can be easily obtained by direct calculation using
(4.4.1). In fact,

nn—1)) UAYAL" 2 =nn-1)Y R3R; NG AOTAT A D2
== (RaaRyy — RayRya)®"
= (o~ [lp)*)2"
and
n(n—1)Y QUAUANS"?=n(n—1)> Rz zR, 50 A N AN AN
==Y (RiuaRjivs — RiosRjiva)®"
—(IK]* = [|R|*)@".

This completes the proofs of (4.4.2) and (4.4.3).
We need also the following inequality.

7‘||RH2 —lpl* 20, and the equality holds if and only if

— 5P _
aﬁ o R, 5.

(4.4.6)

To prove (4.4.6), we set
T 5 R]aﬁ T(sJ'RaE'

Then

0TI = Y IR 5 — 0 R,
2
2 2 2
=2 IR aﬁ| EDSILRTEED Bl E
=|IR 2_ - 2'
IR Tllpll

This establishes (4.4.6).
We are now in a position to prove the following inequality of Liibke [88].
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Theorem 4.4.7 Let (E, h) be an Hermitian vector bundle of rank r over a
compact Hermitian manifold (M, g) of dimension n with Kdihler form ®. If
(E, h) satisfies the weak Einstein condition, then

/ ((r = D)er(B, h)? —2res(E, h)}Ad"2 <0,
M

and the equality holds if and only if (E, h) is projectively flat (i.e., R;(; =
(1/7“)6;'-1%()@).

If (M, g) is Kéhler so that @ is closed, then the left hand side of the inequality
above depends only on the cohomology classes [®],¢q1(FE) and co(E). Thus,
together with (2.1.14), the inequality in (4.4.7) means

(14.8)  ca(End(E)) U™ 2 = {21 - co(E) — (r — Dea (B} U [8]" > 2 0.
If M is a compact complex surface (Kéhler or non-Kéhler), we obtain
(4.4.9) c2(End(E)) = 2 - e2(E) = (r = 1)er(E)* 2 0.

According to Bogomolov [17] (see also Gieseker [30]), (4.4.9) holds for any holo-
morphic semi-stable vector bundle over an algebraic surface. In Chapter 5 we
shall see relationship between the Einstein condition and stability.

Proof of (4.4.7) If (E, h) satisfies the weak Einstein condition with factor
p, then K; = 30(5; so that

K[> =re?, o=re.

Hence,

(4.4.10) r|K|? = o2.

Using (4.4.2), (4.4.3) and (4.4.6), we obtain

(= Der(2, W = 2rea(8, MIND"2 = i (o) = r| RI2)" <0,
4dm2n(n — 1)

Integrating this inequality over M, we obtain the desired inequality. The equal-
ity holds if and only if ||p||> — r||R||*> = 0. Hence, the second assertion of (4.4.7)
follows from (4.4.6). Q.E.D.

Using calculation done to prove (4.4.7), we shall prove the following

Theorem 4.4.11 Let (E, h) be an Hermitian vector bundle over a compact
Kahler manifold (M, g) of dimension n. If it satisfies the Einstein condition
and if c1(E) = 0 in H?>(M;R), then

/ c2(B)A®" % 20,
M

and the equality holds if and only if (E, h) is flat.
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Although (4.4.11) is a special case of (4.4.7), it is possible to derive (4.4.7)
by applying (4.4.11) to End(E), (cf. (2.1.14)).

Proof While the first part of (4.4.11) is immediate from (4.4.7), the second
half follows from the following

Lemma 4.4.12 Let (E, h) be an Hermitian vector bundle over a compact Her-
mitian manifold (M, g) of dimension n. Assume that it satisfies the Einstein
condition with constant factor ¢ and that

/ c1(E,h) A®" 1 =0 and / ci(E, h)> A®" 2 =0.
M M

Then
/ co(EB,h) A ®""2 20,
M

and the equality holds if and only if (E, h) is flat.

Proof We have only to show that the equality above implies the curvature
R =0. By (4.4.7) we know already that

. 1.
7 o 7 _

RjaE = ;5]-Raﬁ.

The problem is therefore reduced to showing p = 0. By (4.4.2), it is further

reduced to showing o = 0. Since h satisfies the Einstein condition, we have

o = rc. Hence, o is constant. On the other hand,

1
0:/ ca(E, h)mb”*lz—/ od".
M 2nm Sy

Hence, o0 = 0. Q.E.D.

Corollary 4.4.13 If an Hermitian vector bundle (E, h) over a compact Kdhler
manifold (M, g) satisfies the Einstein condition with constant factor ¢ and if
c1(E) =0 and c2(E) =0 in H*(M;R), then (E, h) is flat.

Specializing this to the tangent bundle, we obtain the following result of
Apte [3]. (See also Lascoux-Berger [83].)

Corollary 4.4.14 A compact Einstein-Kdhler manifold M satisfying c1(M) =
0 and co(M) =0 in H*(M;R) is flat.

The classical theorem of Bieberbach states that a compact flat Riemannian
manifold is covered by a Euclidean torus (see, for example, Kobayashi-Nomizu
[75]). Hence, a compact flat Kédhler manifold is covered by a complex Euclidean
torus.

We obtain from (4.4.14) and from Yau’s theorem (that every compact Kéhler
manifold with ¢; = 0 admits a Ricci-flat K&hler metric, Yau [171]) the following
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Corollary 4.4.15 A compact Kdihler manifold M satisfying c1(M) = 0 and
co(M) =0 in H*(M;R) is covered by a complex Fuclidean torus.

In the special case where (E, h) is the tangent bundle of a compact Kéhler
manifold, we know the following theorem of Chen-Ogiue [21] which is sharper
than (4.4.7). Actually, the proof of (4.4.7) above is modeled on the proof of
(4.4.16) below.

Theorem 4.4.16 Let (M, g) be a compact Einstein-Kdahler manifold of dimen-
ston n. Then

{(n-ci(M)? —2(n+1)ca(M)}AD"2 <0,
M
and the equality holds if and only if (M, g) is of constant holomorphic sectional

curvature.

Proof We denote ¢;(TM, g) by ¢;(M, g). We can apply formulas (4.4.2)
and (4.4.3) to ¢;(M, g) by setting E = TM and h = g. In the Kéhler case, we
have

Rijkm = ka}
so that
K5 =R;.
In particular,
IK]1* = ol

In the Einstein-Kéahler case, we have moreover
i 0
and hence
o? = n|| K|
From (4.4.2) and (4.4.3) we obtain

1

2 n—2 __
(4.4.17) a(M, g)*Ad" = = P

1K |*e",

1
4.4.1 M ot
( 8) 02( ) g) A 87T2’I7,(7’L _ 1)

(2(n + 1)ca(M, g) —ne (M, g)*)AP" 2

((n = 2)K[* + | R|*)®",

(4.4.19) ) )
= Tpzn(n 1)\ + DIRI 21K

Since 02 = n||K||2, we have
2
(n-+ DRI 20K = (0 + DRI - 202,

Hence, (4.4.16) follows from the following algebraic lemma which is valid for all
Kéhler manifolds.
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Lemma 4.4.20 For any Kdhler manifold M, we have always
25 2 o
(n+ IR 2 =02,

and the equality holds if and only if M is a space of constant holomorphic
sectional curvature.

Proof Set
o
T5m = Bijim — m(éijékm + OimOk;)-
Then )
20
T2 = |R|? - ——.
I = 1R - s

Since the condition that the holomorphic sectional curvature be constant is
expressed by T = 0, (4.4.20) follows from the equality above. Q.E.D.

4.5 Approximate Einstein-Hermitian structures

For simplicity we shall assume throughout this section that (M, g) is a
compact Kéhler manifold with Kéhler form ®. Let (E, h) be a holomorphic
Hermitian vector bundle over (M, g). Let K = K(h) be the mean curvature
of (E, h). Let ¢ be the (real) constant determined by (4.2.7); it is also the
average of (1/r)tr(K) over M. We know from (4.2.7) that ¢ depends only on
c1(E) and the cohomology class of ®, (and not on k). Since K is an Hermitian
endomorphism of (F, h), we can define the length |K — c¢Ig| by

(4.5.1) |K —clp|* = tr((K — clg) o (K — clg)).

We say that a holomorphic vector bundle £ admits an approximate Einstein-
Hermitian structure if for every positive €, there is an Hermitian structure h
such that

(4.5.2) Ml\?x |K(h) —clg| < e

We call h satisfying (4.5.2) an e- Einstein- Hermitian structure.
The proof of the following proposition is similar to those of (4.1.4) and
(4.1.6).

Proposition 4.5.3 (1) If E admits an approximate Einstein-Hermitian struc-
ture, so do the dual bundle E*, the tensor bundle E®P @ E*®1, the sym-
metric tensor product SPE and the exterior product N\PE.

(2) If E1 and Es admit approzimate Einstein-Hermitian structures, so does
E,® E,.
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(3) Assume that
deg(E1) _ deg(Eh)
rank(F;)  rank(Es)’
If By and E5 admit approximate Einstein-Hermitian structures, so does
their Whitney sum E1 ® Fs.

The assumption on the degree/rank ratio in (3) is equivalent to the assump-
tion that £y and E; have the same constant ¢ in (4.5.2), (see ((4.2.7)).

The proof of the following proposition is also similar to those of (4.1.8) and
(4.1.9).

Proposition 4.5.4 Let (M,p*g) be a finite unramified covering of a compact
Kahler manifold (M, g) with projection p : M — M.

(1) If a holomorphic vector bundle E over (M, g) admits an approzimate
FEinstein-Hermitian structure, so does p*E over (M, p*g).

(2) If a holomorphic vector bundle E over (M,p*g) admits an approzimate
FEinstein-Hermitian structure, so does its direct image bundle p,E over

(M, g).

The following is a partial generalization of (4.1.7).

Proposition 4.5.5 Let E and E’ be holomorphic vector bundles over a compact
Kahler manifold (M, g) such that

des(E') _ deg(E)
rank(FE’) ~ rank(F)’

If both E and E' admit approrimate Finstein-Hermitian structures, then there
is no nonzero sheaf homomorphism E' — E.

This follows from the following proposition applied to Hom(E’, E).

Proposition 4.5.6 Let E be a holomorphic vector bundle over a compact Kdhler
manifold (M, g) such that deg(E) < 0. If E admits an approximate Einstein-
Hermitian structure, it admits no nonzero holomorphic sections.

Proof This is immediate from (3.1.9). Q.E.D.

Now we generalize Liibke’s inequality (4.4.7).

Theorem 4.5.7 Let E be a holomorphic vector bundle of rank r over a com-
pact Kdahler manifold (M, g). If it admits an approximate Einstein-Hermitian
structure, then

[ A =Da®? -2 @) <o
M

Proof Since formulas (4.4.1) through (4.4.6) are valid for general Hermitian
vector bundles and since (4.4.10) holds within e for any positive € if E admits
an approximate Einstein-Hermitian structure, the proof of (4.4.7) yields also
(4.5.7). Q.E.D.
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4.6 Homogeneous Einstein-Hermitian bundles

Let M = G/G, be a homogeneous Kédhler manifold of a compact Lie group
G. Let g be an invariant Kahler metric. Let F be a holomorphic homogeneous
vector bundle over M; G acts on E compatibly with its action on M. Let o € M
be the origin, the point corresponding to the coset G,. Thus, G, is the isotropy
subgroup of G at o. Then G, acts linearly on the fibre E, at o.

Proposition 4.6.1 Let E be a homogeneous holomorphic vector bundle over a
compact homogeneous Kdhler manifold M = G/G, as above. If the action of G,
on the fibre E, is irreducible, then an invariant Hermitian structure h, unique
up to homothety, exrists and is Finstein-Hermitian.

Proof Since G is assumed to be compact, every Hermitian structure in F
gives rise to a G-invariant Hermitian structure h by averaging on G. Since G,
is irreducible on FE,, h is unique up to homothety. The mean curvature K of
(E, h) is invariant by G. Since G, acts irreducibly on E,, K = clIg for some
constant c. Q.E.D.

Even though the action of G, is irreducible on FE,, the Hermitian vector
bundle (F, h) may not be irreducible, that is, its holonomy group need not be
irreducible. Without discussing the general case (for which the reader is referred
to Kobayashi [70] ), we shall consider here special examples.

Consider G as a principal G,-bundle over M = G/G,. Then every homo-
geneous vector bundle F is associated to this principal bundle. In other words,
there is a representation p : G, — GL(r; C) such that

E=Gx,C"=(GxC")/G,.
Here, the action of G, on G x C” is given by

a:(u, & (ua, pla=h)¢) fora€G,, (u, £) € G xC".

Assume that M = G/G, is a compact irreducible Hermitian symmetric space.
Then we have a natural invariant connection in the principal G,-bundle G over
M, and its holonomy group coincides with G,. The Hermitian connection of
(E, h) comes from the invariant connection of the principal G,-bundle G, and
its holonomy group is given by p(G,) C GL(r;C). Since G, acts irreducibly on
E,, i.e., p(G,) is irreducible, (E, h) is an irreducible Einstein-Hermitian vector
bundle. In summary, we have

Proposition 4.6.2 Let E be a homogeneous holomorphic vector bundle over a
compact irreducible Hermitian symmetric space M = G/G, such that G, acts
wrreducibly on E,. Then E admits a G-invariant Hermitian structure, unique up
to homothety, and (E, h) is an irreducible Einstein-Hermitian vector bundle.

Examples 4.6.3 The following homogeneous vector bundles satisfy the condi-
tion of (4.6.2).
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(a) The tangent and cotangent bundles of a compact irreducible Hermitian
symmetric space.

(b) The symmetric tensor power SP(T P,,) of the tangent bundle of the complex
projective space P,,.

(¢) The exterior power NP(TP,) of the tangent bundle of the complex projec-
tive space P,,.

Without proof we state the following result (Kobayashi [70]).

Theorem 4.6.4 Let M = G/G, be a compact homogeneous Kahler manifold,
where G is a connected, compact semisimple Lie group and G, = C(T) is the
centralizer of a toral subgroup T of G. Let E be a homogeneous holomorphic vec-
tor bundle over M such that G, acts irreducibly on E,. Then with respect to an
invariant Hermitian structure h (which exists and is unique up to a homothety),
(E, h) is an irreducible Einstein-Hermitian vector bundle.

We note that what we have not proved here is the fact that the holonomy
group of (E, h) in (4.6.4) is irreducible.
We mention one example to which (4.6.4) applies.

Examples 4.6.5 Null correlation bundles. Let (20, 2%, .-+ 22"*1) be a ho-
mogeneous coordinate system for the complex projective space Papy1. Let E be
the subbundle of the tangent bundle T Pa, 11 defined by a 1-form a:

a= ZOdzl _ ZleO R +Z2ndz2n+1 _ 22n+1dz2n =0.

The form « is defined on C*"+2—{0}. Although it is not globally well defined on
Popy1, the equation o = 0 is well defined on Payy1; if s is a local holomorphic
section of the fibering C*"*2 — {0} — Pa,41, then

E= {X S TP2n+1; S*OZ(X) = 0}

defines a subbundle of rank 2n independently of the choice of s. In order to view
this bundle E as a homogeneous vector bundle, we consider the symplectic form

da =2(dz° Ndzt + -+ 4 d2®" A d2*"TY),

The symplectic group Sp(n + 1) is defined as the subgroup of U(2n + 2) acting
on C?"*+2 and leaving da invariant. Then « itself is invariant by Sp(n+1). We
consider Pyn11 as a homogeneous space of Sp(n + 1) rather than SU(2n + 2).
Thus,

Popi1 = Sp(n + 1)/5])(71) x T1.

Since « is invariant by Sp(n + 1), the subbundle E C TPap4q1 is invariant
by Sp(n + 1). The isotropy subgroup Sp(n) x T is the centralizer of T" in
Sp(n + 1) and acts irreducibly on the fibre E,. By (4.6.4), with respect to an
Sp(n + 1)-invariant Hermitian structure h,(E, h) is an irreducible Einstein-
Hermitian vector bundle. When n = 1, this rank 2 bundle E over P3 is known
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as a null correlation bundle. In this particular case, Libke [87] has shown by
explicit calculation that (E, h) is Einstein-Hermitian. The 1-form « defines a
complex contact structure on Pa,11. Null correlation bundles and their general-
izations are explained in Kobayashi [70] from this view point of complex contact
structures.

4.7 Projectively flat bundles over tori

Let M be a complex manifold such that its universal covering space M
is a topologically trivial Stein manifold. (By “topologically trivial” we mean
“contractible to apoint”). The examples for M we have in mind are C" and
symmetric bounded domains. Let p : M — M be the covering projection and
I the covering transformation group acting on M so that M = F\M .

Let E be a holomorphic vector bundle of rank r over M. Then its pull-back
FE = p*E is a holomorphic vector bundle of the same rank over M. Since M is
topologically trivial, E is topologically a product bundle. Since M is Stein, by
Oka’ s principle (Grauert [36]) E is holomorphically a product bundle:

E=MxC".
Having fixed this isomorphism, we define a holomorphic mapping
(4.7.1) j:T x M — GL(r;C)
by the following commutative diagram:
Cr = Ez\
iy, = l / Ep(x)

C'=Ew

for x € M, veT.

Then

(4.7.2) iy, ) =43¢y, yx)oj(y, ) for xe M, ~v,7 eTl.

The mapping j is called the factor of automorphy for the bundle E.
Conversely, given a holomorphic mapping j : I' x M — GL(r; C) satisfying
(5.7.2), we obtain a holomorphic vector bundle

(4.7.3) E=Mx;C"=T\(M xC")
by factoring M x C” by the action of I':

(4.7.4) Y&, Q) = (v(2),j(v, #)¢), yE€T, (2, {)€MxC".

In the special case where j(v, x) does not depend on z, i.e., j is a repre-
sentation j : I' — GL(r; C), the corresponding bundle E is defined by the
representation j (in the sense of (1.2.4)) and hence is flat.
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Given two isomorphic vector bundles E and E’ over M and an isomorphism
¢ : E — E’, we have an isomorphism

cE=MxC —E =MxC",
¢z, ¢) = (x, u(z)¢) for (x, ()€ M xC",

=

where u : M — GL(r; C) is holomorphic. Let j' denote the automorphic factor
for E’. Since ¢ must commutes with the action of T, i.e., vo(z, ¢) = o(y(z, ()),
we obtain

(v, 5' (v, w)u(x)C) = (yx, ulyz)i(y, )¢).

Hence,
(4.7.5) i'(v, ) =u(yx)j(y, o)u(z)™t for ze M, yel.

Conversely, two factors of automorphy j and j’ give rise to isomorphic vector
bundles E and E’ if they are related as in (4.7.5) by a holomorphic map w :
M —s GL(r;C). We say therefore that two such factors of automorphy j and
j’ are equivalent.

The concept of automorphic factor extends to any complex Lie group G and
any holomorphic principal G-bundle P. Thus, a holomorphic map

j:IxM—G

satisfying (4.7.2) is called a factor of automorphy. Then the equivalence classes
of factors of automorphy are in one-to-one correspondence with the isomorphism
classes of principal G-bundles over M.

For further details on factors of automorphy, see Gunning [41].

Let T™ = I'\C"™ be an n-dimensional complex torus, where I is a lattice.
Let F be a holomorphic line bundle over T™ and

j:I'xC"— C"=GL(1;C)

the corresponding factor of automorphy, (see (4.7.1)).

Let h be an Hermitian structure in the line bundle F'. Using the projection
p: C" —s T™, we pull back the bundle F to obtain a line bundle F' over C*. We
pull back also the Hermitian structure h to F to obtain an Hermitian structure
h in F. Because of the isomorphism F = C" x C we fixed to define j, we may
consider h as a positive function on C™ invariant under the action of I" given by
(4.7.4). The invariance condition reads as follows:

(4.7.6) h(z) = h(z+7)|i(y, 2)]*> for zeC" ~el.

The connection form @ = d’ log h and the curvature form Q = d”@ = d’d’ log h
satisfy

(4.7.7) 0(z) =w@(z+v) +d'logj(v, z),
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(4.7.8) Q(z) = Qz +7).

The last condition (4.7.8) reflects the fact that the curvature of the line bundle
F' is an ordinary 2-form on T™.

If we multiply & by a positive function e¥ on T™, its curvature form 2 changes
by d’d ¢. It follows that by multiplying h by a suitable function e? we may
assume that the curvature form € is a harmonic 2-form on 7". A harmonic form
on T"™ has constant coefficients with respect to the natural coordinate system
zl,--. 2" of C". In particular,

(4.7.9) Q= RgdAdz",
where Rjg are constant functions. Since Q! = —Q, we have
(4.7.10) Rz = R;.

From such a curvature form we can recover the Hermitian structure h.

Proposition 4.7.11 Let F be a line bundle over T™ = T\C"™. If h is an Her-
mitian structure in F such that its curvature form Q = ZRjEdzj A dZ* has
constant coefficients, then

logh ==Y Rzz'z" + f(2) + f(2),
where f(z) is a holomorphic function defined on C™.

Proof Tt is clear that the Hermitian structure h, in F given by
log h, = — Z Rﬂzjzk

has the prescribed curvature 2 = Z Rﬂdzj AdZF. Set o =logh—logh,. Then
© is a real function on C" satisfying the pluriharmonic condition

d'd'p = 0.

It is well known that such a function ¢ is the real part of a holomorphic function.
In fact, from

d(d/@_d/lw) Zd”d/(p—d/d”(pzo
and from the Poincaré lemma,

d/@_d//w:dw:d/w+dl/w

for some function ¢. Then d'¢p = d'¢p and d"¢ = —d"+). Tt follows that d” (¢ +
1) = 0 and d(¢) + ¢) = 0. By adding a suitable constant to 1, we may assume
that ¢+ = 0. Then ¢ + 1/ is a holomorphic function with real part ¢ and
imaginary part . Q.E.D.
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Since the Hermitian structure h in (4.7.11) is easily seen to be unique up to
a constant multiplicative factor, it follows that the holomorphic function f(z)
is unique up to a constant additive factor.

We write

(4.7.12) R(z,w) =Y Rgz'w".

Then R is an Hermitian bilinear form on C™. Let S and A be the real and
imaginary parts of R so that

(4.7.13) R =18 ++/—14,

where S is symmetric and A is anti-symmetric.

Then Q = iA(dz, dz). Since (i/27)S2 represents the Chern class of F', which
is an integral cohomology class of T, it follows that (—1/2m)A is half-integer
valued on I' x I'. (In fact, integrating (i/27)Q over the 2-cycle of T™ spanned
by 7,7 € T', we obtain the value (—1/7)A(y, 7').) Thus,

(4.7.14) A(v, ¥)=0 (mod 7Z) for ~,7 €T.

From (4.7.6) and (4.7.11) we obtain

—R(z, 2)+ f(z)+ f(z) =—R(z+v, 2+7)+ f(z+7)+ f(z+7)

+1logj(v, 2) +logj(v,2), (mod 27iZ).

It follows that
1
(4.7.15) J(v, 2) =x(v) -exp |R(z, 7) + 5R(% 7))+ f(2) = f(z+7)

with |x(v)| = 1. Using (4.7.2) and (4.7.14) we see easily that y is a semicharacter
of ', i.e.,

(4.7.16) X(v+9") = x(Vx(Y) - expliA(y, 7)) for ~,7 €T

(By (4.7.14), expiA(y, v') = £1.)
From the equivalence relation defined by (4.7.5), it is clear that the theta
factor of automorphy j given by (4.7.15) is equivalent to the following

(4.7.17)  j(v, 2) =x(7) -exp |R(z, 7) + %R(% 7| (v, 2) eI'xC™

Conversely, given an Hermitian form R on C™ with imaginary part A sat-
isfying (4.7.14) and a semicharacter x satisfying (4.7.16), we obtain a factor of
automorphy j : I'x C* — C* by (4.7.17). The fact that any line bundle F' over
T™ =T\C" is defined by a unique factor of automorphy of the form (4.7.17) is
known as Theorem of Appell- Humbert.
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Let E be a holomorphic vector bundle of rank r over a complex torus T" =
I'\C™ with the corresponding factor of automorphy j : I' x C* — GL(r;C).
Let

A: GL(r;C) — PGL(r;C)

be the natural projection to the projective general linear group and define
j=Moj:I'xC" — PGL(r;C).

Then j is a factor of automorphy for the projective bundle P(E) over T".

Assume that E is projectively flat, i.e., P(E) is flat. Then P(FE) is defined
by a representation of I' in PGL(r;C). Replacing j by an equivalent factor
of automorphy, we may assume that 3(7,2) is independent of z, ie., j is a
representation of I" into PGL(r; C). Since j(v, z) does not depend on z, we can
write

(4.7.18) iy, z) =aly, 2)j(y, 0), for (v, z2) e xC"
where a : I' x C" — C* is scalar-valued. From (4.7.2) we obtain

(4.7.19) a(y, Y)a(y+7', 2) =aly, z++")a(y, z), for 7,7 €T, zeC",
(4.7.20) a(y, 0)=a(0, 2) =1, for yeI, z€C",

(4.7.21) a(y, =v) =a(—y, ), for yeTl.

These properties of a(vy, z) allow us to define the following group structure in
the set I' x C*:

(47.22) (v, o)(7/, ) = (v +7, a(v',y)ec),  for (v, ¢), (v, ¢) e xC".

The associativity law follows from (4.7.19). The identity element is given by

(0,1). The inverse of (v, c) is (=7, a(y, —y)"te™!). We denote this group by

G(T, a). There is an obvious exact sequence:

(4.7.23) 1—C"— G, a) —T —0.

We have also a natural representation

(4.7.24) p:GT, a) — GL(r;C)
given by

(4.7.25) p(v, ¢) =34y, 0)c .
The group G(TI', a) acts freely on C"™ x C* by
(4.7.26)

(v, o)(z, d) = (z+7, aly, 2)ed), (v, ¢) € G(T, a), (z, d)eC" xC".
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The mapping C* — C™ x C* sending z to (z, 1) induces an isomorphism
(4.7.27) " =T\C" = G(T, a)\C" x C*.

The action (4.7.26) of G(T', a) on C™ x C* and the representation p of G(T', a)
given by (4.7.25) define an action of G(I', a) on (C™ x C*) x C":

(v, o)z, d), Q) = ((v; )z d), p(v; €)C),

4.7.28
( ) for (v, ¢) e GT, a), (z, d)eC"xC*, (eC".

The quotient G(T', a)\(C™ x C*) x C" by this action is a vector bundle of rank
rover T" = G(I', a)\C™ x C*. Again, the mapping " x C" — (C" x C*) x C"
which sends (z, ¢) to ((z, 1), ¢) induces an isomorphism

(4.7.29) E=T\C" x C" ~ G(I', a)\(C™ x C*) x C".

To summarize, we have shown that a projectively flat vector bundle E over T
can be obtained by the representation p of G(T", a).

If j is a factor of automorphy for E, then det j is a factor of automorphy for
the determinant line bundle det E. Applying (4.7.17) to the line bundle det E,
we obtain

. 1 n
(4.7.30)  detj(y, 2) = x(7)exp {R(z, 7+ 5 R0, v)] , (v, ) el xC™
Comparing this with (4.7.18), we obtain

det j(v, 0) = x(v)exp (;R(% ’7)) )

a(y, 2)" = exp(R(z, 7))

(4.7.31)

Taking the r-th root of (4.7.31) and using (4.7.20), we obtain

(4.7.32) a(y, 2) = exp (iR(z, 7)>.

We shall now assume not only that F is projectively flat but also that it
admits a projectively flat Hermitian structure. In other words, the projective
bundle P(E) is defined by a representation of I" in the projective unitary group
PU(r) € PGL(r;C), (see (1.4.22)). We may therefore assume that j sends T
into PU(r). Define the conformal unitary group CU(r) by

(4.7.33) CU(r) = {cU;c € C* and U € U(r)},

or CU(r) = A"Y(PU(r)), where A : GL(r;C) — PGL(r;C) is the natural
projection. Since j = Ao j, we see that

(4.7.34) jlvy, z) €CU(r) for (v, z) e xC™
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Let h be a projectively flat Hermitian structure in £ and h be the induced
Hermitian structure in the induced vector bundle E = p*E =C" x C" as in
F above. We may consider h as a function on C" with values in the space of
positive definite r X 7 Hermitian matrices. With matrix notation, the invariance
condition (4.7.6) in the vector bundle case reads as follows:

(4.7.35) h(z) =j(v, 2)*h(z+7)i(7, 2),

where the asterisk * denotes the transpose-conjugate. The connection form
@ = h~'d'h and the curvature form Q = d"@ satisfy

(4.7.36) o(z) =4y, 2) '@z +7)i(y, 2)+i(v, 2)7 (v, 2),

(4.7.37) Qz) = j(v, 2)7 'z +7)i(y, 2).

Since the connection is projectively flat, the curvature must be of the following
form, (see (1.2.8)):

(4.7.38) Q=al,,

where « is a 2-form. Since its trace is the curvature of the line bundle det F,
we have

1 . ,
(4.7.39) a=- > Rgds’ AdzF
with constant coefficients R,z From Q = d’G, we obtain
N 1
(4.7.40) w(z) = f;R(dz, )1 + O(z),

where R(dz, z) = ZRj%Ekdzj and O is a holomorphic 1-form with values in
the Lie algebra of CU(r). Since
0+ 0" =¢I, (with a l-form ),
and O is holomorphic, it follows that
(4.7.41) 0 =01,

where 6 is a holomorphic 1-form. On the other hand, from (4.7.36) and from

iy, )7 d i, ) (i(v, O)a(v, 2))~'d'(j(v, O)al, 2))

(4.7.42) "loga(v, 2))I;

we obtain
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i.e., 0 is actually a holomorphic 1-form on the torus 7. Hence,
(4.7.43) 0=> bds’
with constant coefficients b;. Solving
~ ~ 1 . .
hldh=a(z) = —— Y Rgzhded + ) bids,
we obtain

(4.7.44) h(z) = h(0) exp [—iR(z, 2) + b(z) +b(z)} :

where b(z) = Z b2
In order to simplify the formula, we change the initial identification E =
C™ x C" by composing it with the isomorphism

(z, () €eC" x C" — (2, ¥®)) e C™ x C".
With this new identification £ = C" x C”, we have
b(z) = 0.

By a linear change of coordinates in C", we may assume also

h(0) = I,.
Thus,
(4.7.45) h(z) = exp [—iR(z, z)] I..
Substituting in (4.7.35) the expression obtained from (4.7.45), we obtain
(4.7.46) iy, 2) =U(7) -exp ER(z, 7) + Q%R(% 7)} ;
where U(y) is a unitary matrix. From (4.7.46) we obtain
(47.47) U =0, 0 exp |5 Rit 7).
Using (4.7.46) and (4.7.13) we obtain
ATA8) Ul +) UG e | LA )| for e

Although U : T' — U(r) is not a representation, we can “extend” it to a
representation as follows. First, we introduce a group structure in the set I' x C*
by defining its multiplication rule by

(4.7.49) (v, o), )= <7+’7/, cc exp%A(’y', 7)) )
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We denote this group by G(I', A/r). Then there is an exact sequence

(4.7.50) 1—C"— G, A/r) —T —0.
If we set
(4.7.51) pan(y, =UMCE (v, ) € Gly, A/r),

then py,, : G(I', A/r) — CU(r) C GL(r;C) is a representation.
Moreover, (G(I', A/r), pasr) is isomorphic to (G(I', a), p). Namely, we
have an isomorphism

f: G, a) — G, A/r),

(4.7.52) 1

fly, o) = <% c-exp [—QTR(% 7)])
such that
(4.7.53) p=pasmof

Conversely, given an Hermitian form R on C" with imaginary part A satis-
fying (4.7.14) and a “semi-representation” U : ' — U(r) satisfying (4.7.48) we
obtain a factor of automorphy j : I' x C* — CU(r) C GL(r;C) by (4.7.46).
The corresponding vector bundle E admits a projectively flat Hermitian struc-
ture; it is given by the natural inner product in C".

In summary, we have

Theorem 4.7.54 Let E be a holomorphic vector bundle of rank r over a com-
plex torus T™ = T\C". If E admits a projectively flat Hermitian structure h,
then its factor of automorphy j can be written as follows:

) 1 1 n
J(v, 2) =U(v) - exp ;R(z, v) + ZR(% M| (v z) el xC",

where

(i) R is an Hermitian form on C" and its imaginary part A satisfies

1

—A(v, v €Z for vy, €Ty

™

(ii) U :T' — U(r) is a semi-representation in the sense that it satisfies

i
Uy +7")=UMmU®H')exp ;A(’V’, y) for v, 4 €l.

Conversely, given an Hermitian form R on C™ with property (1) and a semi-
representation U : I' — U(r), we can define a factor of automorphy j : T’ X
C™ — CU(r) as above. The corresponding vector bundle E over T" = T'\C"
admits a projectively flat Hermitian structure (given by (4.7.45)).
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We recall (Section 2.3 of Chapter 2) that every projectively flat vector bundle
E of rank r satisfies the following identity:

o(B) = <1+ 01<TE)> le., cp(E)= ( 7,; ) Tikcl(E)’f.

Materials for this section are taken largely from Matsushima [102]. See also
Hano [44], Morikawa [110], Yang [169].



Chapter 5

Stable vector bundles

In this chapter we shall prove the theorem that every irreducible Einstein-
Hermitian vector bundle over a compact Kéahler manifold is stable. In Sections
5.1 and 5.2 we consider the special case where the base space is a compact
Riemann surface. For in this case, the definition of stability (due to Mumford,
see Mumford and Fogarty [115]) can be given without involving coherent sheaves
and the theorem can be proven as a simple application of Gauss’ equation for
subbundles.

However, the definition of stable vector bundle over a higher dimensional
base space necessiates the introduction of coherent sheaves. Sections 5.3 through
5.6 are devoted to homological algebraic aspects of coherent sheaves and Section
5.7 to basic properties of stable vector bundles. Our basic references for all
these are the books of Okonek, Schneider and Spindler [128] and Matsumura
[100]. The former serves as an excellent introduction to stable vector bundles,
especially, for differential geometers. Also very readable is the original paper
of Takemoto [1] who extended the concept of stability to the case of higher
dimensional algebraic manifolds. The reader may find Banicd and Stanasila
[11] also useful as a reference on algebraic aspects of coherent sheaves. See also
Siu-Trautmann [146]. The reader who wishes more details on reflexive sheaves
is referred to Hartshorne [48].

In Section 5.8 the main theorem stated above is proved for an arbitrary di-
mension. This theorem is an evidence that Takemoto’s stability fits our differen-
tial geometric frame perfectly. In the last two sections we study the relationship
between different concepts of stability and the Einstein condition.

5.1 Stable vector bundles over Riemann surfaces

Throughout this section, M will denote a compact complex manifold of
dimension 1, i.e., a compact Riemann surface. Let E be a holomorphic vector
bundle of rank r over M. The first Chern class ¢1(E), integrated over M, is an
integer. This integer will be denoted by ¢1(E). It is called also the degree of E

123
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and is sometimes denoted by deg(FE) . Thus,

(5.1.1) deg(E) = c1(E) = /M i (E).

We associate the following rational number to E, called the degree/rank ratio.

__al(E)
(5.1.2) w(E) = m

If F is a direct sum of r line bundles Lq,--- , L,, then u(FE) is the average
of Cl(Ll)7 s ,C]_(LT).

Following Mumford, we say that E is stable (resp. semi-stable ) if, for every
proper subbundle E’ of E,0 < rank (E’) < rank (E), we have

(5.1.3) WE) < u(E)  (resp. p(E') < u(E)).
We shall give another definition of stability due to Bogomolov [17]. A
weighted flag of E is a sequence of pairs F = {(E;, n;);i = 1,2, ---, k}

consisting of subbundles
EFiCEy,C---CE,CFE

with
0 < rank(E4) < rank(E2) < --- < rank(Fj) < rank(F)

and positive integers ni,ny,--- ,ni. We set
r; =rank(E;), r =rank(FE).

To such a flag F we associate a line bundle T'x by setting

k
(5.1.4) Tr = [[((det E))" (det E)~")™.

i=1

It is clearly a line subbundle of (£ ® E*)®N, where N = r Z TN

We recall that a vector bundle is flat if it is defined by a representation of the
fundamental group of the base manifold M, (see (1.2.5)). Following Bogomolov,
we say that a holomorphic vector bundle E over a compact Riemann surface M
is T-stable if, for every weighted flag F of E and every flat line bundle L over
M, the line bundle T ® L admits no nonzero holomorphic sections, i.e.,

(5.1.5) H(M, Q°Tr® L)) = 0.

We say that E is T-semi-stable if, for every weighted flag F of E and every
flat line bundle L over M, the line bundle T+ ® L either admits no nonzero
holomorphic sections or is a product bundle, (in other words, the only holomor-
phic sections of T ® L are nowhere vanishing sections). (The letter 7" in the
definition of stability stands for “tensor”.)
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Proposition 5.1.6 Let E be a holomorphic vector bundle over a compact Rie-
mann surface M. Then E is stable (resp. semi-stable) if and only if it is T-stable
(resp. T-semi-stable).

Proof We remark first that since H?(M, R) = R, a line bundle F over M
is positive, negative or flat according as its degree ¢1 (F) is positive, negative or
7Z€ero.

Suppose that E is stable (resp. semi-stable) and let F = {(E;, n;)} be any
weighted flag of E. For each i, we have

c1((det E;)"(det E)™") = rey (B;) — rien (B) = rry(w(E;) — p(E)),

which is negative (resp. non-positive) by (5.1.3). From (5.1.4) it follows that
c1(T'r) is negative (resp. non-positive). If L is a flat line bundle, then Tr ® L is
negative or flat according as T'r is negative or flat. If T= ® L is negative, it has
no nonzero holomorphic sections by (3.1.9). If T ® L is flat, every holomorphic
section of Tr ® L is nowhere vanishing also by (3.1.9). Hence, E is T-stable
(resp. T-semi-stable).

Suppose that E is T-semi-stable, and let E’ be a subbundle of rank 7/ with
0 < r < r = rank(E). Let n be a positive integer and consider the flag
F ={(F’, n)}. To this flag we associate a line bundle

Tr=F", where F = (detE')"(detE)™".

Then the Riemann-Roch theorem states
1
dim H°(M, F™) —dim H'(M, F") = nc;(F) + 5cl(M).

Since dim H°(M, F™) < 1 by assumption, we see by letting n — oo that
c1(F) £0. Since ¢1(F) = re1(E') —r'e1(E), this implies u(E’) < p(E). Hence,
E is semi-stable. Assume p(E’) = p(E). Then ¢i(F) = 0, i.e., F is a flat
bundle. If we set L = F~", then Tx ® L is a product bundle. This shows that
if E is T-stable, then it is stable. Q.E.D.

We shall show that every holomorphic vector bundle FE over a compact Rie-
mann surface has a unique maximal semistable subbundle. We start with the
following

Lemma 5.1.7 Given a holomorphic vector bundle E over a compact Riemann
surface M, there is a positive integer q such that if L is a line bundle over M
with deg(L) = q, then Hom(L, E) has no nonzero holomorphic sections.

Proof Let H be an ample line bundle over M (with an Hermitian structure
whose curvature is positive). We fix also an Hermitian structure in E. Then
there is a positive integer p such that the mean curvature K of H™™ ® E is
negative for m 2 p, (see (1.5.5), (1.5.6) and (1.5.13)). By (3.1.9),

(5.1.8)  H°(M, Hom(H™, E)) = H*(M, H™®E))=0 for m = p.
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By the Riemann-Roch formula (see (3.4.4)), for any line bundle L we have
(5.1.9) dim H°(M, H? ® L) 2 deg(L) — pdeg(H) +1 — g,

where ¢ is the genus of M. Hence,

(5.1.10) H°(M, Hom(H?, L)) #0 if deg(L)= g+ pdeg(H).
From (5.1.8) and (5.1.10) we see that

(5.1.11) (H°(M, Hom(L, E)) =0 if deg(L)=g+pdeg(H). Q.ED.

Lemma 5.1.12 Given a holomorphic vector bundle E over a compact Riemann
surface M, there is an integer m such that

uw(F)=m
for all holomorphic subbundles F of E.

Proof Applying (5.1.7) to A°E, let ¢(s) be the integer given by (5.1.7). Let

F be a subbundle of rank s. The injection F' — E induces an injection A*F —
N E. By (5.1.7), deg(A°F) < q(s). Let m = Max{q(s)/s;s = 1,2, ---, r}.
Q.ED.

Proposition 5.1.13 Given a holomorphic vector bundle E over a compact Rie-
mann surface M, there is a unique subbundle FEy such that for every subbundle
F of E we have

(i) p(F) = p(Er)
(i) rank(F) = rank(Ey) if p(F) = p(Ey).
Then E1 is semistable.
We call Ey the maximal semistable subbundle of E .

Proof The existence is clear from (5.1.12). From the characterizing prop-
erties of Fy, it is clear that E; is semistable. To prove the uniqueness, let Ff
be another subbundle satisfying (i) and (ii). Let p : E — E/E] be the projec-
tion. Then p(E;) # 0. Since p(E;) itself may not be a subbundle of E/FE}, we
consider the subbundle G of E/E] generated by p(F1). To give a little more
details, let s1, -, s, be a holomorphic local frame field for F;. Let k be the
rank of p(E;). Consider

p(Sil)/\'”/\p(Sik), 1 < o < i

These holomorphic sections of A¥(E/E}) define a rank k subbundle of (E/E})
except where they all vanish. Wherever they all vanish, we factor out their
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common zeros; this is possible since dim M = 1. Then they define a rank k
subbundle G of E/Ej.
Define the subbundle F' of F; by the “locally defined” exact sequence

0—F—FE —G—0.

Since E is semistable, u(F) < p(E4). This is equivalent to u(E;p) < pu(G).
On the other hand, we have an exact sequence

0— B —p YG) — G —0.
From the properties (i) and (ii) for Ef, we have pu(p~1(G)) < p(E}), ie.,

aea(G) + deg(Fy) _ den(E))
rank(G) +rank(E]) ~ rank(Ef)

This implies p(G) < p(E]) = u(E1), a contradiction. Q.E.D.

The following Harder-Narasimhan filtration theorem is now an immediate
consequence of (5.1.13).

Theorem 5.1.14 Given a holomorphic vector bundle E over a compact Rie-
mann surface M, there is a unique filtration by subbundles

O=FyCFEiCE,C---CE,_1CFE,=F

such that, for 1 £ i < s—1,F;/E;_1 is the maximal semistable subbundle of
E/E;_;.

The Jordan-Holder theorem holds for semistable vector bundles.

Theorem 5.1.15 Given a semistable vector bundle E over a compact Riemann
surface M, there is a filtration of E by subbundles

0=FEy 1 CEyC---CEICEy=F

such that E;/E; 1 are stable and p(F;/E;y1) = w(E) fori=0,1,--- k.
Moreover,

Gr(E) = (Eo/Ey) @ (BE1/E2) @ - - © (Ex/Egq1)
1s uniquely determined by E up to an isomorphism.
The proof is standard.

For more details on vector bundles over compact Riemann surfaces, see
Astérisque notes by Seshadri [141].
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5.2 Einstein-Hermitian vector bundles over Rie-
mann surfaces

Let (E, h) be an Hermitian vector bundle over a Riemann surface M. Let
g = g,7dz'dz' be any Hermitian metric on M, (expressed in terms of a local
coordinate system z!). The mean curvature K of (E, h) is given, in terms of
its components, by

; 11
(5.2.1) K; R;H
The weak Einstein condition in this case is equivalent to

(5.2.2) R;ﬁ = gﬁgaé;,

where ¢ is a function on M. Since any two Hermitian metrics on M are con-
formal to each other, this weak Einstein condition is independent of the choice
of g. From (1.2.8) we obtain

Proposition 5.2.3 An Hermitian vector bundle (E, h) over a Riemann surface
(M, g) satisfies the weak Einstein condition if and only if it is projectively flat.

Let E’' be a holomorphic subbundle of an Einstein-Hermitian vector bundle
(E, h) over a compact Riemann surface (M, g). If we denote the curvature
forms of (E, h) and (E’, h|g/) by Q and ', respectively, then the vector bundle
analogue of the Gauss-Codazzi equation (see (1.6.11)) states

(5.2.4) ’ZzQ?—ng\/\wé‘, 1<a,b<p<A=r,

where r = rank(FE) and p = rank(E’). The first Chern classes of E and E’ are
represented by (2.2.14):

i T ) .
=—)Y E’ .
2 Jz:; 7 cr(E', h) = om Z

a=1

By (5.2.3) (see also (5.2.2)), Q% = ad’ with a suitable (1,1)-form . Hence,

dex(E) = [ a(F) = 2; / ra,
deg(E /J\Cl / pa—Zw /\w

Z
EN = — AW
(e / -5 [ etz
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This implies u(E’) < u(E), and the equality holds if and only if w) = 0,
i.e., the second fundamental form vanishes. From (1.6.14) it follows that if
w(E) = p(E’), then

E — El EB E”,

where E” is holomorphic and orthogonal to E’. By (4.1.4), both (E’, h) and
(E", h) satisfy the Einstein condition with the same factor as (F, h). In partic-
ular,

W(E) = u(E') = u(E”).

We have established

Theorem 5.2.5 If (E, h) is an Einstein-Hermitian vector bundle over a com-
pact Riemann surface (M, g), then E is semistable and decomposes into a direct
sum

E=F & - ® Ey, (holomorphic and orthogonal)

of stable Finstein-Hermitian vector bundles Ey, - - - , Ey such that u(E) = u(Eq) =
cee M(Ek)'

This will be generalized to compact Kahler manifolds (M, g) of higher di-
mensions in Section 5.8.

Remark 5.2.6 It is possible to derive quickly from (3.1.38) that every Einstein-
Hermitian vector bundle E over a compact Riemann surface is T-semistable (see
Section 5.1 for the definition). But (5.2.5) asserts much more.

Conversely,

Theorem 5.2.7 If E is a stable vector bundle over a compact Riemann surface
(M, g), there is an Einstein-Hermitian structure h in E.

This follows from the following reformulation of the result of Narasimhan-
Seshadri [117], (see Atiyah-Bott [7] for a reformulation which is very close to
what follows).

Theorem 5.2.8 A holomorphic vector bundle E over a compact Riemann sur-
face M is stable if and only if the associated projective bundle P(E) comes from
an irreducible representation of the fundamental group m (M) into the projec-
tive unitary group PU(r), that is, if and only if E admits a projectively flat
Hermitian structure.

Clearly, (5.2.7) follows from (5.2.3) and (5.2.8). A direct proof of (5.2.7) has
been given by Donaldson [24].
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5.3 Coherent sheaves—homological algebra of stalks

Throughout this section we denote the ring of germs of holomorphic functions
at the origin of C™ by A and its maximal ideal by m. Thus, A is the ring of
convergent power series in n complex variables and m is the ideal consisting of
power series without constant term. The ring A is an example of regular local
ring. Most of the results in this section are valid for any regular local ring, and
some of them hold for more general local rings.

We denote the free A-module A®--- @ A of rank r by A”. An A-module M
is said to be of finite type if it is finitely generated, i.e., if there is a surjective
homomorphism A” — M for some finite r.

Lemma 5.3.1 (Nakayama’s lemma) If an A-module M of finite type satis-

fies
M =mM,

then M = 0.

Proof Assuming M # 0, let {uy, ---, u,} be a minimal set of generators
of M. Since u, € M = mM, we can write

Up = a1U1 + -+ Qp_1Up_1 + apu, with a; € m,

or
(1—ap)uy =aiuy + -+ ar_1Upr_1.

Since 1 —a, is a unit, u, € Auy +---+ Au,_1, showing that {uq, -+, ur_1}

generates M. This contradicts the minimality of {uy, -+, u,}. Q.E.D.

We recall that an A-module M of finite type is said to be projective if given A-
modules L and N of finite rank and homomorphisms « and 3, with § surjective,
in the following diagram, there is a homomorphism  such that a = S o 7.

(5.3.2) M

\a\\
L
Voo

L——N——=0.
Lemma 5.3.3 An A-module M of finite type is free if and only if it is projective.

Proof It is trivial that every free module is projective. Assume that M is
projective. Choose elements w1, -+ ,u, in M such that their images @y, - ,
in M/mM form a basis of the vector space M/mM. Let L be the free A-module
generated by r letters e1,--- ,e,. Let 8 : L — M be the homomorphism defined
by B(e;) = u;, and let Q be the cokernel of 8 so that

LS Mm% o—o
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is exact. Then the induced sequence

L/mL 2 M/mM T Q/mQ — 0

is exact. (In fact, if u € M and w(u) € mQ, then w(u) = a-w(u’) for some a € m
and v’ € M. Since w(u — au’) = 0, there is an x € L such that v — auv’ = B(x),
ie, u = f(x)mod mM.) On the other hand, from the way wuy, ---,u, were
chosen, f3 is clearly surjective. Hence, Q/mQ = 0. By Nakayama’s lemma,
Q = 0, which shows that f is surjective.

Since M 1is projective, there is a homomorphism ~ : M — L which makes
the following diagram commutative:

I

M—sN——0

Then ~ is injective. Let K be the kernel of 8 so that the sequence

0—KSL2 m—0

is exact. Then, L = ((K) + v(M). Identifying ¢(K) with K and (M) with M,
we write
L=K+ M.

Then

L/mL = K/mK + M/mM.
Since L/mL ~ M/mM in a natural way, we obtain K/mK = 0. Again by
Nakayama’s lemma, K = 0. Hence, L = M. Q.E.D.

We recall the definitions of Ext and Tor. Given an A-module M of finite
type, choose a projective resolution

(5.3.4) EM):--—E,—>E, 11— —=E—>M-=0

of M, where the E,, are projective A-modules. If N is another A-module of
finite type, then we define

(5.3.5) Ext (M, N) = H'(Hom(E.(M), N)),
(5.3.6) Tor! (M, N) = H;(E.(M)®4 N).
Then

(5.3.7) Ext% (M, N)=Homu(M, N),
(5.3.8) Tor{ (M, N)= M ®4 N.

The basic properties of the Ext and Tor functors are given by



132 CHAPTER 5. STABLE VECTOR BUNDLES

Theorem 5.3.9 Short exact sequences of A-modules

00— M —M-— M'"—0,
0— N —N-—N'"—0

induce long exact sequences

(a) - — Extly (M, N) — BExty(M’, N) — Ext}'(M", N) —

(b) -+ — Exty (M, N) — Ext’y(M, N") — Ext’""(M, N') —

(¢)--- — Tor} (M, N) — Tor}(M", N) —s Tor{" I(M’ N)— -,

(d)--- — Tor} (M, N) — Tor(M, N") —s Tor (M, N') —

Lemma 5.3.10 An A-module M of finite type is free if and only if
Tor(C, M) =0,

where C = A/m is considered as an A-module in a natural way.

Proof Let uy,--- ,u, be elements of M such that their images w1, - , u, in
M/mM form a basis over C = A/m. Let L be the free A-module generated by r
letters ey, -+ ,e.. Let 8: L — M be the homomorphism defined by S(e;) = u;.

Since the cokernel Q of 3 is zero as we saw in the proof of (5.3.3), we have the
following exact sequence:

0—K-—L—M—0,
where K = Kerf. This induces the following exact sequence
0—>Torf((], M)— C@s K —C®saL—C®s M —0,
which may be written as
0 — Tor{(C, M) — K/mK — L/mL — M/mM — 0.
Since § : L/mL — M/mM is an isomorphism, K /mK is isomorphic to Tor{ (C, M).

But, by Nakayama’s lemma K /mK = 0 if and only if K = 0. Hence, Tor{!(C, M)
0 if and only if L ~ M. Q.E.D.

Theorem 5.3.11 (Syzygy Theorem) If M is an A-module of finite type and
if
0O —F —LE, 11— —E —E—M-—70

is an exact sequence of A-modules where E} s are all free, then F is also free.
Proof  Setting

Ry = Image(Ek — Ek—l) = Ker(Ek_l — Ek_g),
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we break up the sequence into short exact sequences:
0 — Ryy1 — Exy — Ry —0, k=0,---,n—1
This gives rise to a long exact sequence
— Tor‘q4+1(C’, E;) — Torj;‘H(C, Ry) — Torg‘(C’, Ry41)
— Torj;‘(C7 E;) —,
where C'= A/m. Since Tor?(C’7 Ey) =0 for ¢ 2 1 (for Ey is free), we have
Tor?+1(C’, Ry) = Torj;‘(C7 Rj41) forgz=1.

Hence,
Torf,1(C, M) ~ Tori'(C, Ray1).

The proof will be complete if we show

(5.3.12) Tory,,(C, M) =0 ford2=n,

since Tor{' (C, Rgy41) = 0 implies that Ry 1 is free by (5.3.10). In order to prove
(5.3.12), we construct a free resolution of C' = A/m as follows. We recall that
A is the ring of germs of holomorphic functions at the origin 0 of C™, i.e., the
ring of convergent power series in z!,--- , 2", Set

K; = Qf = the A-module of germs of holomorphic i-forms at 0
~ARNC™

and define an A-homomorphism 9 : K; — K;_1 by

—

O(2IM A A 2T z:(—l)a_lzj“dzj1 Ao NdzZIe A N dE
Then we obtain a free resolution of C' = A/m (called the Koszul complex):
(5.3.13) 0—K, —K, 11— —K —Ky—C—0.

The exactness of (5.3.13) follows from do & 4+ & od = 1. Since Tor?(C, M) is
the homology of the complex

00— K, 9aM — K, 1042 M — -+ — K14 M — Ky®a M — 0,

it follows that Tor{ ;(C, M) =0 for d = n. Q.E.D.

The homological dimension of M, denoted by dh(M), is defined to be the
length d of a minimal free resolution

(5.3.14) 0—FEqg— - —E — FEy— M —0.
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In the course of the proof of (5.3.11), we prove also the following:
(5.3.15)
dh(M) =d & {

Tor; (C, M) # 0 - {Tor;?(C, M)#£0 for i>d4 1.

Tor,,(C, M) =0 Tor(C, M) =0

The Syzygy theorem states

dh(M) £ n.

To define the homological codimension of M, we consider first the notion
of M-sequence of A. A sequence {ai, ---, ap} of elements of m is called an
M-sequence of A if, for each 1,0 < 7 < p — 1,a;41 is not a zero divisor on
M; =M/(a1, -+, a;)M, where (a1, -+, a;) denotes the ideal of A generated
by a1,---,a;. Then the sequence of ideals

(al) C (al’ a2) C “ e C (al’ SN ai) C...
is strictly increasing and there is a maximal M-sequence. If {aq, ---, ap} is

a maximal M-sequence, then p is called the homological codimension (or the
depth) of M and is denoted by codh(M) . The fact that p is independent of
the choice of the sequence {a1, ---, a,} follows from the following

Proposition 5.3.16 There exists an M-sequence {a1, ---, ap} of length p of
A if and only if _
Ext4 (C, M) =0 fori<p.

Proof For each nonzero u in M, set
Ann(u) = {a € A;au = 0}.

Then Ann(u) is an ideal of A, and the set of zero divisors of M is given as
the union of these ideals Ann(u), 0 # u € M. Let Ann(ug) be a maximal one
among all these ideals Ann(u). Then it is a prime ideal. In fact, if ab € Ann(ug)
and b &€ Ann(ug), then bug # 0 but abug = 0. Hence, a € Ann(bug). Since the
obvious inclusion Ann(ug) C Ann(bug) and maximality of Ann(ug) imply the
equality Ann(bug) = Ann(ug), we obtain a € Ann(ag), showing that Ann(ug) is
a prime ideal. It follows that the set of zero divisors of M is the union of ideals
Ann(up) which are prime.

Considering first the case p = 1, assume Ext% (C, M) = 0. We want to show
that there is an M-sequence {a;} of A. If there is none, every element of m
is a zero divisor of M so that m is (contained in) the union of ideals Ann(ug)
which are prime. Since the complex subspace m cannot be a union of finitely
many proper subspaces, it follows that m = Ann(ug) for some ug. Then we
have a nonzero homomorphism (in fact, injection) A/m — M induced by the
map a € A — aug € M. Since Hom4(A/m, M) = Ext%(A/m, M) = 0, this
is a contradiction. Therefore there is an element a; in m such that {a;} is an
M-sequence.
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Assume Ext% (C, M) =0 fori <p. Set M; = M/(a;)M. From the exact
sequence
0— M2 M — M; — 0,

we obtain a long exact sequence
— Ext’y(C, M) — Ext',(C, M) — Ext}"(C, M) — .

From our assumption we obtain Ext’ (C, M;) = 0 for i < p — 1. By induction

on p, there is an M;j-sequence {as, ---, ap} of A. Then {ai, az, ---, ap} is
an M-sequence of A.
To prove the converse, assume that there is an M-sequence {a1, ---, ap}

of A. By induction on p, Ext’(C, M;) =0 for i < p— 1. From the long exact
sequence

— Exty 1(C, M) — ExtYy(C, M) — Ext'y(C, M) —,

we see that . .
0 — Ext’y (C, M) % BExt’y(C, M)

is exact for ¢ < p. Since C' = A/m and a; € m, it follows that a; annihilates
C. Hence, for every f € Homa(C, M), we have a; f = 0. Therefore, a; maps
Ext’ (C, M) to zero. Hence, Ext’y (C, M) =0 for i < p. Q.E.D.

Thus, we proved

Ext?, (C, M) # 0

‘ for 7 < p.
Exty(C,M)=0 =P

(5.3.17) codh(M) =p & {

The following formula justifies the term “codimension”.
(5.3.18) dh(M) + codh(M) = n.

We prove (5.3.18) by induction on codh(M). Assume codh(M) = 0, i.e.,
there is no M-sequence of A. Then the proof of (5.3.16) (specifically, the part
where we considered the case p = 1) shows that there is an injective homo-
morphism C' = A/m — M. Since Tor2 (C, M) is left exact, we have an exact
sequence

0 — Tor}(C, C) — Tor(C, M).

But Tor (C, C) is nonzero. (Using the resolution (5.3.13) of C, we see easily
that Tor:'(C, C) is isomorphic to A‘C™). Hence, Tori(C, M) # 0, which
implies dh(M) = n.

Assume now that (5.3.18) holds for all A-modules whose homological codi-
mension is less than codh(M) > 0. Let a; be an element of m which is not a
zero divisor in M. Set M7 = M/(a1)M. Then

(5.3.19) codh(M;) = codh(M) — 1.
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(In fact, the inequality codh(M;) £ codh(M) — 1 follows directly from the
definition of homological codimension. We obtain the opposite inequality from
(5.3.16) since the condition Ext’ (C, M) = Ext’'(C, M) = 0 implies Ext’y(C, M;) =
0 by the long exact sequence for Ext.)

By the induction hypothesis, we have

dh(M;) 4 codh(M7) = n.
The problem is reduced to showing
dh(M;) = dh(M) + 1.
From the exact sequence
0— M M— M, —0,

we obtain a long exact sequence
Tor/'(C, M) “% Tor, (C, M) — Tor, (C, M)

— Tor;tl(C, M) 2 Tor;tl(C, M).

Since a; annihilates C' = A/m, this reduces to the following short exact se-
quence:

0— Tor?(C, M) — Tor;‘(C, M) — Torz‘fl(C, M) —0.

Since Tor;?_l(C, M) = 0 implies Tor;‘(C, M) = 0 (see (5.3.15)), Tor?(C’, M) =
0 if and only if Tor)_,(C, M) = 0. Q.E.D.

In (5.3.15) we expressed dh(M) in terms of Tor2(C, M). We can charac-
terize dh(M) in terms of Ext’ (M, A) as well.

Ext% (M, A) # 0

: for i > d.
Exti(M,A)=0

(5.3.20) dh(M) = d < {

To prove (5.3.20), we reformulate it as follows:
dh(M) £d < Exty(M, A)=0 for i>d.

The proof is by induction on d starting with n 4+ 1 and going down to 0. If
d = n + 1, the assertion is evident since we have always dh(M) < n + 1 as
well as Ext’y (M, A) =0 for i > n+ 1. To go from d = g+ 1 to ¢, assuming
Ext’y(M, A) = 0 for i > ¢ we shall prove dh(M) < ¢, (the converse being
obvious). By the induction hypothesis, we have dh(M) £ ¢+ 1, i.e., there is a
free resolution of M of length g + 1:

9
0 —FEy1 —FE;,— - —FE — Ey — M — 0.
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Since Ext4 (M, A) =0, it follows that

B
Homa(E,;, A) - Homa(E;11, A) — 0

is exact. Since Eg4; is free of rank, say s, summing s copies of the preceding
exact sequence we obtain an exact sequence

*

aq
Homu(Eq, Eqr1) — Homu(Eqq1, Eqy1) — 0.
In particular, there is an element f € Homu(E,, E,+1) such that
fo al - 1Eq+1 € HomA(Eq-‘rla Eq+1)7

which means that 0,(Eq+1) is projective. Since every projective A-module is
free, we have a free resolution of M of length ¢:

0— 0y(Egs1) — Eg-1 — -+ — E1 — Eg — M — 0.

Hence, dh(M) < g, thus completing the proof of (5.3.20).
Using (5.3.20) we prove the following

Proposition 5.3.21 If
00— M — M-— M —0
is a short exact sequence of A-modules of finite type, then
dh(M) £ max(dh(M"), dh(M")),
and if the strict inequality holds then
dh(M") =dh(M') + 1.
Proof The given short exact sequence gives rise to a long exact sequence
Ext’y(M", A) — Ext’y(M, A) — Ext’(M’', A)
— ExtiH(M”, A) — BExt’{ (M, A).

If Ext’y(M’, A) = Ext’y(M", A) = 0, then Ext’y(M, A) = 0, which implies the
first assertion. If i > d, then Ext’y(M’, A) ~ Ext*(M", A). This implies the
second assertion. Q.E.D.

Proposition 5.3.22 If an A-module M of finite type is a k-th syzygy module
in the sense that there is an exact sequence

00— M — FE — -+ — Ey,
where B, -+, Ey are free A-modules of finite type, then
dh(M) < n—k.



138 CHAPTER 5. STABLE VECTOR BUNDLES

Proof Let
My = M,
Mi:Image(E’i —>Ei+1)7 i=1, -, k_la
My, = Ex/Mg_1.

Then we have short exact sequences
0—)Mi_)1—>Ei—>Mi—>O, ’izl,-~',]€.
By (5.3.21) we have either

0 = dh(E;) = max(dh(M;), dh(M;_1))

" dh(M;) = dh(M;-1) + 1.
Hence,
(53.23) dh(af:) = { gh(Mi,l) 1 othorme
It follows that
0 < dh(My) < max(0,dh(M;) — ).
Since dh(My) < n, we obtain dh(M) < n — k. Q.E.D.

5.4 Coherent sheaves—torsion and reflexivity of
stalks

As in the preceding section, let A denote the ring of germs of holomorphic
functions at the origin 0 of C™. Let K be the quotient field of A; it is the field
of germs of meromorphic functions at 0 € C™.

The rank of an A-module M of finite type is defined by

(5.4.1) rankM = dimg (K ®4 M).

An element u of M is called a torsion element if au = 0 for some nonzero
element a of A. The set T(M) of torsion elements of M is an A-submodule
of M, called the torsion submodule of M. If M has no torsion elements, i.e.,
T (M) =0, then M is said to be torsion-free. Every free A-module is obviously
torsion-free. Every submodule of a torsion-free module is again torsion-free.
Conversely,

Proposition 5.4.2 If M is a torsion free A-module of rank r, then it is a
submodule of a free A-module of rank r.
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Proof Since M is torsion-free, the natural map
i M —K®a M=K"

is injective. Since M is of finite type, the injection ¢ followed by multiplication
by some nonzero element a of A gives an injection

J:M— A"
(We multiply by a suitable element a to clear the “denominators”.) Q.E.D.
Given an A-module M of finite type, the dual of M is defined to be
(5.4.3) M* = Homa (M, A).

It is again an A-module of finite type. There is a natural homomorphism oj; of
M into its double dual M**; for each u € M,op(u) € Homa(M*, A) is given
by

(5.4.4) (o (u)(f) = f(u) for fe M*.

Then

(5.4.5) Ker oy = ﬂ Ker f.
feMm~

Proposition 5.4.6 If M is an A-module of finite type and T(M) its torsion
submodule, then
T(M) =Ker oyp.

Proof IfueT(M), then au = 0 for some nonzero element a € A, and
a- f(u) = flau) = f(0) =0 forall fe M"

Hence, f(u) =0 for all f € M*. By (5.4.5), u € Ker op.

Let u be an element of M not belonging to T'(M). We have only to prove
that f(u) # 0 for some f € M*. Since M /T(M) is torsion-free, it is a submodule
of a free module A by (5.4.2). Thus, there is an injection

ji MJT(M) —s A"

Let p : M — M /T (M) be the natural projection. Since 0 # p(u) € M/T(M), jo
p(u) is a nonzero element of A”. Let ¢ : A” — A be the projection to one of the
factors of A" such that g o jop(u) # 0. Then we set f =qgojop. Q.E.D.

Corollary 5.4.7 An A-module M of finite type is torsion-free if and only if the
natural homomorphism oy - M — M* is injective.

If M =T(M),M is called a torsion module. From (5.4.6) we obtain
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Corollary 5.4.8 An A-module M of finite type is a torsion module if and only
if M* = 0.

Corollary 5.4.9 The natural map M — M/T(M) induces an isomorphism

If opp : M — M* is an isomorphism, we say that M is reflezive. If M is
free, it is reflexive. If it is reflexive, it is torsion-free. Thus,

free = reflexive = torsion-free.
Dualizing opy : M — M**, we obtain a homomorphism
oyt (M™) — M™.
On the other hand, let
opr t M* — (M*)**
be the natural homomorphism for M*. Then
(5.4.10) oy oons = Lpge.

In fact, if u € M and f € M*, then

(03 0 on+f)(u) = (on- o) = (onu)(f) = f(u).
From (5.4.10) we see that op- : M* — M*** is injective and M* is torsion-free.

Proposition 5.4.11 If M is an A-module of finite type, then the natural ho-
momorphism oy~ : M* — M*™* is an isomorphism.

Proof By (5.4.9) we may assume, replacing M by M/T(M), that M is
torsion-free. Let K be the quotient field of A and V the K-vector space of
dimension r (= rank M) defined by V=M ®4 K. Let

i M —V=M®@s K

be the natural map, which is injective since M is torsion-free. Under this imbed-
ding ips, M is a lattice in V' in the sense that there exist two free A-submodules
Ly, Ly of V of rank r such that Ly C M C Ly C V. (In fact, if 21,--- ,2, € M
form a basis for V over K, we can take as L the free A-submodule generated
by z1,- - ,x,.. We can obtain Ly from the proof of (5.4.2).)

We have a commutative diagram

M-V =—MosK
fl lf@l for f e M*=Homa(M,A).
A" K—Aos K
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This diagram means that the correspondence f — ¢ = f ® 1 gives a natural
identification of M* with the A-submodule

{peVipoin(M) Cia(A)}
of V*. Since i4 and iy, are injections, we make the following identifications:
A=ir(A)C K, M=iy(M)CV.

Thus, omitting ¢4 and i,s, the correspondence f — ¢ = f ® 1 gives a natural
identification of M™ with the dual lattice of M C V, i.e.,

M*~{pe V" p(M)C A} C V™

Similarly, M** can be considered as the dual lattice of the lattice M* C V*.
Thus,

McM™CV(=V*™).
Considering the dual lattice of M and M™**, we obtain the inclusion
(M*™)* Cc M* CV*.

This shows that oy, : M™*** — M* is also injective. Q.E.D.

Proposition 5.4.12 If M is an A-module of finite type, then M** /oy (M) is
a torsion module.

Proof Dualizing the exact sequence
M — M*™ — M* /oy (M) — 0,
we obtain an exact sequence
0— (M*/op (M) — M*™ — M*.
Since M*** — M* is an isomorphism by (5.4.11), we have (M**/op (M))* = 0.

By (5.4.8), M** /oy (M) is a torsion module. Q.E.D.

Proposition 5.4.13 Let M be an A-module of finite type. If it is reflexive, it
can be included in an exract sequence

(%) 0— M —FE—F—0

with E free and F' torsion-free. Conversely, if M is included in an exact sequence
() with E reflexive and F torsion-free, then M is reflexive.
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Proof Suppose M is reflexive. Take an exact sequence
Ei — Ey— M*—0,
where Ey and F; are free. Dualizing it, we obtain an exact sequence
0 — M™ — Ej — EJ.

Let E = E} and F' = Image(E§ — EY).

Conversely, suppose M is included in the exact sequence (x) with the stated
properties. Being a submodule of a reflexive module E, M is torsion-free. Hence,
oy 2 M — M™ is injective. Dualizing the injection j : M — E twice, we obtain
a homomorphism j** : M** — E** = E. We claim that j** is injective. (In
fact, if ¢1,- -+ , 2z, € M form a basis for V = M ® 4 K, then j(z1), - ,j(z,) are
linearly independent over K in E, so that the map j ®@1: M @4 K - E®a4 K
is injective. Composing this injection j ® 1 with the natural inclusion M** C
M ®4 K obtained in the proof of (5.4.11), we have an inclusion M** C E®4 K.
Hence, j** : M** — E is also injective.) Since

MCM™CE,

M**/M may be considered as a submodule of F/M = F. Since M**/M is a
torsion module (see (5.4.12)) and F is torsion-free, we obtain M** = M. Q.E.D.

We defined the concept of k-th syzygy module in (5.3.22). The following
proposition is clear from (5.4.2), (5.4.13) and (5.3.22).

Proposition 5.4.14 Let M be an A-module of finite type.

(a) It is torsion-free if and only if it is a first syzygy module. If it is torsion-
free, then dh(M) < n — 1.

(b) It is reflexive if and only if it is a second syzygy module. If it is reflexive,
then dh(M) < n —2.

The following proposition generalizes (5.4.11), (where N = A).

Proposition 5.4.15 Let M and N be A-modules of finite type. If N is reflex-
ive, so is Homy (M, N).

Proof Let
00— M —F—M—0

be an exact sequence such that F is free. Then
0 — Homa (M, N) — Homu(E, N) — Homu(M;, N)

is exact. Since Homy(E, N) = N @ --- @ N, it follows that Hom4(E, N) is
reflexive. Since N is torsion-free, Hom 4 (M7, N) is torsion-free. Apply (5.4.13)
to the exact sequence

0 — Homa (M, N) — Homyu(E, N) — L — 0,
where L = Image(Hom4(E, N) — Homa(M;y, N)). Q.E.D.
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5.5 Local properties of coherent sheaves

Let M be a complex manifold of dimension n and O = Oj; the structure
sheaf of M, i.e., the sheaf of germs of holomorphic functions on M. (Thus, in
the previous notation, O = QV.) We write

OP=0@ -0, (ptimes).

An analytic sheaf over M is a sheaf of O-modules over M. We say that an
analytic sheaf S over M is locally finitely generated if, given any point xg of
M, there exists a neighborhood U of xy and finitely many sections of &;; that
generate each stalk S,z € U, as an O, -module. This means that we have an
exact sequence

(5.5.1) O, — Sy — 0.

In particular, each stalk S, is an O, -module of finite type, to which the results
of Sections 5.3 and 5.4 can be applied.

We say that an analytic sheaf S is coherent if, given any point zy of M,
there exists a neighborhood U of zy and an exact sequence

(5.5.2) O} — 07, — Sy — 0.

This means that the kernel of (5.5.1) is also finitely generated.
For the proof of the following lemma of Oka, see for example Gunning-Rossi
[42] or Hérmander [50].

Lemma 5.5.3 (Oka’s lemma) The kernel of any homomorphism O% — OP
1s locally finitely generated.

It follows from (5.5.3) that the kernel R of O — OPF is coherent. (In fact,
apply (5.5.3) again to the kernel of O, - Ry C OF}.)

Given a coherent sheaf S over M and a point xzg of M, consider the exact
sequence (5.5.2). Applying Oka’s lemma to (5.5.2), we obtain an exact sequence

q P
v — O — O — Sy — 0,

(where U is a neighborhood of zy possibly smaller than the neighborhood U
in the sequence (5.5.2). But we denote this smaller neighborhood again by U.)
Repeat this process (taking smaller and smaller neighborhoods U of zg). As we
shall see, after a finite number of steps we obtain a free resolution:

(5.5.4) 0— O — - - — O} — O — Sy — 0, (d=n).

This follows from Syzygy Theorem (5.3.11).

From the definition of homological dimension we know that S, is a free O, -
module if and only if dh(S,) = 0, or equivalently, (see (5.3.18)), if and only if
codh(S;) = n.
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For each integer m,0 < m < n, the m-th singularity set of S is defined to be
(5.5.5) S (S) = {z € M;codh(S;) £ m} = {x € M;dh(S,) =n—m}.

Evidently,
So(8) C S1(S) C -+ C8p—1(S) C Sn(S) = M.

We call S,,_1(S) the singularity set of S. It is clear that
(5.5.6) Sn-1(S) = {x € M;S, is not free}.
The fact that S,,(S) is a closed subset of M follows from the following

Lemma 5.5.7 The homological dimension dh(S;) is upper semicontinuous in
x. (Hence, codh(S,) is lower semicontinuous in x.)

Proof Let d = dh(S;,). Then we have a free resolution of Sy, of length
d. Since § is coherent, we obtain a free resolution (5.5.4) of Sy of length d for
some neighborhood U of xg. This shows

dh(S,) = d for zeU. Q.E.D.
The following theorem is due to Scheja [135].

Theorem 5.5.8 The m-th singularity set S,,(S) of a coherent sheaf S is a
closed analytic subset of M of dimension < m.

Proof The theorem is of local character. We fix a point € M and show
that, for a suitable neighborhood U of z,S,,(S) NU is an analytic subset of U.
Without being explicit, we shall shrink U to a smaller neighborhood whenever
necessary.

Let

(5.5.9) — Enm LN 1 — o —E — Sy — 0

be a free resolution of Syy. Fixing a local basis in each &,, we can represent h
by a matrix(h}(y)) of holomorphic functions on U. Let

r=max rank(h’(y)).

Then
(5.5.10) Sm(S)NU = {y € U;rank(h}(y)) < r}.

Hence, S,,(S) N U is an analytic subset of U.
In order to prove the inequality dim S,,(S) < m, we consider first the case
m=0. Let ’Hox}S denote the sheaf defined by the presheaf
V—{sel(V, S);s|ly_s =0}.

Then it is a coherent subsheaf of S. Hence, the quotient sheaf 7 =& /H?I}S is
also coherent. We claim
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codh(F;) = 1.

If not (i.e., if codh (F,) = 0), then there exists a nonzero element f, of F,
which is annihilated by every element a, of the maximal ideal m, of O,. Let s
be a local section of S in U representing f,. Similarly, let ¢ be a holomorphic
function in U extending a,. Since a, f, = 0, it follows that a- s is a local section
of H?I}S and hence a-s = 0in U—{x}. Since this holds for all local holomorphic
functions a vanishing at x, we have s = 0 in U — {«}. This means that s is a
section of Hox S. Since the element f, € F, = (S/’H({)x}S)r is represented by
s, we obtain a contradicting conclusion that f, = 0. This proves our claim.
Since codh(F,) is lower semicontinuous in y (see (5.5.7)), it follows that

codh(F,) 21 for yeU.

Hence,
So(F)NnU = 0.

Since F &~ S on U — {x}, we obtain
So(F)N (U —A{z}) = So(8) N (U —{z}),

which shows that Sy(S)NU is either the singleton {z} or the empty set. Hence,
dim Sy(S) < 0.

We prove the general case by induction on m. Suppose dim S,,(S) > m and
let  be a point where S,,(S) has dimension > m. Since Sy(S) is discrete, we
may assume without loss of generality that & Sy(S). Then there exists an
element a, in the maximal ideal m, of O, such that a, is not a zero divisor on
S.. If a is the local holomorphic function determined by the germ a,, then the
local sheaf homomorphism « : § — S defined by multiplication by a is injective
in some neighborhood U of z. (In fact, let G = a(S). Then G is a coherent
sheaf. Since a, is not a zero divisor on S,, the homomorphism a,, : S, — G, is
bijective. Let B, : G, — S, be the inverse homomorphism. Since G is coherent,
Bz extends to a local homomorphism S : G — S in some neighborhood of z.
Then § o « is an endomorphism of S such that (8 o «), coincides with the
identity endomorphism of S,. Since S is coherent, S o « coincides with the
identity endomorphism of S in some neighborhood of x. Then « is injective
there.)

Now we claim

Sp(S)NU N {a =0} C Sm_1(S/a(S)).

In fact, given a point y in S,,(S) NU N {a = 0}, if we choose an S,-sequence
{a1y, -+, amy} for O, such that a; = a, then {as,, - -+, amy}isan (S/a(S)),-
sequence for O,. Hence, y belongs to S,,,—1(S/a(S)).

Since Sy, (S)NU has dimension > m at x by assumption and since a vanishes
at z, 5, (S8) NU N {a = 0} has dimension > m — 1 at z. This contradicts the

inductive hypothesis that dim S;,—1(S/a(S)) £ m — 1. Q.E.D.
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Corollary 5.5.11 If a coherent sheaf S is a k-th syzygy sheaf in the sense that
for every point x of M there is an open neighborhood U together with an exact
sequence

0—Sy —& — - — &

such that &1, --- , & are locally free coherent sheaves over U, then
dim S, (S) = m — k.

Proof Writing S for Sy, let

SO = S,
Sizlmage(5¢—>5i+1), 1=1, -+ ]{1—1,
Sk = Ek/Sk—1

so that we have short exact sequences
0—>Si_1—>£i—>8i—>07 7::1,"',]6.

Then (see the proof of (5.3.22))

(5.5.12) dh(S;.,) = {gh( Sia) 41 ftfefwllijree
It follows that
S (So) C Sm—1(81) C Sim—2(S2) C -+ C Sp—k(Sk)-
Since dim Sy, —(Sg) £ m—k by (5.5.8), we obtain dim S,,,(S) < m —k. Q.E.D.

Since every coherent sheaf S is locally free outside its singularity set .S,,_1(S),
we define

(5.5.13) rank S = rank S, zeM—S,-1(S).

If every stalk of S is torsion-free, S is said to be torsion-free. Every locally free
sheaf is obviously torsion-free. Any coherent subsheaf of a torsion-free sheaf is
again torsion-free. Conversely, we have

Proposition 5.5.14 If S is a torsion-free coherent sheaf of rank r, then it is
locally a subsheaf of a free sheaf of rank r, i.e., for every point x of M, there
exists a neighborhood U and an injective homomorphism

j:Su — Op.
Proof By (5.4.2), there is an injection

Jo 2 Sz — OL.
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Since S is coherent, j extends to a homomorphism j : Sy — Of; for a small
neighborhood U of z. Then j is an injection in a possibly smaller neighborhood
of . Q.E.D.

From (5.5.11) and (5.5.14) we obtain
Corollary 5.5.15 If S is a torsion-free coherent sheaf, then
dim S, (S) £m—1 for all m.

This means that a torsion-free sheaf S is locally free outside the set S,,_1(S)
of codimension at least 2. In particular, every torsion-free coherent sheaf over
a Riemann surface is locally free.

The dual of a coherent sheaf S is defined to be the coherent sheaf

(5.5.16) S§* = Hom(S, 0).
There is a natural homomorphism o of S into its double dual &**:
(5.5.17) oc:8 — 8.

Then the kernel Ker o consists exactly of torsion elements of S (see (5.4.6)). The
coherent subsheaf Ker o of S, denoted by T(S), is called the torsion subsheaf
of §. Tt is clear that o is injective if and only if S is torsion-free.

If 0 : S — &** is bijective, S is said to be reflexive. Every locally free sheaf
is obviously reflexive. Every reflexive sheaf is torsion-free. From (5.4.11) we
obtain

Proposition 5.5.18 The dual §* of any coherent sheaf S is reflexive.

The proof of the following proposition is identical to that of (5.4.13).

Proposition 5.5.19 If a coherent sheaf S is reflexive, then every point x of M
has a neighborhood U such that Sy can be included in an exact sequence

0—Sy — & — &
such that & and & are free coherent sheaves.
From (5.5.11) and (5.5.19) we obtain
Corollary 5.5.20 If S is a reflexive coherent sheaf, then
dim S,,(S) £m —2 for all m.
This means that a reflexive sheaf S is locally free outside the set S,,_1(S)

of codimension at least 3. In particular, every reflexive sheaf over a complex
analytic surface (of complex dimension 2) is locally free.
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We say that a coherent sheaf S over M is normal if for every open set U in
M and every analytic subset A C U of codimension at least 2, the restriction
map
LU, 8§)-T(U -4, S)
is an isomorphism. By Hartogs’ extension theorem, the structure sheaf O = Oy,
is normal. We note that, by (5.5.14), this restriction map is injective if S is
torsion- free.

Proposition 5.5.21 A coherent sheaf S is reflexive if and only if it is torsion-
free and normal.

Proof Since O is normal, the dual sheaf of any coherent sheaf is normal.
Hence, if S is reflexive, i.e., S = §**, then it is normal.

Conversely, assume that S is torsion-free and normal. Since S is torsion-free,
the natural map o : § — S** is injective and the singularity set A = S,,_1(S) is
of codimension at least 2 by (5.5.15). For every open set U in M, we have the
following commutative diagram:

rU-A, S —2=TIU-A, 8

| !

ru, §) —>——=TI(U, 8*).
The vertical arrows are isomorphisms since S is normal and §** is reflexive
and hence normal. The top horizontal arrow is an isomorphism since o : § —
S** is an isomorphism outside the singularity set A = S,,_1(S). Hence, the

bottom horizontal arrow is also an isomorphism. It follows that S is reflexive.
Q.E.D.

The following proposition may be considered as the converse to (5.5.19).
Proposition 5.5.22 Let
0—8—>8—8"—0

be an exact sequence of coherent sheaves where S is reflexive and 8" is torsion-
free. Then S’ is normal and hence reflexive.

Proof Let U C M be open and A C U an analytic subset of codimension
at least 2. Then we have the following diagram
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where all vertical and horizontal sequences are exact. (The left vertical sequence
is exact because S’ is torsion-free.) A simple diagram chasing shows that the
restriction map I'(U, §’) —» T'(U — A, §’) is surjective. Q.E.D.

Proposition 5.5.23 Let F and S be coherent sheaves over M. If F is reflexive,
so is Hom(S, F).

Proof  This follows from (5.4.15). It can be proved also in the same way as
(5.4.15) using (5.5.22) in place of (5.4.13). Q.E.D.

5.6 Determinant bundles

Every exact sequence
(5.6.1) 0—FE,— - —FE —E—0
of holomorphic vector bundles induces an exact sequence
(5.6.2) 0—&,— - —& —& —0

of locally free coherent sheaves, where &; denotes the sheaf O(E;) of germs of
holomorphic sections.of E;. Conversely, every exact sequence (5.6.2) of locally
free coherent sheaves comes from an exact sequence (5.6.1) of the corresponding
holomorphic vector bundles. This can be easily verified by induction on m.

For a holomorphic vector bundle E of rank r, its determinant bundle det E
is defined by

det B = ATE.

Lemma 5.6.3 Given an exact sequence (5.6.1), the line bundle

m

®(det El)(il)l

i=0
s canonically isomorphic to the trivial line bundle.

Proof The proof is by induction on m. For m = 1, this is trivial. Now,
reduce (5.6.1) to the following two exact sequences:

0—F—F — Ey—0,
0—FE,— - —FE —F—0(,
where E = Ker(E; — Ey) = Im(E2 — E1), and use the induction. Q.E.D.
Given a coherent sheaf S, we shall define its determinant bundle det S . Let

(5.6.4) 0—&, — - — & —&E —Sy —0
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be a resolution of Sy by locally free coherent sheaves, where U is a small open
set in the base manifold M. Let F; denote the vector bundle corresponding to
the sheaf &;. We set
(5.6.5) det Sy = Q) (det E;) 71"
i=0

We need to check that det Sy is independent of the choice of the resolution
(5.6.4). Let
(5.6.4") 0—¢& — - —& —E&E—8S —0
be another locally free resolution of Sy. Let E! be the vector bundle corre-
sponding to £/. We want to show that there is a canonical isomorphism
(5.6.6) R)(det E) " ~ R)(det E) Y.

i=0 i=0
To simplify the notation, we omit the subscript U from Sy. The first step in
constructing the canonical isomorphism (5.6.6) is to construct a third locally

free resolution of S (the middle exact sequence in (5.6.7) below) which maps
surjectively to both (5.6.4) and (5.6.4):

(5.6.7) 0 R L L I N L LI 0
0— g oo D g s
o S B N o g

where the vertical arrows are all surjective. We construct first . Let
Go = {(u, v') € & &; fo(u) = fo(u')}

and let & be a locally free sheaf which maps surjectively onto Gy. Let f§
: & — Go — S be the composed map. The surjective maps £ — & and
&y — & are obtained by composing £] — Gy with the natural projections
Go — & and Gy — &). We construct next &;'. Let Sp, Sy and S be the kernels
of fo, f§ and fi, respectively. The relevant part of (5.6.7) looks as follows:

f1

51 — So —0
I
Sy

ipl
’

fi

& ——=8§,——=0
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where the vertical arrows are both surjective. Let
G1 ={(u,v') € &1 D E7; f1(u) = p(u”) and f{(u') = p'(u") for some v € S/},

and let &/ be a locally free sheaf which maps surjectively onto G;. The con-
structions of & — &, &) — &1 and £ — &] are the same as in the case of &/.
Inductively we can complete the construction of the diagram (5.6.7).

The second step is to show that the top two resolutions of S in (5.6.7) give

rise to the same determinant bundle. We consider the following commutative
diagram:

(5.6.8) 0 0 0 0
0 En & &o S 0
0 &y 24 &y S 0
0 Fn Fi Fo 0
0 0 0
where F; = Ker(&] — &;). Being the kernel of a surjective map between

two locally free sheaves, F; is also locally free. Let F; be the vector bundle
corresponding to F;. Then, by (5.6.3)

det B’ = (det E;) @ (det F}), (canonically)

n

®(det Fi)(fl)i = trivial line bundle, (canonically).

i=0
Hence, we have the desired canonical isomorphism:

n n n

)(det B/ D" = R)((det ;) @ (det F;)) D" = R)(det E;) V"

i=0 i=0 i=0
Similarly, we obtain a canonical isomorphism

n n

Q(det £V = @)(det B) .

=0 =0

This completes the proof that det S is well defined.
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Proposition 5.6.9 If
0—8—>8—8"—0

is an ezxact sequence of coherent sheaves, then there is a canonical isomorphism
det S = (det S") @ (det S”).

Proof The proof is fairly standard. All we have to do is to construct the
following commutative diagram:

0 0 0 0
0—>¢ & & Sy —=0
0—&, & & Sy ——>0
0—>& —> & ——> & ——> S —>0

0 0 0 0

where the horizontal sequences are locally free resolutions and the vertical se-
quences are all exact. To construct the diagram above, we choose first £ and
&Y. Set & = &) ® &) and define maps & — Sy and &) — & — &) in an
obvious manner. Then set §] = Ker(&, — Sf;), S1 = Ker(& — Sy) and
S = Ker(&) — Sf). Repeating this process we obtain the desired diagram.
(In the process we may have to shrink the neighborhood U.) Q.E.D.

Proposition 5.6.10 If S is a torsion-free coherent sheaf of rank r, then there
18 a canonical isomorphism

det S = (A"S)**.

Proof Let A=S,_1(S) be the singularity set of S. Since S is torsion-free,
A is an analytic subset of codimension at least 2 in M, (see (5.5.15)). Since S
is locally free over M — A, there is a canonical isomorphism f : detSp;—4 —
(AN"S)hi_4- Since (A"S)* is reflexive (see (5.5.18)) and hence normal (see
(5.5.21)), Hom(det S, (A"S)**) is also normal. Hence, f extends to a homo-
morphism f: detS — (A"S)**. Let g be the inverse map of f. Since detS is
normal, g extends to a homomorphism g : (A"S)** — detS. Since f o g and
g o f are the identity endomorphisms of (A"S)%7_ 4 and (det S)ar—a, respec-
tively, f o § and §o f are the identity endomorphisms of (A"S)** and det S,
respectively. Q.E.D.
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Remark 5.6.11 Since (A"S)** is defined without using a locally free resolution
of S, the proof of (5.6.10) may be used to show quickly that when S is torsion-
free the definition (5.6.5) of det Sy is independent of the choice of the resolution
(5.6.4).

Proposition 5.6.12 IfS is a torsion-free coherent sheaf, then there is a canon-
ical isomorphism

(det S)* = (det S*).

Proof By (5.6.10), (detS)* = (A"S)* and (det S*) = (A"S*)**. Let A =
Sp—1(S). Then (A"S8)4;_ 4 = (AN"S*)3s_4- The remainder of the proof is similar
to that of (5.6.10). Q.E.D.

Proposition 5.6.13 Every monomorphism S’ — S between torsion-free coher-
ent sheaves of the same rank induces a sheaf monomorphism det S’ — det S.

Proof Let A=S5,_1(S) and A’ = S,_1(S’). Then outside of AU A’ the
map S8’ — S and the induced map det S’ — det S are isomorphisms. Hence,
Ker(det 8" — det S) is a torsion sheaf. Being also a subsheaf of a torsion-free
sheaf, it must be zero. Q.E.D.

Proposition 5.6.14 If S is a torsion sheaf, then detS admits a non-trivial
holomorphic section. Moreover, if supp(S) = {z € M; S, # 0} has codimension
at least 2, then det S is a trivial line bundle.

Proof Let A =5,_1(S). Since S is locally free over M — A and S is a
torsion sheaf, it follows that supp(S) C A. In the locally free resolution (5.6.4)
of Sy, let §; = Ker(& — Sy) = Im(&1 — &), so that

0—8& —& —Sy —0
is exact. By (5.6.9),
det Sy = (det S1)* ® (det &) = Hom(det S, det &).

The injective map detS; — det&p induced by the injection S; — & (see
(5.6.13)) can be considered as a non-trivial section of det Syy. The fact that
this section is independent of the choice of the resolution (5.6.4) and hence is
globally well defined over M can be proved in the same way as det Sy was shown
to be independent of the resolution (5.6.4). The relevant part of the diagram
(5.6.8) is given by



154 CHAPTER 5. STABLE VECTOR BUNDLES

0 0 0
0 Si &o Su 0
0 Sy &y Su 0
0 Fo Fo 0

0 0

Q.E.D.

Having defined the determinant bundle det S of a coherent sheaf S, we define
the first Chern class ¢;(S) by

(5.6.15) c1(S) = c1(det S).

5.7 Stable vector bundles

Let S be a torsion-free coherent sheaf over a compact Kahler manifold (M, g)
of dimension n. Let ® be the Kéhler form of (M, g); it is a real positive closed
(1,1)-form on M. Let ¢1(S) be the first Chern class of S, (see (5.6.15)); it is
represented by a real closed (1,1)-form on M. The degree (or more precisely,
the ®-degree) of S is defined to be

(5.7.1) deg(S) = / c1(S)A®™ L.
M

The degree/rank ratio p(S) is defined to be

(5.7.2) w(S) = deg(S)/rank(S).

Following Takemoto [1], we say that S is ®-semistable if for every coherent
subsheaf §’,0 < rankS’, we have

If moreover the strict inequality

(S < u(S)

holds for all coherent subsheaf &’ with 0 < rank(S’) < rank(S), we say that S
is ®-stable. A holomorphic vector bundle E over M is said to be ®-semistable
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(resp. ®-stable ) if the sheaf O(E) = Q°(E) of germs of holomorphic sections
is ®-semistable (resp. ®-stable). We note that even if we are interested in
stability of vector bundles we need to consider not only subbundles but also
coherent subsheaves.

If H is an ample line bundle (so that M is projective algebraic) and if @
is a closed (1,1)-form representing the first Chern class ¢;(H), then we say
H-semistable (resp. H-stable) instead of ®-semistable (resp. ®-stable). Since
c1(H) and ¢1(S) are integral classes, in this case the degree (or the H-degree)
of § is an integer.

Lemma 5.7.3 If
0—8 —=8§—8"—0

is an ezact sequence of coherent sheaves over a compact Kahler manifold (M, g),
then

' (u(S) = w(S")) + " (u(S) = w(S")) =0,

where v’ = rankS’ and r”" = rankS”.

Proof By (5.6.9),
01(8) = (S/) + 01(8//).

Hence,
(1 +1")(S) = deg(S) = deg(§") + deg(S") = r'p(8') +r"u(S").
Q.E.D.

From (5.7.3) we see that stability and semistability of S can be defined in
terms of quotient sheaves S” instead of subsheaves §’. Namely,

Proposition 5.7.4 Let S be a torsion-free coherent sheaf over a compact Kihler
manifold (M, g). Then

(a) S is ®-semistable if and only if u(S) < u(S") holds for every quotient
sheaf 8" such that 0 < rankS”;

(b) S is ®-stable if and only if u(S) < u(S”") holds for every quotient sheaf
S” such that 0 < rankS” < rankS.

In (5.7.4) we do not have to consider all quotient sheaves. First we prove
Lemma 5.7.5 If T is a coherent torsion sheaf, then
deg(T) = 0.

Proof  This follows from (5.6.14). If V' denotes the divisor of M defined as
the zeros of a holomorphic section of det 7, then

deg(T) = /V<1>"‘1 > 0. Q.E.D.
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Proposition 5.7.6 Let S be a torsion-free coherent sheaf over a compact Kdhler
manifold (M, g). Then
(a) S is ®-semistable if and only if either one of the following conditions
holds:
(@)  w(8) £ u(S) for any subsheaf S’ such that the quotient /S’ is
torsion-free;
(@) wu(8) £ u(S") for any torsion-free quotient sheaf S”.
(b) S is ®-stable if and only if either one of the following conditions holds:
@) w(S) < w(S) for any subsheaf S" such that the quotient S/S’ is
torsion-free and 0 < rankS’ < rankS;
@) w(S) < p(8") for any torsion-free quotient sheaf S" such that
0 < rankS” < rankS.

Proof Given an exact sequence
0—S8 —8—8"—0,

let 7" be the torsion subsheaf of §”. Set S = §”/T" and define S] by the
exact sequence

0—8 —S—8 —0.

Then &’ is a subsheaf of S and the quotient sheaf Sj/S’ is isomorphic to the
torsion sheaf 7”. From (5.6.9) and (5.7.5) we have

(S S p(S") and  u(S') < u(S)).
Our assertions follow from these inequalities. Q.E.D.

The following proposition should be compared with (4.1.4).

Proposition 5.7.7 Let S be a torsion-free coherent sheaf over a compact Kahler
manifold (M, g). Then

(a) If rank (S) = 1, then S is ®-stable;

(b) Let L be (the sheaf of germs of holomorphic sections of) a line bundle
over M. Then S® L is -stable (resp. ®-semistable) if and only if S is ®-stable
(resp. ®—semistable);

(¢) S is -stable (resp. ®-semistable) if and only if its dual S* is -stable
(resp. ®-semistable).

Proof Both (a) and (b) are trivial. In order to prove (c), we need the
following lemma which follows immediately from (5.6.12).

Lemma 5.7.8 If S is a torsion-free coherent sheaf, then

w(S) = —pu(S™).
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Assume first that §* is ®-stable and consider an exact sequence
0—8—-8—8"—0
such that 8" is torsion-free. Dualizing it, we have an exact sequence
0— 8" — 8 — S
Using (5.7.8), we have
1(S) = —pu(S") < —p(8") = u(S").

By (5.7.6), S is ®-stable.
Assume next that S is ®-stable, and consider an exact sequence

0—F —8 —F' —0
such that F” is torsion-free. Dualizing it, we have an exact sequence
0— F"™ — & — F™.

Considering S as a subsheaf of $** under the natural injection o : § — §**, we
define &’ and §” by
S=8nrF"” §"=§/S.

Then define 7" by the exact sequence
0— F"™*/S — 8 /S — T" — 0.

Since §**/S§ is a torsion-sheaf by (5.4.12), so are F"*/S" and T"”. By (5.6.12),
det(S**) = (det §*)* = (det S)** = detS. By (5.6.9), det(S**/S) is a trivial
line bundle. In general, if 7 is a torsion sheaf such that det 7 is a trivial line
bundle and if

0—T —T—T"—0

is exact, then both det 7' and det 7" are trivial line bundles by (5.6.9) and
(5.6.14). Hence, det(F"*/S’) is a trivial line bundle; i.e., det(F"*) = det S’. In
particular, deg(F"*) = deg(S’). Since rank(F"*) = rank(S’), we obtain

pS) = plF").

Hence,
W(F") = —p(F"™) = —pu(S') > —p(S) = w(S™),

where the first and the last equalities are consequences of (5.6.12) and the
inequality follows from the assumption that S is ®-stable.
The proof for the semistable case is similar. Q.E.D.

Proposition 5.7.9 Let S; and Ss be two torsion-free coherent sheaves over a
compact Kdahler manifold (M, g). Then Sy & Sa is ®-semistable if and only if
&1 and Sy are both ®-semistable with p(Sy) = u(Sa).
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Proof  Assume that S; and Sy are ®-semistable with g = u(S1) = u(Ss).
Then (81 B S2) = p, and for every subsheaf F of §; @Sy we have the following
commutative diagram with exact horizontal sequences:

0——8 —=85 285 —85 ——0

]

0 Fi F Fa 0,

where 1 = FN(S1©0) and F; is the image of F under the projection S; &Ss —
S, so that the vertical arrows are all injective. Since S; is $-semistable, we have

deg(F;) < perank (F;).
Hence,
w(F) = (deg(F1) + deg(F2))/(rankF; + rankFs) < p.

This shows that S; & So is $-semistable.

Conversely, assume that S; @ Sy is $-semistable. Since S; is a quotient sheaf
of S1 @S, and at the same time a subsheaf of S; ®S,, we have p(S19S82) = u(S;).
Any subsheaf F of S; is a subsheaf of §; ©S,. Hence, u(F) £ p(S1882) = p(S;).
This shows that S; is ®$-semistable. Q.E.D.

Remark 5.7.10 It is clear that if S1 and Ss are nonzero, Sy ® Sy can never be
D-stable.

The following proposition should be compared with (4.1.7) and (4.5.5).

Proposition 5.7.11 Let S1 and Sy be ®-semistable sheaves over a compact
Kdéhler mamfold (M, g). Let f : S1 — Sy be a homomorphism.

(1) If u(S1) > p(S2), then f = 0;

(2) If 1(S1) = pu(S2) and if Sy is O-stable, then rank(S;) = rank(f(S1)) and
f is injective unless f = 0;

(3) If 1(S1) = pu(S2) and if Sy is O-stable, then rank(Sy) = rank(f(S1)) and
f is generically surjective unless f = 0.

Proof Assume f # 0. Set F = f(S1). Then F is a torsion-free quotient
sheaf of ;.
(1) Since
p(F) = p(S2) < p(S1) = u(F),
we have a contradiction.
(2) If S; is ®-stable and if rank(S;) > rank(F), then

(F) = pu(Sa2) = pu(S1) < pu(F),

which is impossible. Hence, rank(S;) = rank(F).
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(3) It Sy is ®-stable and if rank(S2) > rank(F), then

w(F) < u(S2) = pu(S1) = pu(F),

which is impossible. Hence, rank(S;) = rank(F). Q.E.D.

Corollary 5.7.12 Let E1 and FEy be ®-semistable vector bundles over a com-
pact Kahler manifold (M, g) such that rank(E;) = rank(Es) and deg(E:1) =
deg(E2). If Ey or Ey is ®-stable, then any nonzero sheaf homomorphism
f: E1 — Es is an isomorphism.

Proof By (5.7.11), f is an injective sheaf homomorphism. The induced
homomorphism det(f) : det 1 — det Es is also nonzero. Consider det(f) as a
holomorphic section of the line bundle Hom(det E1, det Ey) = (det Fy)~!(det Ey)
and apply (3.1.24). Then we see that det(f) is an isomorphism. Hence, f is an
isomorphism. Q.E.D.

Corollary 5.7.13 If S is a ®-semistable sheaf over a compact Kdhler manifold
M such that deg(S) < 0, then S admits no nonzero holomorphic section.

Proof Let O be the sheaf of germs of holomorphic functions on M. Apply
(5.7.11) to f : O = S. Q.E.D.

The proposition above should be compared with (4.5.6).

A holomorphic vector bundle E over a compact complex manifold M is said
to be simple if every sheaf homomorphism f : E — FE (i.e., every holomorphic
section of Hom(E, E) = E* ® E) is a scalar multiple of the identity endomor-
phism.

Corollary 5.7.14 FEvery ®-stable vector bundle E over a compact Kdhler man-
ifold M is simple.

Proof Given an endomorphism f : E — FE, let a be an eigenvalue of
f : E, — E, at an arbitrarily chosen point z € M. Applying (5.7.12) to
f—alg, we see that f —alg = 0. Q.E.D.

We consider now the Harder-Narasimhan filtration theorem in higher dimen-
sion, (see Shatz [144] and Maruyama [99] in the algebraic case).

Theorem 5.7.15 Given a torsion-free coherent sheaf £ over a compact Kdhler
manifold (M, g), there is a unique filtration by subsheaves

0:50C51C52C"'C55_1C55:5

such that, for 1 < i < s —1,&;/E—1 is the maximal ®-semistable subsheaf of
EJEi 1.
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Proof The main step in the proof lies in the following
Lemma 5.7.16 Given &, there is an integer mqg such that
u(F) = mo
for all coherent subsheaves F of £.

Proof To give the main idea of the proof, we assume that £ is a vector
bundle. In the general case, we use (5.5.14) to reduce the proof to the vector
bundle case.

We prove first that given a holomorphic vector bundle F, there is an integer
qo such that p(L) < go for all line subbundles L of E. Choose an Hermitian
structure h in F. As in Section 1.6 of Chapter 1, we choose a local unitary
frame field e, - ,e, for E in such a way that e; spans L. Using (1.6.13),

we can express the curvature ZSQEGQ A gﬁ of L in terms of the curvature

i _ i _po A gP .
Q=) R 50°N0 of E:

.
_pl A 7
Sap =Rl — D Aladis.
A=2

Hence,
) 1/2
> Saw = > Rluw 2 1AL S Y [Blugl £ 3 Rlaal £ (0 [Rlugl?)
«a a, A «a 1,0 1,0
The right hand side is now independent of L and frames ej,--- ,e,, 0%, -, 0",
Since

— L _po B (I)n—l :/ L o (I)n
deg(L) /M o= 2 St A7 A MQW(ZSW) :

we see that deg(L) is bounded by a number which depends only on (E, h).

Applying the result above to APE, we obtain a number ¢o(APE). Let mg be
the maximum of qo(APE),p=1,--- ,r. If F is a vector subbundle F of rank p
of E, then apply the result above to the line subbundle L = det F' C APE. In
the general case, we consider a line bundle L = det F ® [D], where D is a certain
effective divisor and use the argument given in (5.8.5) in the next section, (in
particular, see (*) and (**) in (5.8.5)). Details are left to the reader.

Once we have (5.7.16), we can prove the following lemma in the same way
as (5.1.13).

Lemma 5.7.17 Given &£, there is a unique subsheaf £ with torsion-free quo-
tient £/& such that, for every subsheaf F of £,

(i) u(F) < (&),

(ii) rank(F) < rank(&1)  iof p(F) = p(&r).
Then &, is ®-semistable.
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Proof  The existence is clear from (5.7.16). From (i) it is clear that &; is
®—semistable. To prove the uniqueness, let £ be another subsheaf satisfying
(i) and (ii). Let p : &€ — £/&; be the projection. Then p(£1) # 0. Define a
subsheaf F of & by the exact sequence

0—F —& —p&)—0.

Since & is semistable, u(F) < u(&1) < u(p(&r)).
On the other hand, we have an exact sequence

0— & — p ' (p(&1)) — p(&1) — 0.
From (i) and (ii) for &, we have u(p~'p(&1)) < u(&y), i-e.,

deg(p(&1)) + deg(é1) _ deg(é))
rank(p(&1)) + rank(&])  rank(&p)

This implies p(p(€1)) < u(€7) = u(&1), a contradiction.
Now the theorem follows from (5.7.17). Q.E.D.

The proof for the following Jordan-Holder theorem is standard.

Theorem 5.7.18 Given a ®-semistable sheaf & over a compact Kdahler mani-
fold (M, g), there is a filtration of £ by subsheaves

0= Cé&C---C&ECE=E

such that /€11 are ®-stable and pu(&;/Eiv1) = p(€) fori=0,1,--- k. More-
over,

Gr(€) = (&o/&1) © (E1/E2) © -+~ @ (E/Epa)

1s uniquely determined by € up to an isomorphism.

5.8 Stability of Einstein-Hermitian vector bun-
dles

In defining the concept of stability for a holomorphic vector bundle F, it
was necessary to consider not only subbundles of E but also subsheaves of
& = O(F). However, as a first step in proving that every Einstein-Hermitian
vector bundle is semistable and is a direct sum of stable bundles, we shall
consider only subbundles. Since every coherent sheaf over M is a vector bundle
outside its singularity set, it will become necessary to consider bundles over
noncompact manifolds. We have to define therefore the local versions of the
degree deg(S) and the degree/rank ratio x(S). Given a coherent sheaf S over a
Kéhler manifold (M, g), we define

(5.8.1) d(S) =ci1(S) Ao
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where ¢1(S) denotes the first Chern form of the determinant bundle det S with
respect to an Hermitian structure in detS. Therefore, d(S) is an (n, n)-form
on M and depends on the choice of the Hermitian structure in detS and also
on g. If M is compact, it can be integrated over M and gives deg(S).

Proposition 5.8.2 Let (E, h) be an Finstein-Hermitian vector bundle over a
Kahler manifold (M, g) with constant factor c. Let

0—FE —FE—E—0

be an exact sequence of vector bundles. Then

B _ d(B)
rankE’ = rankFE’

and if the equality holds, the exact sequence above splits and both E' and E" are
FEinstein-Hermitian vector bundles with factor ¢ (with respect to the naturally
induced Hermitian structures).

Proof The proof is essentially the same as that of (5.2.5). We denote the
curvature forms of (E, h) and (E’, h|g,) by ©Q and ', respectively. They are
related by the Gauss-Codazzi equation as follows (see (5.2.4) and (1.6.11)):

Q’azﬁg—Zwi‘/\Efl‘, 1<a, bSp<A=,

where r = rankF and p = rankE’. Then

c(BE, h) = %ZQ;,
j=1

. D .
ci(E, h) = %ZQ'Z = %(Zgg Y W A@)

a=1

From (4.1.3) we obtain

rc

1 .
d(E)=c1(B, h) A®" ' = — 3 K" = —@"
(E) = eu(B, h) 277,7'('2 J 2nm
n— 1 agn i — n—
d(E") = ¢1(E', h)\® 1:% Ko® —%Zw;\/\wé/\é !
pe i A A=A n—1
=—P" — — ANwy AND"T.
2nm 27rzwa Ya
Hence,
d(E) d(F' ;
(B) _dE) _ i > wynmy AeT
r p 2pm
If we write

w) = Z AD 6>
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as in (1.6.13), then using (3.1.18) we obtain

1 _
iYWl AT AR = S A A, 0n

This proves that

A(E)  d(B)
r P
and that the equality holds if and only if the second fundamental form A vanishes
identically. Our proposition now follows from (1.6.14). Q.E.D.

Theorem 5.8.3 Let (E, h) be an Einstein-Hermitian vector bundle over a
compact Kdhler manifold (M, g). Then E is ®-semistable and (E, h) is a
direct sum

(E, h) = (E1, h) @+ ® (Eg, hy)

of ®-stable Einstein-Hermitian vector bundles (Ev, h1),--+,(Ek, hy) with the
same factor ¢ as (E, h).

Proof To prove that E is ®-semistable, let F be a subsheaf of £ = O(FE)
of rankp < r = rankE such that £/F is torsion-free, (see (5.7.6)). The inclusion
map

j:F—¢&

induces a homomorphism det(j) = (AP5)** :

det(j) : det F = (APF)™ —s (APE)™ = APE.

Then det(j) is injective since it is injective outside the singularity set S,,_1(F)
and hence its kernel must be a torsion sheaf. Tensoring this homomorphism
with (det F)*, we obtain a non-trivial homomorphism

f:0n — APEQR (det F)*,

which may be considered as a holomorphic section of the vector bundle APE ®
(det F)*.
The factor ¢ for (E, h) is given by (see (4.2.7))

_ 2nm - p(E) 1
(584) C = m, where VOI(M) = E /M [OX

Since every line bundle admits an Einstein-Hermitian structure (4.1.4), we
choose an Einstein-Hermitian structure with constant factor ¢’ in the line bundle
det 7. Then
, 2nm-p(det F)  2nprm - u(F)
~ nl-vol(M)  nl-vol(M)’
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Then the vector bundle APE® (det F)* is Einstein-Hermitian with factor pc—¢/,
(see (4.1.4)). Since this bundle admits a non-trivial section f, the vanishing
theorem (3.1.9) implies

pc—c 2 0.
This is nothing but the desired inequality p(F) < u(€). This proves that F is
®-semistable.

In order to prove the second assertion of the theorem, assume that the
equality u(F) = p(€) holds for the subsheaf F above. Then pc — ¢/ = 0. Then,
by the same vanishing theorem, the section f must be parallel. In other words,
the line bundle det F, under the injection det(j) : det F — APE, is a parallel
line subbundle of APE.

Let M' = M — S,_1(F), where S,,_1(F) denotes the singularity set of F.
Let F be the vector bundle over M’ corresponding to F, i.e., F|,;~O(F). Then
the bundle F', under the injection j : F' — E|pp, is a parallel subbundle of E.
Then (1.4.18) implies a holomorphic orthogonal decomposition

E|M/ = F @ G,
where G is an Hermitian vector bundle over M’. If we set
G=E&/F,

then G is clearly the bundle corresponding to G|pr, i.e., G|pr = O(G).

(It is possible to obtain the decomposition E|yy = F @ G from (5.8.2) as
follows. From u(F) = w(€) and from the fact that ¢ and ¢’ are constant, we
obtain (1/p)d(F) = (1/r)d(E) on M’. Then the assertion follows from (5.8.2).)

We shall now show that the exact sequence

0 —F —=E—G—0

splits. We know already that it splits over M’. By (5.5.22), F is reflexive. Hence,
Hom(&, F) and Hom(F, F) are also reflexive and, in particular, normal (see
(5.5.23)). Thus,

I'(M, Hom(&, F)) =T(M', Hom(&, F)),

(M, Hom(F, F)) =T(M', Hom(F, F)).

Hence, the splitting homomorphism p’ € T'(M’, Hom(E, F)) with p’ o j =
idr|,,, € T'(M', Hom(F, F)) extends uniquely to a splitting homomorphism
p € T'(M, Hom(E, F)) with po j = idr € I'(M, Hom(F, F)). This proves
that £ = F @ G. Since & is locally free, both F and G are projective and hence
locally free. We have therefore a holomorphic decomposition of the bundle

E=Fa&ad

over M. Since this decomposition is orthogonal on M’, it is orthogonal on M.
Now the theorem follows from (4.1.4). Q.E.D.
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Remark 5.8.5 The proof of (5.8.3) presented here is due to Libke [89] and
simplifies greatly the proof in my lecture notes (Kobayashi [69]) which runs as
follows.

To prove that E is ®-semistable, let 7 C £ = O(E) be a subsheaf of rank p
and let 3
J:det F(= APF*™) — APE

be the natural sheaf homomorphism. Let a be a local holomorphic frame field
(i.e., non-vanishing section) of det F, and let

B = {z € M;j(a)(x) = 0},

(ie., B is the zero set of the holomorphic section f of the bundle AP E® (det F)*
which corresponds to j) Let D;,i =1, ---  k, be the irreducible components
of B of codimension 1. Let V' denote the union of all irreducible components of
B of higher codimension so that

B:UDiUV.

For each D;, define its multiplicity n; as follows. If x € D; — U D; UV and if
J#i

D; is defined by w = 0 in a neighborhood of z, then n; is the largest integer

m such that j(«)/w™ is holomorphic. Then j(a)/w™ is a local holomorphic

section of APE not vanishing at x. We set

and let [D] denote the line bundle defined by the divisor D. Let ¢ be the natural
holomorphic section of [D];§ vanishes along each D; with multiplicity exactly
n;. Let
j':det F @ [D] — APE
be defined by
-~ 1
] -
) =1Q® 5

Then, as a mapping of the line bundle det F ®[D] into the vector bundle APE, j'
is injective over M — V, (for 1/4 cancels the zeros of j(a) on | D;).
Pull back the Hermitian structure APh of APE by 5/, and let

u = 7 (APh).

Then u defines an Hermitian structure in the line bundle det F @ [D]p—v. (
Over V, w is degenerate.) Let

W=S(F)uvu (Ua),
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where S,,_1(F) is the singularity set of . Then there exists a subbundle F' of
E|p—w such that

]:|M—W = O(F)

In order to prove that E is ®-semistable, it suffices to show the following three
inequalities:

(%) /Mcl(f)@”— < /M c1(det F @ [D]) n@" Y,

and the equality holds if and only if D = 0;

(%) /M c1(det F ® [D])/\Q)”—l — /M_V c1(det F @ [D), u)/\q)”_l;

1 1
(% * %) };cl(det}—(@ [D], u) A o1 < ;cl(E, h) @™t

everywhere on M — V.

Proof of (x)  This is clear from

/M e ([D)pd" ! = Zn/ P11 > 0.

Proof of (xx)  Let 7 be a local holomorphic frame field for det F®[D]. Since
j : det F®[D] — APE, using a local holomorphic frame field s = (s1, -, s;)
of E, we can write

7' (1) :ZTIS[, where sy = 53, A--- A, with 4y <o <.
I

Let % be an Hermitian structure for det F ® [D] over the entire M, and set

f=ulr, m)falr, 1) =Y ugr'T,

where
u;7 = APh(sy, sy)/a(r, 7).

Clearly, f is defined independently of 7 and is a smooth non-negative function
on M vanishing exactly on V. (Since (u,7) is positive definite, f vanishes exactly
where all 77 vanish, i.e., where j'(7) = 0). Let J be the ideal sheaf generated
by {r1}. Then V is the zeros of J. By Hironaka’s resolution of singularities,
there is a non-singular complex manifold M* and a surjective holomorphic map
7 M* — M such that codim (771V) =1 and that

M -7V — M-V

is biholomorphic and
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7T = O (—m(n=1V)) for some integer m > 0,
where 7*7 denotes the ideal sheaf generated by {m*r}. If 771V is defined
locally by ¢ = 0 in M*, then 7*7! /(™ are all holomorphic and, at each point,

at least one of 7*71 /(™ does not vanish. Since (u,7) is a C* positive definite
Hermitian matrix, we can write locally

71_*]: _ a|c|2m’
where a is a nowhere vanishing C* function. By a theorem of Lelong][1]
2Ld’d" logn*f=m-7 'V  (as a current on M*).
T

In particular, since codimV = 2, we have
/ L dd" log f A D" :/ L dd" ogm* f AT
M-y 2T v 2m

M* —1
= / Tren Tl = m/ "1 =0.
1V \%

On the other hand, from © = fu we obtain
c1(det F ® [D], @) = c1(det F @ [D], u) + QLd’d” logf on M-V.
77

Integrating this, we have

/cl(det}'®[D],ﬂ)A<I>”_1:/ c1(det F @ [D], @) ®™
M M-V

:/ e1(det F ® [D], u)nd" 1,
M-V

This proves ().
Proof of (x %)  From the definition u = j™*(APh), we have

c1(det F® [D], uw) =c1(F, h) on M-W.

Since (F, h) is an Hermitian subbundle of (E, h) over M — W, we have (see
(5.8.2))

1 1
];cl(]-', h) A @™ < ;cl(E, RYA®™™' on M —-W.
Hence,
1 n—1 1 n—1
Ecl(det.}'@[D}, u) AP §;c1(E, h) A ® on M-—-W.

Since both sides are of class C*° on M — V, the inequality holds on M — V.
This proves (x * ).
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Finally, in order to prove that F is a direct sum of ®-stable bundles, assume

that
1

1
f/ cl(‘?’:)/\@”*l:f/ cr(E) A &1,
PJm rJm

Then, D = 0 by (x). Moreover, the equality holds also in (x * x). Then, over
M — W, F is a subbundle of E with vanishing second fundamental form, and

E = F + F* (holomorphically) on M — W,

where F= is the orthogonal complement to F, (see (1.6.4)). We consider the
holonomy group of (E, h) over M — W. It is a subgroup of U(p) x U(r — p).
Since W is a subvariety (of real codimension at least 2), the holonomy group of
(E, h) over M is contained in the closure of the holonomy group of (E, h) over
M — W. Hence, the above decomposition extends to M, i.e., we have

E=F+F- on M

with holomorphic subbundles F and F-=.
It was pointed out by 7. Mabuchi that the proof of (5.8.3) yields also the
following

Theorem 5.8.6 If a holomorphic vector bundle E over a compact Kdhler man-
ifold (M, g) admits an approximate Einstein-Hermitian structure, then E is
d-semistable.

Proof The only modification we have to make in the proof lies in the
following two points. (i). Use (4.5.3) in place of (4.1.4) to see that AP E®(det F)*
admits an approximate Einstein-Hermitian structure. (ii), Use the vanishing
theorem (4.5.6) instead of (3.1.9). Q.E.D.

Ezamples of stable bundles (5.8.7)  In Sections 4.6 and 4.7 of Chapter 4,
we gave several examples of irreducible Einstein-Hermitian vector bundles over
compact Kéahler manifolds. By (5.8.3), they are ®-stable. In particular, the
tangent and cotangent bundles of a compact irreducible Hermitian symmetric
space, the symmetric tensor power S?(TP,,) and the exterior power AP(TP,,) of
the tangent bundle of the complex projective space P, are all ®-stable, (where
® is the Kéhler form of the canonical metric). More generally, the homogeneous
vector bundles described in (4.6.4) are ®-stable; this fact has been directly
established by Ramanan [129] and Umemura [161]. The null correlation bundle
over Py,41 described in (4.6.5) is also ®-stable; the case n = 1 is well known,
(see, for example, Okonek-Schneider-Spindler [1] ). The projectively flat vector
bundles over a torus described in (4.7.54) are ®-stable.

5.9 T-stability of Bogomolov

In Section 5.1 we explained the concept of T-stability for vector bundles
over compact Riemann surfaces. In order to extend this concept to the general
case, we need to consider coherent sheaves as in the case of ®-stability.
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Let S be a torsion-free coherent analytic sheaf over a compact complex
manifold M. A weighted flag of S is a sequence of pairs F = {(S;, n;);1 < i < k}
consisting of subsheaves

S§CSC---CS&CS
with
0 < rank §; < rank Sy < --- < rank S < rank S
and positive integers ni, ny, -+ ,ng. We set
r; = rank S, r =rank S.
To such a flag F we associate a line bundle T'r by setting

k
(5.9.1) Tr = [[((det S;)"(det S) =)™

i=1

We say that S is T-stable if, for every weighted flag F of S and for every flat
line bundle L over M, the line bundle T ® L admits no nonzero holomorphic
sections. We say that S is T-semistable if, for every weighted flag F of S and
for every flat line bundle L over M, every nonzero holomorphic section of the
line bundle T# ® L (if any) vanishes nowhere on M. (We note that if Tr ® L
admits a nowhere vanishing holomorphic section, then it is a trivial line bundle
and Tz, being isomorphic to L*, is flat.)

Proposition 5.9.2 In the definition of T-stability and T-semistability, it suf-
fices to consider only those flags F = {(S;, n;)} for which the quotient sheaves
S/S; are torsion-free.

Proof  As in the proof of (5.7.6), given an arbitrary flag {(S;, n;)} of S,
let 7; be the torsion subsheaf of the quotient §/S;. We define a subsheaf S; of
S to be the kernel of the natural homomorphism & — (§/S;)/7;. Then Si/Si
is isomorphic to 7; and the quotient sheaf S /S‘z is torsion-free. We shall show
that it suffices to consider the new flag F = (S;, n;) in place of F = (S;, n;).
Since T; = S;/Si, by (5.6.9) we have

det S; = (det S;) ® (det T;).

Hence,
k

Tr@L=TroL® [[(det 7)™

i=1
Our assertion follows from the fact that each det 7; admits a nonzero holomor-
phic section, (see (5.6.14)). Q.E.D.

The following proposition is an analogue of (5.7.7).
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Proposition 5.9.3 Let S be a torsion-free sheaf over a compact complex man-
fold M.

(a) If rankS =1, then S is T-stable.

(b) Let L be (the sheaf of germs of holomorphic sections of) a line bundle
over M. Then S® L is T-stable (resp. T-semistable) if and only if S is T-stable
(resp. T-semistable).

(¢) S is T-stable (resp. T-semistable) if and only if its dual S* is T-stable
(resp. T-semistable).

Proof (a) is trivial. (b) follows from the fact that there is a natural cor-
respondence between the flags F = {(S;, n;)} of S and the flags F @ L =
{(Si®L;n;)} of S® L and that Tr = Trg.

To prove (c), assume first that S* is T-stable and let F = {(S;, n;)} be
a flag of S such that §/S; are all torsion-free. Then we obtain a flag F* =
((S/8:)",ni)} of S*:

(S/Sk)" C---C(S8/8S)* C---C(S/S1)" CS".
Then, using (5.6.9) and (5.6.12) we obtain

k
Tr- = H(((det S)7H(det ;)" (det S) ") = Tk

i=1

This implies that S is T-stable. Similarly, if S* is T-semistable, then & is
T-semistable.

Conversely, assume that S is T-stable. Let F = {(R;, n;)} be a flag of S*
such that the quotient sheaves G; = §*/R; are all torsion-free. Dualizing the
exact sequence

0—R;, — S —G,—0

we obtain an exact sequence
0—G — S8 — R
Considering S as a subsheaf of S** under the injection o : § — S§**, we set
Si=8ng;.
We define torsion sheaves
T=8"/S, Ti=6G/S;CT.

As in the proof of (5.7.7), det(S**) = detS by (5.6.12). Hence det7 =
det(S**/S) is a trivial line bundle. In general, if

0—T7 —T—T"—0
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is an exact sequence of torsion sheaves and if det T is a trivial line bundle, then
both det 77 and det 7" are trivial line bundles by (5.6.9) and (5.6.14). Hence,
det 7; is a trivial line bundle so that

det G = det S;.

Since S C -+ C 8o C 8§ C S and rank(S;) = rank(G;) = r — rank(R;), it
follows that F* = {(S;, n;)} is a flag of S. Set r; = rank(S;) so that rank
(R;) =r —r;. Then

= [[((det R;)" (det *)7+= )"

= [[((det $*)"(det G;) " (det S*)" =)™
= [[((det G;)" (det S*)m)"

= [[((det S;)"(det §)~"4)" = T

From Tr = Tx« it follows that &* is T-stable if S is T-stable. Similarly, if S is
T-semistable, then &* is T-semistable. Q.E.D.

Theorem 5.9.4 Let S be a torsion-free coherent sheaf over a compact Kdhler
manifold (M, g) with Kahler form ®. If S is ®-stable (resp. ®-semistable),
then it is T-stable (resp. T-semistable).

Proof Let F = {(S;, n;)} be a flag of S. Let r = rank (S) and r; = rank
(Sl) Then

[, sy 7,e = [ (s —re)er <0
M M

if § is ®-semistable. The inequality is strict if S is ®-stable. Let L be any flat
line bundle. Then ¢;(L) =0 in H?(M, R). It follows from the definition of T'»
that if S is ®-semistable,

(5.9.5) deg(T;@L):/ cl(T}-®L)A(I>"*1:/ e (TF)p @™ < 0.
M M

The inequality is strict if S is ®-stable. Now the theorem follows from the
vanishing theorem (3.1.24). Q.E.D.

Corollary 5.9.6 If (E, h) is an Einstein-Hermitian vector bundle over a com-
pact Kdhler manifold (M, g), then E is T-semistable and (E, h) is a direct
sum of T-stable Einstein-Hermitian vector bundles (Ey, hi), -+, (Eg, hy) with

u(Er) = -+ = p(Er) = p(E).

Proof  This is immediate from (5.8.3) and (5.9.4). Q.E.D.
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Corollary 5.9.7 If a holomorphic vector bundle E over a compact Kdhler man-
ifold (M, g) admits an approximate FEinstein-Hermitian structure, then it is
T-semistable.

Proof This is immediate from (5.8.6) and (5.9.4). Q.E.D.

The following is a partial converse to (5.9.4).

Theorem 5.9.8 Let S be a torsion-free coherent sheaf over a compact Kdhler
manifold (M, g) with Kdhler form ®. Assume either

(i) dim HYY(M, C) =1,
or

(ii) @ represents an integral class (so that M is projective algebraic) and
Pic(M)/ Pic®(M) = Z.
If S is T-stable (resp. T-semistable), then it is ®-stable (resp. ®-semistable).

In (ii), Pic(M) denotes the Picard group, i.e., the group H'(M, O*) of line
bundles over M, and Pic’(M) denotes the subgroup of Pic(M) consisting of line
bundles with vanishing first Chern class.

Proof Let 8’ be a subsheaf of S with rank r’ < r = rank(S). Consider the
line bundle

F = (detS')"(det S)~"".
Then

c(F)=r-ci1(8) —r'ci(8),
deg(F) = rr'(u(S') — u(S)).

Let [®] denote the cohomology class of ®. Then under our assumption (i) or
(ii), we have

c1(F) =a[®] for some a€R.

(In case (ii), we use the fact that [®] is the Chern class of some line bundle.)
Then deg(F') > 0 (resp. deg(F') = 0) if and only if @ > 0 (resp. a = 0).

Assume that u(S") > u(S) so that deg(F') > 0. Then a > 0 and F is ample.
Hence, for some positive k, F¥ admits a non-trivial section. This shows that if
S is not ®-semistable, then it is not T-semistable.

Assume that p(S’) = u(S) so that deg(F) = 0. Then a =0 and F is a flat
line bundle. Let L = F~! in the defirlition of T-stability. Being trivial, F ® L
admits a nonzero section. This shows that if S is not ®-stable, then it is not
T-stable. Q.E.D.

Both (5.9.4) and (5.9.8) are proved in Bogomolov [17] when M is algebraic.
The differential geometric proofs given here is from Kobayashi [71].
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5.10 Stability in the sense of Gieseker

Since it is difficult to define higher dimensional Chern classes for sheaves over
non-algebraic manifolds, we shall assume in this section that M is a projective
algebraic manifold. We fix an ample line bundle H on M.

Let S be a torsion-free coherent analytic sheaf over M, and set

Sk)=S®0O(H") for ke Z,
X(S(k) =D (—1)" dim H'(M, S(k)),
p(S(k)) = x(8(k)) /rank(S).

We say that S is Gieseker H-stable (resp. H-semistable) if, for every coherent
subsheaf F of § with 0 < rank(F) < rank(S), the inequality

(5.10.1) p(F(K)) <p(S(k))  (resp.  p(F(k)) = p(S(k)))

holds for sufficiently large integers k.
By the Riemann-Roch theorem, we can express x(S(k)) in terms of Chern
classes of M, S and H, (see (2.4.5)).

(5.10.2) (S(R)) = / ch(S) - ch(H*) - td(M),
M
where
ch(S) =r+ci(S) + %(01 (8)? —2¢2(S)) +---, (r = rank(S)),

) 1 1
ch(HY) = 14 kd + SKd* + - —k"d", (d=ei(H)),
mn:

(M) + (M) + -+

1
td(M) =1+ 1 (M) + 5

2

Hence,

wsw) = [ S o

"t (01(8) + cl(M)) +---

Writing a similar formula for a subsheaf F, we obtain

knfl
(n—1)!

(5.10.3) p(S(k)) = p(F(k)) = (W(S) = pu(F)) + -+,

where the dots indicate terms of lower order (than k"~1).

Proposition 5.10.4 Let S be a torsion-free coherent sheaf over a projective
algebraic manifold M with an ample line bundle H.

(a) If S is H-stable, then it is Gieseker H-stable;

(b) If S is Gieseker H-semistable, then it is H-semistable.
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This is evident from (5.10.3). From (5.8.3) and (5.10.4) we obtain

Corollary 5.10.5 Let M be a projective algebraic manifold with an ample line
bundle H. Choose a Kdhler metric g such that its Kahler form ® represents
c1(H). Then every Einstein-Hermitian vector bundle (E, h) over (M, g) is a
direct sum

(B, h)=(E1, h1)® - & (B, hy)
of Gieseker H-stable Einstein-Hermitian vector bundles (Ey, h1),---,(Ek, hg)
with p(E) = p(Er) = -+ = p(Ey).

We shall pursue the analogy between H-stability and Gieseker H-stability
further. The following lemma corresponds to (5.7.3).

Lemma 5.10.6 If
0—S —-8§—8"—0

s an exact sequence of coherent sheaves over a projective algebraic manifold M
with an ample line bundle H, then

' (p(S(k)) = p(S'(K))) + 1" (p(S(k)) — p(S"(K))) =0
where v’ = rank(S’) and r” =rank(S").

Proof  The proof is similar to that of (5.7.3). Replace deg by x, and use
the fact that

X(S(k)) = x(S'(k)) + x(S" (k). Q.E.D.
The following proposition which corresponds to (5.7.4) follows from (5.10.6).

Proposition 5.10.7 Let S be a torsion-free coherent sheaf over a projective
algebraic manifold M with an ample line bundle H. Then S is Gieseker H-
stable (resp. semistable) if and only if for every quotient sheaf 8" of S with
0 < rank(S”) < rank(S), the inequality

p(S(k)) <p(8"(k))  (resp. p(S(k)) = p(S"(K)))
holds for sufficiently large integers k.
The proof of the following proposition is similar to that of (5.7.11).

Proposition 5.10.8 Let S; and So be Gieseker H-semistable sheaves over a
projective algebraic manifold M with an ample line bundle H. Let f : S — Ss
be a homomorphism.

(a) If p(S1(K)) > p(Sa(k)) for k>0, then f = 0;

(b) If p(S1(k)) = p(S2(k)) for k > 0 and if S1 is Gieseker H-stable, then
rank(Sy) = rank(f(S1)) and f is injective unless f = 0;

(c) If p(S1(k)) = p(Sa(k)) for k > 0 and if Sy is Gieseker H-stable, then
rank(Sz) = rank(f(S1)) and f is generically surjective unless f = 0.
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Corollary 5.10.9 Let FE be a Gieseker H-stable vector bundle over a projective
algebraic manifold M with an ample line bundle H. Then E is simple.

Proof given an endomorphism f : E — FE, let a be an eigenvalue of
f: E, — E, at an arbitrarily chosen point z € M. Applying (5.10.8) to f—alg,
we see that f —alg is injective unless f —alg. If f —alg is injective, it induces
an injective endomorphism of the line bundle det E. But for a line bundle, such
an endomorphism cannot have zeros. Hence, we must have f —algp = 0. Q.E.D.

Combining results in Sections 5.9 and 5.10, we have the following diagram
of implications.

irrE-H stable G stable ——— simple

T —stable

|

T —semistable

/

appF-H —— semistable G semistable.

Here, we have used the following abbreviation.

“stable” (resp. semistable) means “®-stable” (resp. ®-semistable);

“G stable” (resp. G semistable) means “Gieseker H-stable” (resp. Gieseker
H-semistable), where ® and H are related by the condition that ® represents
Cl(H).

“irr E-H” stands for “irreducible Einstein-Hermitian structure”, while “app
E-H” means “approximate Einstein-Hermitian structure”.

All three concepts of stability (resp. semistability) reduce to Mumford’s
stability (resp. semistability) when M is a compact Riemann surface.

Proposition (5.10.4) showing “stable” — “G stable” — “G semistable” —
“semi-stable” is from Okonek-Schneider-Spindler [128].

Theorem (5.9.4) shows “stable” — “T-stable” and “semistable” — “T-
semistable”.

Theorem (5.8.3) says a little more than “irr E-H” — “stable” and was first
announced in Kobayashi [68]. Theorem (5.2.7) is its converse when dim M =1
and is due to Narasimhan-Seshadri [117] with a direct proof by Donaldson [24].
The converse when M is an algebraic surface is due to Donaldson [2] and is
stated in (6.10.19) of Chapter 6. The converse in general is probably true.

Mabuchi pointed out that the proof of (5.10.4) shows also “app E-H” —
“semistable”. Its converse for an algebraic manifold is in Donaldson [25] and
will be proved in Chapter 6, (see (6.10.13)). It should be true for any compact
Kéhler manifold.
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The implication “E-H” — “I'-semistable” is in Kobayashi [66] and was the
starting point of “the Einstein condition and stability”.



Chapter 6

Existence of approximate
Einstein-Hermitian
structures

In this chapter we explain results of Donaldson [25] and prove the theorem
to the effect that if M is an algebraic manifold with an ample line bundle
H, then every H-semistable vector bundle F over M admits an approximate
Einstein-Hermitian structure, (see (6.10.13)).

The partial differential equation expressing the Einstein condition is similar
to that of harmonic maps. The best reference for analytic tools (in Sections 6.4
through 6.7) is therefore the lecture notes by Hamilton [43]. The reader who
reads Japanese may find Nishikawa’s notes (Nishikawa-Ochiai [121]) also useful.

6.1 Space of Hermitian matrices

Let Herm(r) denote the space of r x r Hermitian matrices ; it is a real
vector space of dimension r2. Let Herm™ (r) denote the set of positive definite
Hermitian matrices of order r ; it is a convex domain of Herm(r). The group
GL(r;C) which acts on Herm(r) by

(6.1.1) h+—— 'aha, a€ GL(r;C), h € Herm(r)

is transitive on Herm™ (r). The isotropy subgroup at the identity matrix is the
unitary group U(r), which is a maximal compact subgroup of GL(r;C). The
domain Herm™ (r) can be identified with the quotient space GL(r; C)/U (r):

(6.1.2) Herm™ (r) &~ GL(r; C)/U(r).

It is moreover a symmetric space. In fact, the symmetry at the identity matrix
is given by
h—s b1,

177
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The Cartan decomposition of the Lie algebra gl(r; C) is given by
(6.1.3) gl(r;C) = u(r) + Herm(r).
The exponential map

exp : Herm(r) — Herm™ ()

is a diffeomorphism. In particular, every element h of Herm™ (r) has a unique
square root in Herm™ (7).

We shall now define an invariant Riemannian metric in Herm™ (r). Since
Herm™(r) is a domain in the vector space Herm(r), the tangent space at each-
point h of Herm™ (r) may be identified with Herm(r). We define an inner prod-
uct in the tangent space Herm(r) =~ T),(Herm™ (r)) by

(0, w) =D W Tvgwg =y W vz

(6.1.4)
for v=(v;7), w= (w;) € Herm(r), h = (h;3) € Herm™ (r),

where (h*7) denotes the inverse matrix A~! of h. Thus, Z hﬁhkj = 6. With
the usual tensor notation, we rewrite (6.1.4) as follows:

(6.1.5) (v, w) = Zv{w;—,

where v] = E hjkviE and wj = E hikwﬁ. In matrix notation, this can be
expressed as

(6.1.6) (v, w) =tr(h " v - h™tw).

It is obvious that this defines a GL(r; C)-invariant Riemannian metric on Herm™ (r)
which coincides with the usual inner product at the identity matrix.

We consider now geodesics in the Riemannian manifold Herm™ (7). Fixing
two points p and ¢ in Herm™ (r), let Q, , denote the space of piecewise differ-
entiable curves h = h(t),a < ¢t < b, from p to q. Let th = dh/dt denote the
velocity vector of h. Its Riemannian length or the speed of h is given by (see
(6.1.6))

(6.1.7) |0:h| = (tr(h~18:h - h=18,h))Y/2.
We define a functional ' on €2, 4, called the energy integral, by

b
(6.1.8) E(h):/ |0;:h|2dt = tr(h™'0uh - h='0;h)dt.

Then the geodesics (with affine parameter) from p to ¢ are precisely the critical
points of this functional E.
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Let h + sv,|s| < 4, be a variation of h with infinitesimal variation v. By
definition, v = v(t),a St £ b, is a curve in Herm(r) such that v(a) = v(b) = 0.
Then

(6.1.9) E(h+sv)= /b tr((h + sv) 710 (h + sv) - (h + sv) 710, (h + sv))dt.

We obtain easily
(6.1.10)

dE(h + sv)
ds

b
= 2/ tr(—h_lv . h_lath . h_lath + h_laﬂ} . h_lath)dt
s=0 a
bTd
= 2/ thtr(hlv k) — tr(hro(h T 0P — h ok - hoh)) | dt
b
- —2/ tr(h=Yo(h =202 — b0,k - h=L0,h))dt.

Hence, h is a critical point of E (i.e., (6.1.10) vanishes for all v) if and only if
h=10?h — h=10;h - h~10;h = 0. This can be rewritten as

(6.1.11) %(h_lath) =0, (equation of geodesics).

It follows that the geodesic from the identity matrix 1, to e®, a € Herm(r),
is given by

(6.1.12) h = e, 0<t< 1.

Its arc-length, i.e., the distance from 1, to e® is given by

1 1
(6.1.13) / |0, h|dt = / tr(aa)/?dt = (Y af)'/?,
0 0

where a1, -+ -, a, are the eigen-values of a. More generally, the distance d(p, ¢)
between p,q € Herm™ (r) is given by

(6.1.14) d(p, q) = (D_(log A)*)"/*

where A1, -, A, are the eigen-values of p~lq.

For applications to vector bundles, we have to formulate the above results
in terms of Hermitian forms rather than Hermitian matrices.

Let V' be a complex vector space of dimension r. Let Herm(V') denote the
space of Hermitian bilinear forms v : V x V' — C and Herm™ (V) the domain
in Herm(V') consisting of positive definite Hermitian forms. We identify the
tangent space at each point of Herm™ (V') with Herm(V).

Let GL(V) be the group of complex automorphisms of V and gl(V) =
End(V) its Lie algebra. Then GL(V) acts on Herm(V) by
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vi— a(v) =tava , ie., (a())(z, y)=v(az, ay),

where v € Herm(V'),a € GL(V),z,y € V. Under this action, GL(V) is tansitive
on Herm™ (V). We note that unless we choose a basis for V, there is no natural
origin in Herm™ (V') like the identity matrix 1, in Herm(V').

To define a GL(V)-invariant Riemannian metric on Herm™ (V'), we define
first a linear endomorphism h~'v € gl(V) for h € Herm™ (V) and v € Herm(V)
as follows:

(6.1.15) v(z, y) = h(z, (A v)y) for z,y€V.

Given tangent vectors v,v’ € Herm(V') of Herm™ (V') at h, their inner product
is defined by

(6.1.16) (v, V') =tr(h~tv - h™1').

A curve h = h(t) in Herm™ (V) is a geodesic if and only if it satisfies (6.1.11),
i.e., h™19;h is a fixed element (independent of ¢) of gl(V).

6.2 Space of Hermitian structures

Let E be a C° complex vector bundle of rank r over an n-dimensional
complex manifold M. Let Herm(FE) denote the (infinite dimensional) vector
space of all C* Hermitian forms v on F; each element v defines an Hermitian
bilinear form

Vg By x By — C

at each point x of M. If (s1, -+, s,) is a local frame field of E, then v is given
by its components v;z = v(s;, s;), and the matrix (v;7) is Hermitian.

Let Herm™ (FE) denote the set of C*° Hermitian structures h in Fj it consists
of elements of Herm(FE) which are positive definite everywhere on M. It is then
clear that Herm™ (E) is a convex domain in Herm(E). We can regard Herm(E)
as the tangent space of Herm™ (F) at each point h.

Let GL(E) denote the group of (complex) automorphisms of E (inducing
the identity transformation on the base space M); it is sometimes called the
complez gauge group of E. Then GL(E) acts on Herm(E) by

(6.2.1) v — a(v) = 'ava, v € Herm(E), a € GL(E),

(a())(&, n) =wv(a, an) & neE B,

The “Lie algebra” of GL(E) consists of linear endomorphisms of E and will
be denoted by gl(E); it is the space of sections of the endomorphism bundle
End (E).

We fix an Hermitian structure k& € Herm™ (E) as the “origin” of Herm™ (FE) .
Let U(E) denote the subgroup of GL(FE) consisting of transformations leaving k
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invariant, i.e., unitary transformations with respect to k. It is sometimes called
the gauge group of (E, k) . Its Lie algebra u(E) consists of endomorphisms of
FE which are skew-Hermitian with respect to k.

The action of GL(E) on Herm™ (E) is transitive. In fact, given two Hermitian
structures k,h € Herm™ (E) , there is a unique element a € GL(E) which is
positive Hermitian with respect to k such that h = a(k) = 'aka. We can
identify Herm™ (F) with the quotient space GL(E)/U(FE) and consider it as a
symmetric space with the involution at k given by

(6.2.2) h = taka — o 'kta L.

Assume that M is a compact Kéahler manifold with Kéahler form ®. We
introduce an invariant Riemannian metric on Herm™(E) = GL(E)/U(E) by
defining an inner product in the tangent space Herm(FE) = Tj,(Herm™ (E)) at
h € Herm™ (E) as follows (see (6.1.16)):

(6.2.3) (v, w) = / tr(h ™ tv - A lw) @™, v,w € Herm(FE).
M

Since tr(h~1v-h~tw) is invariant by GL(FE), the Riemannian metric thus intro-
duced is also invariant by GL(E).
Following the reasoning in Section 6.1 (see (6.1.9)-(6.1.11)), we see that a
curve h = h(t) in Herm™* (E) is a geodesic if and only if
d

- -1 —
(6.2.4) (n o) =0,

i.e., h™19;h is a fixed element (independent of ¢) of Herm(E).

6.3 Donaldson’s Lagrangian

Let E be a holomorphic vector bundle over a compact Ké&hler manifold
M with Kahler form ®. Let Herm™(E) denote the space of C°° Hermitian
structures in F. In the preceding section we defined a Riemannian structure in
Herm™ (E). In this section, we construct a functional L on Herm™ (E) whose
gradient flow is given by

(6.3.1) gradL = K — ch.

Given two Hermitian structures k,h € Herm™*(E) , we connect them by a
curve hy,0 £t < 1, in Herm™ (E) so that k = hg and h = hy. For each hy, its
curvature is denoted by R; = R(h;) € AY'(End(F)) as a (1,1)-form with values
in End(FE). We set

(6.3.2) vy = hy 'Ophy.

For each t,v; is a field of endomorphisms of E, i.e., v; € A°(End(E)). We recall
(see (6.2.4)) that hy is a geodesic in Herm™ (E) if and only if v; is independent
of t, i.e., Oyvy = 0.
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We set
(6.3.3) Qi1 (h, k) = log(det(k™"h)),
(6.3.4) Qa(h, k) =i / 1tr(vt-Rt)dt,
0
c q)n—l
(6.3.5) umkyzAAmeko—ﬁQﬂmkmwA(ninl

where c is the constant given by (see (4.2.7))

c:2n7r/cl(E)/\<I>"_1/r/<I>".

We see from the next lemma that L(h, k) does not depend on the choice of a
curve h; joining h to k.

Lemma 6.3.6 Let hy,a <t < 3, be a piecewise differentiable closed curve in
Herm™ (E), (hence hy = hg). Let vy = hy '0;hy. Then

B
/ tI‘(Ut . Rt)dt S d/AO’l + d”Al"O.

Proof Let a =ap < a; < --+ < ax = f be the values of t where h; is not
differentiable. Fix an arbitrary Hermitian stmcture k as a reference point in
Herm™ (E) . Tt suffices then to prove the lemma for the closed curve consisting
of a smooth curve (such as the line segment or the geodesic) from k to hg;, the
curve hy,a; <t < aji1, and a smooth curve from h,, , back to k. We set

a = ayj, b= 541,

A=At s);ast<bh 0<s< 1}

Let h : A — Herm™ (E) be a smooth mapping such that
h(t, 0) =k, h(t, 1)=hy for a<t=D,

while h(a, s) (resp. h(b,s)) describes the chosen curve from k to h, (resp. hy to
k). For example, if we use line segments to go from k to h, and from h; to k,
then we can use h(t, s) = shy + (1 — s)k.
We set
uw=h"10sh, v="h"19,h,
R=d"(h"'d'n).

We define

(6.3.7) ¢ =i-tr(h~'dhR), where dh = dsh-ds+ O;h - dt.
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We consider d = (9/ds)ds + (3/9t)dt as exterior differentiation in the domain
A as opposed to exterior differentiation d in the manifold M. Considering ¢ as
a l-form on the domain A, we apply the Stokes formula:

(6.3.8) /M¢>:/Ad¢>.

We calculate first the left hand side:
t=b t=b s=

s=1 1
o= [ thot [ theat [t [ ol

oA t= t= =0
(6.3.9) t=a a s
:i/ tr(ve - R)dt + Qa(ha, k) — Oa(hy, k).
It suffices therefore to show that the right hand side of (6.3.8) is in d’A%! +

d”Al’O.
We define a (0, 1)-form

(6.3.10) a=1i-tr(v-d'u),
and we shall prove
(6.3.11) dp = —(d'a+ d"@)ds A dt + id"d'tr(v - u)ds A dt.

It is more convenient to use exterior covariant differentiation D = D’ 4+ D" (=
D’ +d") of the Hermitian connection defined by h(t, s) in place of d = d’ + d”.
Thus,

(6.3.12) a=i-tr(v- D"u),
(6.3.13) da=Daoa=i-tr(D'vAD"u+wv- D' D"u).
Since

T=h 0h="'0h-h~Y)=t(h-u-hY)

we obtain
(6.3.14) a=—i-tr(v-D'u),
(6.3.15) d"a=D"a=—i-tr(D"vADu+wv-D"Du).

In order to calculate do, we need first 9y R, 9, R, ,u and dsv. From the definition
of R, we obtain

OsR=d"(=h™*0;h-h=*d'h +h~'d' d.h)
=d"(~u-w+d(h0h) +w-u)=d"(—u-w+du+w-u),
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where w = h~'d’h is the connection form. Hence,

(6.3.16) dsR=d"D'uv = D"D'u.
Similarly,
(6.3.17) R =d"D'v=D"D"v.

From the definition of v and v, we obtain

(6.3.18) yu = —h 'Oh-h'Oh+h10;0,h = —v-u+ h100h,
(6.3.19) O;v = —h '9sh-h710h+ h10,0,h = —u-v + h™1D,0,h.
Hence,

(6.3.20)

dp=1i-tr(—Ou-R—u-0;R+0sv- R+v-0sR)ds A dt
=i-tr(v-u-R—u-v-R+v-D"D'u—wu-D"D'v)ds Adt
=i-tr(—v(D'D" + D"DYu+v-D"D'v—u-D"D'v)ds A dt.

On the other hand,

da+d'a=i -tr(D'vAD"vu—D"vADu+v-D'D"vu—v-D"Du)

6.3.21
( ) =i-tr(—D"D'(vu) + D"D'v-u+wv-D'D"u).

Comparing (6.3.20) with (6.3.21), we obtain (6.3.11). This completes the proof
of the lemma. Q.E.D.

In the course of the proof (see (6.3.9)) we established also the following
formula.

Lemma 6.3.22 Let hy,a <t < b, be any differentiable curve in Herm"’(E) and
k any point of Herm™* (E). Then

b
i / tr(vr - Ro)dt + O (ha, k) — Qa(ho, k) € d'A%Y + @ A0,

The following lemma is also in Donaldson [25].

Lemma 6.3.23 Let h,h', /' € Herm™ (E) . Then
(i) L(h, B') + LW, W)+ L(h", h) = 0,
(ii) L(h, ah) =0  for any positive constant a.
(ii) id'd” (Qa(h, W) = ~Qu(h. W)®)

_ _%tr <(ZR_ ;@1)2> + %tr ((iR’ _ :L@I)Q),

where R and R’ denote the curvature for h and h', respectively.
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Proof (i) Clearly we have
Qu(h, h)+ Qu(h', h")+ Qu(h", h) =0.
Applying (6.3.6) to a triangle joining h, h’, " in Herm™ (E), we obtain
Qa(h, W)+ Qa(h, W)+ Qa(h’, h) =0 mod d' A%l 4 d"ALY.

Now, (i) follows from the definition (6.3.5) of L.
(ii) Clearly we have

Q1(h, ah) =log(1/a") = —r -loga.

To calculate Qo(h, ah), let a = e® and h; = e?1=h then R, = R. Hence,
1
Ou(h, ah) = —i / t(bR)dt = —ib - tr(R),
0

ib
L(h, ah) = 72—‘ /n tr(R) A" — crd™.
n!

From the definition of the constant ¢ (see (4.2.7)), we obtain L(h, ah) = 0.
(iii) Join A’ to h by a curve hy,0 < ¢t < 1, with A’ = hg and h = hy. Let
v = ht_latht. We shall prove

(6.3.24)
. 2 . 2
’I:d/d// (QQ(ht7 h/) — %Ql(ht? h/)@) = %tr <<Rf + 7;:@]) - <R0 + 7:’:@[) > .

Since this holds obviously for ¢t = 0, it suffices to show that both sides have the
same derivative with respect to ¢. Using D’ and D" in place of d’ and d”, we
can write the derivative of the first term of (6.3.24) as follows:

%idld//(gg(ht, hl)) = d//d/tr(vt . Rt) = tr(D//D'vt A Rt)

Since det(h;) defines an Hermitian structure in the line bundle det(F) whose
curvature is tr(R;), we obtain

d'd" log(det(hy)) = —tr(Ry).
Hence, the derivative of the left hand side of (6.3.24) is given by
tr(D" D'v, A Ry) + i%tr(@th) A .
On the other hand, the derivative of the right hand side of (6.3.24) is given by

tr(8,Ry A Ry) + i%tr(ath) A .

Now, (iii) follows from 0;R; = D" D'v, (see (6.3.17)). Q.E.D.
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Lemma 6.3.25 For any differentiable curve hy in Herm™ (E) and any point k
in Herm™ (E), we have

(i) 0:(Q1(he, k) = tr(ve), where vy = hy '0hys;

(ii) 0;(Qa2(hy, k) =i -tr(v, - By) mod d A% +d"AM0.

Proof (i) 0;Q1(h, k) = 0y log(det(k=1hs)) = 0y log(det hy)
= 0y(det hy)/det hy = tr(h; " - Oshy).

(ii) In (6.3.22), consider b as a variable. Differentiating (6.3.22) with respect
to b, we obtain (ii). Q.E.D.

Fix an Hermitian structure k& € Herm™ (E) and let h; be a differentiable
curve in Herm™ (FE) . We shall prove the following formula:

dL(h, k)

dt = (Kt — chy, 3tht)

- o
= RIRRI (K 5 — chz)0uhyg—

~/M Z ( ij z]) t1o] nl
where (Kt —chy, O¢hy) denotes the Riemannian inner product defined by (6.2.3)

and (6.1.4). The second line is nothing but an explicit expression of the inner
product in components, (see (6.1.4)).

(6.3.26)

Since
c ot
L(h, k) :/M(Q2(hta k) = —Qu(he, k)‘I))Am’
using (6.3.25) we obtain
c !
dL(hy, k)/dt = /M(i tr(ve - Ry) — ﬁtr(vt)@) A 1)

Then making use of (see (4.1.3))

1
iR NOVT = — K 9",
n

we obtain
dL(hy, k) /dt = / (tr(ve - K¢) — ¢ tr(”t))%
(6.3.27) s o '
= / tr((Kf — CI)U{;)F.
" !

Since v; = hy "O4hy, (6.3.27) is equivalent to (6.3.26).
From (6.3.26) we obtain
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Proposition 6.3.28 Fiz k € Herm™ (E) and consider the functional L(h) =
L(h, k) on Herm™ (E). Then h is a critical point of this functional if and only
if K —ch =0, i.e., h is an Einstein-Hermitian structure in (E, M, g).

For each fixed ¢, we consider 9;h; € Herm(E) as a tangent vector of Herm™ (E)
at h;. The differential dL of L evaluated at 0;h; is given by

dL(8¢hy) = dL(hy, k)/dt = (K; — chy, Oihy).

This means that the gradient of L, i.e., the vector field on Herm™ (E) dual to
the 1-form dL with respect to the invariant Riemannian metric on Herm™ (F)
is given by

(6.3.29) grad L = K — ch.

It is therefore natural to consider the evolution equation:

(6.3.30) dhy/dt = —grad L = —(K, — chy),
or
(6.3.31) hytoihy = —(K; — cI).

We calculate now the second variation 92L(hy, k). From (6.3.27) we obtain

n

o
(6.3.32) O?L(hy, k) :/ tr(O K - v+ (K — cI)atv)F
M
But, according to (4.2.16), we have

0K =3 g% vig (g =VaVav)).
Hence, if hg is a critical point (i.e., K —cI =0 at ¢t =0), then
. on
07 L(he, k)i=o 7/ Zgaﬁ ;aﬁ v )= 0T
6.3.33 o, i Ll
( ) / Zg BU]QUZB t= OF
= [[D"v|7 2 0.

This shows that every critical point of L(h, k), k fixed, is a local minimum.

Suppose hg is a critical point of L(h, k). Let h; be any Hermitian structure
in E. Join them by a geodesic hy;,0 < ¢t < 1. The condition for h; to be a
geodesic is given by (see (6.2.4))

O =0, (i.e., Oy (hy '0:hs) = 0).

For such a geodesic h;, we have

(6.3.34) O2L(hy, k) :/ tr(O;K -v) = |[|[D'v||*=0 for 0Z¢<1.
M
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It follows that

(6.3.35) L(hg, k) < L(h, k).

Assume that h; is also a critical point. Then, L(hg, k) = L(h1, k) and
(6.3.36) OfL(hy, k) = | D'v||* =0 forall 0<¢<1.

Since v is Hermitian, D’v = 0 implies Dv = 0, i.e., in particular, v is a holomor-
phic endomorphism of E. If the bundle E is simple, then v = al with a € R
and hy; = bhg with b € R.

In summary, we have

Proposition 6.3.37 For a fired Hermitian structure k in E, the functional
L(h, k) on Herm™ (E) possesses the following properties:

(a) h is a critical point of L(h, k) if and only if h is Einstein-Hermitian i.e.,
K —cl=0;

(b) If hg is a critical point of L(h, k), then L(h, k) attains an absolute
minimum at hg;

(¢c) If ho and hy are critical points of L(h, k), then hy and hy define the
same Hermitian connection in E;

(d) If E is a simple vector bundle and if hy and hy are critical points of
L(h, k), then hy = ahg for some a € R.

6.4 Maximum principle and uniqueness

In this section we shall prove the uniqueness of a solution for the evolution
equation (6.3.30).

Lemma 6.4.1 (Mazimum Principle for Parabolic Equations). Let M be a com-
pact Riemannian manifold and f : M x [0, a) — R a function of class C* with
continuous Laplacian Af satisfying the inequality

o f+cAf <0, (c>0).

Set F(t) = Ma}\% f(z, t). Then F(t) is monotone decreasing in t.
EdS

For later applications, we assume in the lemma above that the Laplacian A f
(defined in the distributional sense) is a continuous function instead of assuming
that f is of class C2.

Proof For small e > 0, let

fe(x, t) = f(ZL', t) — et.

Then
Orfe +t cAfe=0if —e+cAf < —e <.
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Let 0 £ ¢ < to. Let (T, t) be a point of M x [t1, ta] where f, achieves its
maximum in M x [t1, t3]. Then

atfe(f7 i) < 7CAfe(Ea f) § 0.

This shows that ¢ cannot be an interior point of [t;, t2]. If t = t9, then
fe(@, t) £ fo(z, t) for t; £t < Lo, and hence

0<0,f(T, 1) < —cAfo(T, ) 2 0.
This is a contradiction, and we must have t = ¢;. Hence,
Max f.(z, t1) 2 Ma . (@, t2)
and
%%(f(% t1) — %%\)}f(x’ t2) 2 e(t1 — t2)
Let e — 0. Then we obtain
F(t1) 2 F(ta). Q.E.D.

Corollary 6.4.2 Let M be a compact Riemannian manifold and f : M X
[0, a) — R a function of class C' with continuous Laplacian Af satisfying
the inequality

Of +cAf+cf=0,

where ¢ > 0 and ¢ are constants. If f < 0 on M x {0}, then f £ 0 on all of
M x [0, a).

Proof Set h =e¢€tf. Then
Oh + cAh = e (B, f + cAf + ' f).

Apply (6.4.1) to h. Q.E.D.

As an application of the maximum principle, we prove the uniqueness theo-
rem for the evolution equation (6.3.30).

Given two curves hy, ky,a <t < b, in Herm™ (E) , we consider a mapping f
from the rectangle A = {(¢, s);a <t <b, 0 < s < 1} into Herm™ (E) such that

ht = f(t7 O)a kt = f(t7 1)
We set
u=f'0.f, v=f"'of, R=d"(f'd'f)
as in Section 6.3. For each fixed (¢, s), both w and v are fields of endomorphisms
of the vector bundle E. Then we have (see (6.3.16-19))
O,R=d"D'u=D"D'u, 0;,R=d"D'v=D"Dv.

(6.4.3) . .
Ou = —vu+ [~ 0:0sf, Osv=—uv+ [~ 00 f,
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where D = D’ + D” denotes the exterior covariant differentiation defined by f.
Since f = f(¢, s) varies with (¢, s), D’ varies also with (¢, s) while D" = d”
always. We set

1
(6.4.4) e=e(t) = 7/0 tr(u?)ds.

For each fixed ¢, e(t) is a function on M, and the value of this function e(t) at
x € M is the energy of the path f(t, s), 0 < s < 1, from h; to k; in Herm™(E,)
with respect to the invariant Riemannian metric. In particular, e(t) 2 0 with
equality if and only if h; = k.

Lemma 6.4.5 If hy and ki are two solutions of the evolution equation (6.3.30)
and if f(t, s), 0 < s <1, is a geodesic in Herm™ (E,) for each t and each z,
then the energy function e satisfies

Ore + e 0.

Proof Since f(t, s), 0 < s £ 1, is a geodesic, u is independent of s (see
(6.2.4)), i.e.,
Osu = 0.

Making use of

Os(f710uf) = —f710f - f IO + fT10:0f = —uv + fT1O04f,

we obtain

1 1 1
8te:/0 tr(u@tu)ds:/o tr(—uvu—l—uf_latasf)ds:/o tr(uds(f 10, f))ds

= tr(uf 1O f)|5=0 (using Osu = 0)
= tr(u(k; 'Otk — hy *0thy)) = tr(u(K (h) — K(k)))  (using (6.3.31)),

where K (h) and K(k) denote the mean curvature transformations defined by
h = hy and k = ky, respectively.
On the other hand, we have

1 1
d'd'e = d”/ tr(uD'u)ds = / tr(D"u A D'u+uD"D'u)ds
0 0
1 1
= / tr(D"u A D'u)ds + / tr(udsR)ds
0 0
1
=— / tr(D'u A D"u)ds + tr(uR)|5=h
0

__ / (D' A D"u)ds + tr(u(R(K) — R(h))).
0
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Taking the trace of both sides with respect to the Kahler metric g, we obtain
1
Oe = —/ |D'u|?ds + tr(u(K (k) — K(h))).
0
Hence,
1
Ore + Oe = —/ |D'u|?ds < 0. Q.E.D.
0

Corollary 6.4.6 If hy and k;, 0 £ t < T are two smooth solutions of the
evolution equation (6.3.30) having the same initial condition hy = ko, then
ht:kt fOT’ O§t<T

Proof  This is immediate from (6.4.1) and (6.4.5). Q.E.D.

Corollary 6.4.7 If a smooth solution hy to the evolution equation (6.3.30) ex-
ists for 0 <t < T, then hy converge to a continuous Hermitian structure hr
umformly ast — T.

Proof Let x € M. The Riemannian distance p = p(h(x), hy(x)) between
hi(z) and hy(z) in Herm™(E,) and the energy e = e(hi(z), hy(x)) of the
(unique) geodesic path from h;(z) and hy (x) in Herm™(E,,) are related by

€:§p

It suffices therefore to show that, given € > 0 there is § such that
Mzﬁ(e(ht(as), hy(x)) <e for t,t'>T—6.
fAS

(This will imply that h; is uniformly Cauchy as t — T with respect to the
complete metric p and converges to a continuous Hermitian structure hr). By
continuity at ¢ = 0, there is § > 0 such that

M%\}je(ho(w), he(z)) <e for 0=Za <.
e

Now, if 0 St <t < T witht'—t < §, let a = ¢/ —t and consider the shifted curve
k: = hiyo(= hy). Then apply (6.4.5) to e = e(hy, k). By (6.4.1), M]\%x e(he, ki)

is monotone decreasing in t. Hence,

U = < —
Mj\%xe(ht, ht) MJ\?X e(ht, k}t) = M]\?.Xe(ho, kjo) Mﬁxe(ho, h,a). QED
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6.5 Linear parabolic equations

The evolution equation (6.3.30) is non-linear. We have to study first the
linearized equation. In this section we summarize results from the theory of
linear parabolic differential equations which will be needed in the next Sections
6.6 and 6.7.

Let M be an m-dimensional compact Riemannian manifold with metric g.
Let E be a real vector bundle over M and E its pull-back to M x [0, a]. Let h
be a fibre metric in E, i.e., 1-parameter family of fibre metrics hy,0 < ¢ < @, in
E. We consider a 1-parameter family of connections D = {D;} in E preserving
h:. We assume that D; varies smoothly with .

For integers k =2 0 and 1 < p < oo, we define the Sobolev space L} (M x
[0, a], E) of sections of E in the following manner. We write V for covariant
differentiation with respect to D. Given a smooth section f of E, we define its
L?-norm by

1/p

(6.5.1) w3 /M V0] flrdedt |

iv2j<k ’ Mx[0.a]

where dz stands for the volume element of (M, g) and | | is the length measured
by g and h. We note that the differentiation 0; in the time variable ¢ is given
twice the weight of the differentiation in the space variables. The completion of
the space C™ (M x [0, a], E) of C*° sections with respect to this norm is denoted
by LE(M x [0, a], E). Let C>(M x [0, a]/0, E) denote the space of C* sections
f of E such that V’@gf =0on M x {0} for all i + 2§ < k. Its completion with
respect to the norm || ||, x will be denoted by L?(M x [0, a]/0, E). When there
is no ambiguity about which vector bundle E is being considered, we often write
LP(M x [0, a]) and L2(M x [0, a]/0) omitting E.

For our later purpose, it is necessary to extend the definition of L% to the
situation where k is a real number. This can be done by considering fractional
poweres of differential operators V and 0; in (6.5.1). In our case it is more
convenient to consider the pseudo-differential operator of weighted first order:

P=(1+8%4A%)W4

and define

1/p
(65.2) 1l ( / |Pkf|pdzdt> 7
M x[0,a]

When £ is a positive integer, the norm (6.5.2) is equivalent to the norm (6.5.1).
(We leave details to Hamilton [43] and Nishikawa-Ochiai [121].)

We define next the Holder space C*+(M x [0, a]) = C¥**(M x [0,d], E)
for an integer ¥ = 0 and a real number 0 < o < 1. It consists of sections f of
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class C* of E whose k-th derivatives V! f, (k = i+ 2j), are Holder continuous
with exponent « so that the norm
(6.5.3)

i o Viﬁjfz—viajfw
flera= 3 swp (voifl+ Y s G SO

i+2j§kMX[O’a] i+ 2=k zﬁwe’i\/lz[(),a],

is finite, where d(z, w) denotes the distance between z and w. In the definition
above, we cover M by a finite number of local coordinate neighborhoods and
define the norm in terms of coordinates. But it would be too cumbersome to
indicate that in (6.5.3).

All we need to know about Holder spaces and Sobolev spaces in later sections
can be summarized in the following five theorems.

These Sobolev and Holder spaces are related by the following version of the
Sobolqv inequality and embedding theorem.

Theorem 6.5.4 Ifk— (m+2)/p 20, write k— (m+2)/p =1+ «, wherel 2 0
is an integer and 0 < o £ 1. Then there is a constant ¢ such that

1flliva < el flpse for fe LL(M x [0, a]),

and we have a continuous inclusion

LY (M x [0, a]) — C'T(M x [0, a])
and a compact inclusion

LY(M x [0, a]) — CY(M x [0, a]) for ~<lI+c
The following is due to Rellich and Kondrachov.
Theorem 6.5.5 For integers | < k, the natural inclusion
LY (M x [0, a]) — LY(M x [0, a])

18 compact.

We need the following a priori estimate for the parabolic differential operator
A = 9, + A — c operating on sections of E, where ¢ is a constant and A is the
Laplacian defined by D = {D,} and g.

Theorem 6.5.6 Let A=0;+A—c, 1<p<oo, —co<I<k,and 0<t<a.
If f e LY(M % [0, a]) and Af € LY _,(M x [0, al), then f € LY (M x [t, a]) and

[fllp.kta1 = CUALNp k=2 + [ Fllp.1);

where C'is a constant independent of f and || ||, k,,q] denotes the || ||pr-norm
on M x [t, a] while || ||p.x on the right is the norm on M x [0, a].
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We consider now an a priori estimate for a differential operator Q of the
following type:

(6.5.7) of = ZGIJ(% t, f(z, t))(vilaglf) e (viq,agvf),

where I = (i1, -+, 4y) and J = (j1, -+ ,J»), and ay; are C*° functions. We
expressed (6.5.7) symbolically omitting necessary indices for components of f.

Ifig+2j, < kand Z(ia+2ja) < N, then we say that Q is a partial differential
operator of polynomial type (N, k). Then we have

Theorem 6.5.8 Let Q be a partial differential operator of polynomial type
(N, k). Letr 20, 1 < pg < oo, r+k < s, and p(r + N) < g¢s. If
feC”(M x [0, a)) N LIY(M x [0, a]), then Qf € LP(M x [0, a]) and

19 llpr £ CA+ [ £llg.)?,

where C' is a constant independent of f.

Finally we consider the heat equation operator d; + Ay, where the Laplacian
Ay is independent of ¢ unlike the Laplacian A in (6.5.2) or (6.5.6).

Theorem 6.5.9 Let 1 < p < oo and k > 1/p. Then the heat operator
O+ Ao LY(M x [0, a]/0) — LY _,(M x [0, a]/0)
s an isomorphism.

For all these we refer the reader to Hamilton [43] and Friedman [27]. Hamil-
ton treats more generally the case where M has a boundary.

6.6 Evolution equations—short time solutions

Let E be a holomorphic vector bundle of rank r over a compact Kéahler
manifold M with Kéhler metric g. We consider the bundle H of Hermitian
forms of E; its fibre H, at © € M is the space Herm(E,) of Hermitian forms
on E,. Thus, it is a real vector bundle of rank 72 over M, and the space of C*>
sections of H is nothing but Herm (E) considered in Section 6.2.

Let a > 0. By pulling back H to M x [0, a] using the projection M x [0, a] —
M, we consider H as a vector bundle over M X [0, a]. Then a section of H over
M x [0, a] may be considered as a curve v;,0 £t < a, in Herm(FE).

Let L7 (M x [0, a], H) be the completion of the space C°°(M x [0, a], H) of
C*° sections by the norm || ||, » as defined in Section 6.5. Since the bundle H is
fixed throughout the section, we write often LY (M x [0, a]) for L} (M %[0, a], H).

Let C°(M x [0, a]/0, H) be the space of C* sections of H over M X [0, a]
whose derivatives up to order k vanish at M x 0. Its closure in LY (M x [0, a])
will be denoted by LY (M x [0, a]/0).
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We fix a curve h = hy, 0 £ ¢ < @, in Herm™ (E) and consider a nearby curve
h + v, where v = v4,0 £t < a, is a curve in Herm(E). We may consider both
h and v as sections of H over M x [0, a]. Let R(h + v) denote the curvature
of the Hermitian structure h 4 v, and K (h + v) its mean curvature form. We
consider the differential operator P:

(6.6.1) h+vr— P(h+v)=0:(h+v)+ (K(h+v)—c(h+v)).
We linearize P, i.e., find the differential of P at h by calculating

(6.6.2) lim LA+ 5v) = P(R)

lim 5 = O + asf((h + 8v)]s=0 — cv.

But, from (6.3.17) we see that
(6.6.3) DK (h + 5v)|s=0 = Opv,

where _
i af, i
(th)j - Zg vjozﬁ
in the notation of (3.2.43). We shall write simply O for [J;,. From (6.6.2) and
(6.6.3) we see that the differential dPy, at h is given by

(6.6.4) dPp,(v) = 0w + Ov — cw.

We consider dPj, as a linear mapping from L} (M x [0, a]/0) into LY (M x

[0, a]/0).

Lemma 6.6.5 Let p > 2n+ 2 and k 2 2. Then the linear mapping
dPy, : LY (M x [0, a]/0) — LY _,(M x [0, a]/0)

18 an isomorphism.

Proof Let v be in the kernel of dP,,. By (6.5.4), v is of class C!. Let
1 1
f= §tr(vv) = §|v|2.

Then
0 = tr(dPy(v)v) = tr((0pv + Ov — cv)v)
=0, f +0Of — 2¢f + |D'v|?.
Hence,
O f +0f —2cf £0.

Since f 2 0 and f = 0 at ¢ = 0, the maximum principle (6.4.2) implies f = 0.
Hence, v = 0, which shows that dP}, is injective.

To complete the proof, it suffices to show that the operator dP; is a Fredholm
operator of index 0. Since the Hermitian structure h varies with ¢ € [0, a], so
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do covariant derivatives appearing in the definition of Cv. Let Dy denote the
Hermitian connection (and the corresponding covariant differentiation) defined
by the Hermitian structure h at a fixed t, say t = 0, and let [y be the Laplacian
defined by Dg. Then the principal part of Uy coincides with that of [J so that

(6.6.6) Ov = Opv + Q(v),

where @ is a linear differential operator of order 1 with smooth coefficients. We
can write therefore

(6.6.7) dP,(v) = dv + Ogv + Q1 (),

where Q1 (h) = Q(h)—cv. Since Q; : L} (M %[0, a]/0) — L} (M %[0, a]/0) fac-
tors through the natural injection L} | (M x [0, a]/0) — LY (M %[0, a]/0), Q1
is a compact operator. On the other hand, the heat equation operator d; + [y
is known to be an isomorphism from L} (M x [0, a]/0) onto L} _,(M x [0, a]/0),
(see (6.5.9)); it is then a Fredholm operator of index 0. Since the operator dP
can be connected to d; + Oy by a l-parameter family of Fredholm operators
Oy +0p +591,0 £ s <1, it is also a Fredholm operator of index 0. Since we
have already shown that dPj, is injective, it has to be also surjective. Q.E.D.

We shall now prove the existence of a short time solution for the evolution
equation (6.3.30).

Theorem 6.6.8 Let E be a holomorphic vector bundle of rank r over a compact
Kdahler manifold M of dimension n. Let p > 2n + 2. Given an Hermitian
structure ho in E, there exist a positive number § and v € LE(M x [0,4]/0) such
that h = hg 4+ v satisfies the evolution equation

P(h) = 8h+ K(h) — ch = 0.

Proof Extend hg to M x [0, a] as aconstant curve k = k; in Herm™ (E) by
setting k; = hg for 0 <t < a. Since dPy : LE(M x [0, a]/0) — L3(M x [0, a])
is an isomorphism by (6.6.5), the implicit function theorem implies that the
mapping v — P(k + v) sends a neighborhood V of 0 in LE(M x [0, a]/0) onto
a neighborhood W of P(k) in L3(M x [0, a]). Taking § > 0 small, we define an
element w of LE(M x [0, a]) by setting

/0 on M x[0,0]
w—{ P(k) on M x (d,a).

If 0 is sufficiently small, then w belongs to the neighborhood W. Then take
v € V such that P(k +v) = w. Q.E.D.

6.7 Regularity of solutions

We shall show that the solution obtained in (6.6.8) is smooth.
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Theorem 6.7.1 With the notation of (6.6.8) and under the assumption p >
2n+ 2, let v e LE(M x [0, a]/0) be a solution of
P(ho +v) =0.
Then v is of class C* on M x (0, a).
Proof We compare P(h) = P(hg + v) with dPy,(v). Since
P(h) = P(hg +v) = 0w + K (ho + v) — c(ho +v)

and
dPp,(v) = 0w + Oov — cv,

we have

P(ho + 1)) — dPhO(v) = K(ho + U) — Do’l) — Cho.

Writing K(h) and Cyv explicitly in terms of coordinates, i.e.,

S [ hy _Ohig Oz
_ — _ af o iq PJ
Ky =-2_9 (azaazﬁ 2 e )
— D%~
D Y
DOUU = — g 8201825 _|_ s

we see that P(hg+v) —dPp,(v) is a polynomial of degree < 2 in the first partial
derivatives dv;7/0z%, 0v;z/ 97° of v whose coefficients are smooth functions of

2%, 7% and v;3- (After cancelation, it does not involve second partial derivatives
of v.)
Set
F(v) = P(hg + v) — dPy, (v).

In the terminology of Section 5, F'(v) is a polynomial partial differential operator
of type (6.2.1).

We write v € L% if v € LI(M X [tg, a]) for an arbitrarily small ¢ty > 0 and
an arbitrary ¢, 1 < ¢ < co. We shall show that if v satisfies the assumption of
the theorem, then the following three hold:

(A) v e It
(B) If F(v) € L*, then v € Ly- 4o,
(C)IfveLfand s =2 then F(v) € LY forr+1 < s.

Proof of (A) By assumption, P(hg +v) = 0 and v € LL(M x [0, d]),
where p > 2n + 2. By (6.5.4), v € CY(M x [0, a]). (We note that since our
differentiability class is weighted (see Section 6.5), this does not mean that v is
of class C! in the variable ¢ in the usual sense.) Hence, from definition of F(v)
it follows that F(v) € C°(M x [0, a]). Since P(hg + v) = 0 by assumption,

dPy,(v) = —F(v) € C°(M x [0, a]).

Hence,
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dPp,(v) € L§(M x [0, a]) forall ¢, 1<gq< .
By (6.5.6),
ve LM x [ty, a]) forall g¢q, 1<g<oo and ¢y >0.

Proof of (B)  Assume that F(v) € LI(M X [to, a]). Since dPy,(v) = —F(v),
we have dPp,(v) € LY(M X [to, a]). By (6.5.6) again,

ve Ll (M x[ty, a]) for t1 > to.

Proof of (C)  Since F(v) is a polynomial of degree 2 in partial derivatives
81)1-3/82‘“781)1-3/825, it follows from (6.5.8) that if v € L? (and hence v € L* N
CY(M x [to, a]), then F(v) € L* forr +1 < s.

Now, from (A), (B) and (C) we conclude that v € L for all s. By (6.5.4), v
is of class C* on M x [tg, a] for all ¢y > 0. Q.E.D.

6.8 Solutions for all time

Suppose h = h;, 0 £ t < q, is a family of Hermitian structures in F satisfying
the evolution equation

(6.8.1) dh = —(K(R) — ch).

Then the corresponding family of connections w = h~'d'h satisfies the following
equation:

Oyw = —h*0h -k d'h+ h™ d 9k
= h YK — ch)h~'d'h — h1d' (K — ch)
=h YK —ch)h~'d'h —d' (h" (K —ch)) — h~'d'h - h " (K — ch)
=(K—-clhw—d(K —cl) —w(K —cl)
=-D'(K —cl)=-D'K.

Hence,
(6.8.2) 0w =—-D'K.

Making use of the formula (3.2.39) of Chapter 3 (i.e., AD' — D'A = /—15}/),
the Bianchi identity DR = 0 and the formula K = «/—1AR, we obtain

(6.8.3) D'K =§|R.

Remark  In terms of local coordinates, (6.8.3) may be obtained also as
follows:

(D'E); = ) Kjpd? =) 6" R, 5,027 = 3 9" R; 5,07 = ([ R)j.
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Using (6.8.3) we may rewrite (6.8.2) as follows:

(6.8.4) Ow = —6R

From (6.8.4) we obtain

(6.8.5) R =0d"w=d"0w=D"0w=-D"6R=—-0,R.

We define functions f = fy, f1, fo, -+ on M x [0, a] as follows.

(6.8.6) f=IRP? fe=|VFR? k=0

Lemma 6.8.7 Suppose that h = h,0 <t < a, satisfies (6.8.1). Then
(i) (0 +O)tr(R) =0,

(i) (B +0O)f S c(f32 4 f),
(ii) (3 + O)IK|* £ 0,

i) @+ O aft? | D0 A2+ ],
i+j=k
where the constants c, ¢y depend only on the Kdhler metric of M.

Proof (i) Taking the trace of (6.8.5), we obtain (i).

(ii) In order to prove (ii), we use the following general formula for a (1,1)-
form F with values in the endomorphism bundle End(E). In terms of local
coordinates, let

= § F' _dz® NdzP.
jap
Then

WE) =Yg F 5 dz®, (d'F) ==Y g F o e A dE

jaBy

7 i 7 [ B
(d F) g ( ]aﬁé—FmgB)dz Adz? A dZ,
gn [3 ) % a &
S d'F g g7 Fjagﬁv - Fjaé,&«,)d'z Adz°.

Hence, we obtain a formula for O, F = (5)/d" + d"5})F

Bp B i
(6.8.8) DhF ng Jagﬁv + ng Jaﬂ 5,y Fjaﬂw,g)'

By the Ricci identity, the last term can be expressed in terms of F' and the
curvatures of (F, h) and (M, g). Explicitly,

3 _ k
F;aﬁ 8,y F;aB,y,E - Z(R;cé'y jaB kaBRJ(;’y) Z( jeﬁS;&y + F;af [6357)

where S denotes the curvature of (M, g) while R denotes the curvature of
(E, h). But we do not need such a precise formula. It suffices to rewrite (6.8.8)
as follows:

(6.8.9) O.F = V"™*V"F + {F, R} + {F, S},
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where { , } denotes a certain bilinear expression.
We express f = |R|? as follows without using h.

_ ad B pi J
(6.8.10) F=> 9%g R} R =

Since g does not depend on ¢ (although h does), we obtain from (6.8.10), (6.8.5)
and (6.8.9) the following formula:

Ocf =2(0:R, R) = —2(00LR, R)
=-2(V"™*V"R, R)+{R, R, R} +{R, R, S},

where { , , } denotes a certain trilinear expression. From (6.8.10) we obtain
also
Of = 2(V"*V"R, R) —2|V"R|>.

Hence,
(0 +O)f={R, R, R} +{R, R, S} —2|V"R|?
<{R. R R} +{R, R, S}=c(f**+)
(iii) From (6.8.5) we obtain
K = O, K.
Since K is a 0-form (with values in End(E)), we have
OnK = 6)d"K = V"*V"K.
As in the proof of (ii), we express |K|? without using h:
|K|? = Z KIK].
Then
HK* =2(0,K, K) = —2(0,K, K),
OK|> =2(V"V"K, K)-2|V"K|*.

Hence,
0y +O) K| = —2]V'K* £0.

(iv) Since V depends on t, it does not commute with 9;. Taking a local
frame field s = (s1, -+, s,) of E, we obtain

B0V —Vod)si=> (dwl)s;.

This shows that 0; o V — V o 0; is an algebraic derivation given by dw. By
induction on k, we obtain

(6.8.11) 0 oVF=VFo0i+ Y V'odwoV.
itj=k—1
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Applying (6.8.11) to R and making use of (6.8.4), (6.8.5) and (6.8.9), we obtain
(6.8.12)

0o VFR=-V*(V"V'R+{R, R} +{R, S})+ > V'({VR, V/R}).
i+j=k—1

Similarly, by induction on k, for any section F of the bundle End (F) ®
(T*M)®P we can easily prove the following formula:
(6.8.13) VEV*V'F=V"V'V*F+ Y ({V'F, VIR} +{V'F, VIS}).
it+j=k
Set F' = R in (6.8.13). This together wlth (6.8.12) implies
(6.8.14) (8 +V"*V"X)(V*R)= Y ({V'R, V/R} +{V'R, VIS}).
it+i=k
Substituting (6.8.14) in
(0r 4+ O) fr = 2((0s + V"*V")(V*R), V*R) — 2|V"V*R}?,

we obtain (iv). Q.E.D.

Lemma 6.8.15 Suppose that h = hy, 0 £t < a, 15 a smooth solution to the
evolution equation (6.8.1). Then
(i) Both sup |Tr(R)| and sup |K| are decreasing functions of t and hence are
M M

bounded for 0 £t < a (even in the case a = 0);

(ii) If the curvature R itself is bounded for 0 £ t < a, i.e., |R| < B on
M x [0, a), then all its covariant derivatives are bounded, i.e., |V*R| < By, on
M x [0, a).

Proof (i) This follows from the maximum principle (6.4.1) and (i) and (iii)
of (6.8.7).

(ii) The proof is by induction on k. For k = 1, this is nothing but the
hypothesis. Suppose |V/R| are bounded for all j < k. By (iv) of (6.8.7), we
obtain

O +O) fr £ A(1 4+ fi).

The equation
O+ Du = (0 +0)(1 +u) = A(1 +u), u(0) = fx(0),

which is linear in 1+ w, has a (unique) smooth solution u defined for all 0 < ¢ <
00. By simple calculation we see that

(0 +O)((fx —we M) = e (0 + O) fx — A(fr +1)) £0.

Again, by the maximum principle, we conclude fj, < u. Q.E.D.
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Lemma 6.8.16 Suppose that h = hy is a smooth solution to the evolution equa-
tion (6.8.1) for 0 £t < a. If the curvatures Ry of hy are uniformly bounded in
L1(M) for some q > 3n, then R, are uniformly bounded (in L™ (M)).

Proof We make use of the heat kernel H(z, y, t) for the scalar equation
Oy + 0 on M and its asymptotic expansion

(6.8.17) H ~ (4rt) e " * (g + ugt + - --),

t—0+t

where u; are smooth functions on M x M and r = d(z, y) is the Riemannian
distance between x and y. Using a change of variables

v?=pr?/4t  (so that r?"~ldr = ct"v?"~ldv),
we obtain for ¢ < a and for each fixed z € M the following bound:
|H(x, -, t)|z» < const. t"(1=P)/P,

Hence, for any p < n/(n — 1) we have

(6.8.18) /0 H (2, - O)ledt < cp(a).

Now we make use of the following formula:

u(z, t)= [ dr H(z, y, t — 7)(0- + Duly, 7)dy
(6.8.19) /t /M

+ [ H(z, y, t —to)u(y, to)dy.
M

This is a direct consequence of the following “Green’s formula” for a pair of
functions u(y, 7) and v(y, 7):

/t: dr /M{U@Tu + Ou) + w(0-v — Ov) }dy = /t: dr /M 0, (w)dy.

Since H > 0, applying (6.8.19) to u = f = |R|? and making use of (ii) of (6.8.7),
we obtain

. 02 [ ar [ He, oy t=1)(F D72+ Fly, 7)dy
- L),

f&mmwwmm@

The last term ¥ (z, t) = /H(sc7 y, t)f(y, 0)dy is a solution of the heat

equation (9; + O)1p = 0 satisfying the initial condition ¢ (z, 0) = f(x, 0).
Hence,
¥l 1) = sup f(y, 0).
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The first term on the right of (6.8.20) is bounded by

t
(6.8.21) c/o [H (2, t =7 )lze - I1£C 72+ f(5 )| dr

for conjugate indices p, p’, (1/p+1/p’ = 1). If |R| is uniformly bounded in L? for
some ¢ > 3n so that f3/2 = |R|? is uniformly bounded in L*" for some p’ > n,
then (6.8.18) implies that (6.8.21) is bounded for ¢ < a. Q.E.D.

Lemma 6.8.22 Let h = hy, 0 £t < a, be a one-parameter family of Hermitian
structures in a holomorphic vector bundle E such that
(i) h¢ converges in the C°-topology to some continuous Hermitian structure
he ast — a,
(ii) sup | K (ht)| s uniformly bounded for t < a.
M

Then hy is bounded in C* as well as in Ly and the curvature R(hy) is bounded
in LP, (p < 00), independent of t < a.

Proof There is no natural C! norm on the space Herm(E). We can choose
one Hermitian structure and use it to define a C' norm. Here we use local
holomorphic trivializations of F and partial derivatives of the resulting matrix
representations of h; to define a C! norm.

Suppose that h; is not bounded in C'. Then there exists a sequence t; — a
such that, with h; = hy,,

m; = sup |Oh;| — oc.
M

Let x; € M be a point where |0h;| attains its maximum value m;. Taking a
subsequence we may assume that x; converges to a point xg in M. We shall
now work within a coordinate neighborhood around zy with local coordinate
system z!,-.. 2",

We fix a polydisc |w*| < 1, =1,---,n, in C" and construct, for each i,
a matrix valued function h; defined on this polydisc in the following manner.
First, translating the coordinates z* slightly we may assume that |0h;| attains

its maximum value m; at the origin z = 0. Using a map
pi : {|lw| <1} — {]z°| < 1/m;}

given by w* = m;2*, we define h; to be the pull-back p¥(h;). Partial derivatives
Oh; are calculated in terms of the coordinates w®. Hence,

sup |0h;| =1 is attained at w = 0.
w

We shall show that this will lead to a contradiction. We use the following
formula expressing K in terms of h:

(6823) K7'§ - Ah'r‘E - Z go‘Bhpaaahra . %hpg,
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where Jo = 0/02%,05 = 0/07% and A = —Zg“ﬁaoﬁg. We apply (6.8.23)
to each h;. By condition (1), h; and izz_ ! are bounded independent of i since
h; = hNt approaches h,(0) as ¢ — oo. Since iL“iL;l and Oh; are bounded,
condition (i) and (6.8.23) imply that Ah; are also bounded independent of i in
|we| < 1.

Now, we claim that h; are bounded, independent of 4, in L5, 1 < p < oo,
over a slightly smaller polydisc |[w*| < 1 — 4. To see this, we make use of the
following LP estimate for A:

(6.8.24) I fllp2 = c1llAfllpo + call f

1,0

for all f € L% vanishing near the boundary of the polydisc |w®| < 1. We
apply this estimate to ph;, where p is a smooth function which is 1 in the
smaller polydisc |w®| < 1 — ¢ and which decreases to 0 near the boundary of
the polydisc |w®| < 1.

Take p > 2n + 2. By (6.5.4), the mapping L) — C?' is compact. Since
h; are bounded in L%, a subsequence of the h; converges in C! to heo say.
From condition (i) and the construction of h;, it follows that ho, has constant
components h,(0) so that Ohs = 0. On the other hand, we have

|a];'oo|w:0 = lim |8Bi|w:O = 1.

This is a contradiction. Hence, h; must be bounded in C*.

Since h; is bounded in C! and since K(h;) is uniformly bounded, the L
estimate (6.8.24) implies that h; is bounded in LY. Hence the curvature R(h;)
is bounded in LP. Q.E.D.

Theorem 6.8.25 Let E be a holomorphic vector bundle over a compact Kahler
manifold M. Given any initial Hermitian structure hg in E, the evolution equa-
tion

dth = —(K(h) — ch)

has a unique smooth solution defined for all time 0 < t < co.

Proof We already know that a solution is unique (6.4.6) and smooth (6.7.1).
We know also that a solution exists for a short time, (see (6.6.8)). Suppose that
a solution exists only for a finite time 0 < ¢ < a. By (6.4.7), hy converges to a
continuous Hermitian structure h, uniformly as t — a, thus satisfying condition
(i) of (6.8.22). By (i) of (6.8.15), sup |K(h¢)| is bounded for 0 < t < a so that

M

condition (ii) of (6.8.22) is also satisfied. By (6.8.22) the curvature R(h;) is
bounded in LP for any p < co. Hence, by (6.8.16) it is uniformly bounded. By
(ii) of (6.8.15) every covariant derivative of the curvature R(h:) is uniformly
bounded for 0 £t < a.

Now we can show, using (6.8.23), that h; is bounded in C* for all k. We
already know this for k = 1, (see (6.8.22)). Assume that h; is bounded in C*~1.
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Then all first order partial derivatives h; are bounded in C*~2. We have shown
above that K (hy) is bounded in C! for all [, in particular, for [ = k — 2. From
(6.8.23) and the elliptic regularity, it follows that h; is now bounded in C*.
Thus, h¢, which converges to h, in C° (by (6.8.22)), converges in C* as
t — a. By the short time existence starting with h,, we can extend the solution
to [0, a+ 4] Q.E.D.

6.9 Properties of solutions of the evolution equa-
tion

We shall now study how the curvature of a solution of the evolution equation
behaves as the time ¢ goes to infinity.

Proposition 6.9.1 Let h = hy, 0 £t < 0o, be a 1-parameter family of Hermi-
tian structures in E satisfying the evolution equation of (6.8.25). Then

(i) For any fized Hermitian structure k of E, the Lagrangian L(h:, k) of
(6.3.5) is a monotone decreasing function of t; in fact,

d
aL(hh k) = —||K(hy) —cI||* £0;

(ii) MA%X |K (ht) — cI|? is a monotone decreasing function of t;

(iii) If L(hy, k) is bounded below, i.e., L(hy, k) =2 A > —oco for 0 <t < oo,
then M£X|K(ht) —cl|> =0 ast— oo.

Proof (i) From (6.3.26) and the evolution equation (6.3.30), we obtain

d . N
aL(ht, k’) = (K(ht) — Cht, 6th) = _HK(ht) - ChtHQ.

(ii) Multiplying the evolution equation (6.3.30) by h; ' we rewrite it as follows:
vy = —(K; — c), where v = h; '0shy  and K, = K(hy).

Then
D'"D'v, = -D"D'K,.

On the other hand, by (6.3.17)
D”D/’Ut = ath, where Rt = R(ht)

Hence, . ‘
8th = D/DIIKt (or 3tR;]aB = VQVEKZ])

Contracting both sides with respect to the Kéhler metric g, we obtain
0Ky = —Ohk;  (or K} =Y g°P Vo V5KY).

In order to calculate 0| Ky — cI|?, we start with
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D/D/I tI‘((Kt — CI)(Kt — CI)) = 2tr((Kt — CI)(D/D//Kt)) + Qtr(D'Kt . D//Kt).
Taking the trace with respect to g (i.e., contracting with g”‘ﬁ)7 we obtain

O|K; — cI|? = 2tr((K; — eI ) (O, Ky)) — 2| D' K|?
= 2tr((K; — cI)(0:K;)) — 2| D' K|?
= =20, (tr((K; — cI)(K; — cI))) — 2| D' K|

Hence
(6.9.2) (0 + D) Ky — el = —2|D'K,|* £ 0.

Now (ii) follows from the maximum principle (6.4.1).
(iil) Integrating the equality in (i) from 0 to s, we obtain

L(hs, k) — L(hg, k) = —/ | K; — cI|?dt.
0
Since L(hs, k) is bounded below by a constant independent of s, we have
/ | K; — cI|?dt < .
0

In particular,
(6.9.3) |K: —cI|| — 0 as t— oo.
Let H(z, y, t) be the heat kernel for 9, + . Set
flz, t)=(|K; —clI)?)(z) for (z, t)€ M x [0, 00).

Fix tg € [0, o0) and set
1
u(z, t) =/ H(z, y, t —to) f(y, to)dy, where dy= —o".
M n.

Then u(z, t) is of class C*° on M X (tp, co) and extends to a continuous function
on M X [tg, 00). It satisfies

0y + Du(z, t) =0 for (z, t) € M X (tg, 00),
u(z, to) = f(x, to) for x € M.
Combined with (6.9.2), this yields
O +0O)(f(z, t) —ulz, t)) 20 for (z,t) € M X (to, 00).
By the maximum principle (6.4.1),

Max(f(z, 1) - u(z, 1) < Max(f(z, to) —u(z, to)) =0 for 2 to.
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Hence,

M <M
Max flz, to+a) me&}\;f(u(@ to+ a)

= %%/M H(z, y, a)f(y, to)dy

<c, / F(y, to)dy
M
= O Ky — eI,

where C, = }&/‘[aﬁ H(z, y, a). Fix a, say a = 1, and let ¢t — oco. Using (6.9.3)
X

we conclude

Mzﬁ( f(z, t) — 0 as t— oo. Q.E.D.
fAS]

6.10 Semistable bundles and the Einstein con-
dition

We begin with a proposition which will allow us to reduce problems in certain
cases to those of vector bundles with lower ranks.
Let

(6.10.1) 0—FE —E-—E'"—0

be an exact sequence of holomorphic vector bundles over a compact Kahler man-
ifold M. As we have shown in Section 1.6 of Chapter 1, an Hermitian structure
h in E induces Hermitian stmctures h’,h” in E’, E” and the second fundamen-
tal form A € AL9(Hom(E’, E”)) and its adjoint B € A%!(Hom(E", E')). To
indicate the dependence of A, B on h, we write Ay, By. Since B is the adjoint
of A, we can write B}, = Aj,.

Proposition 6.10.2 Given an ezact sequence (6.10.1) and a pair of Hermitian
structures h,k in E, the function Q1 and the form Qs defined by (6.3.3) and
(6.3.4) satisfy the following relations:

(i) Qu(h, k) = Qu(h, k') + Qu(h", k"),

(i) Qa(h, k)= Qo(W, k') + Qa(h”, k") —i(tr(By A Bf) — tr(By A B}))
modulo d’' A% + d" A™0,

Proof (i) This is immediate from the definition of Q.
(ii) Given an Hermitian structure h, we have the following splitting of the
exact sequence (6.10.1):

I3 by
(6.10.3) 0—>FE —~=E_—>E'—>0,

« B
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where A and p are C'°° homomorphisms determined by the conditions that
Image(\) =Kernel(u) is the orthogonal complement to a(E’) and

aopu+Aopf=Ig.
Then
B=pod o

Following the definition of Qs in Section 6.3, we consider a 1-parameter
family of Hermitian structures h = h;,0 < ¢t < 1, such that kK = hg and h = h;.
Corresponding to h = hy, we have l-parameter families of homomorphisms
A =X and g = py. We define a 1-parameter family of homomorphisms S =
Sy E" — E' by

At —Ag =«o S, orequivalently, s — pg = —S; 0.

Since « and S are holomorphic and independent of ¢, we have

B =0uod oX+pod oc\N=—-0,(SoB)od" oA+ puod'd(aos)
=-0SoBod oX+poaod 0dS=-0Sod o(fod)+d oS
= 8,S0d' +d" 08,5 =d"(8,5) € A% (Hom(E", E')).

Let ey, --- ,ep (resp. epy1,- -+ ,er) be alocal field of orthonormal frames for
E’ with respect to A’ (resp. for E” with respect to h”"). Then a(e1),--- ,a(ey),
Aept1), -+, A(er) form a local field of orthonormal frames for E with respect

toh. f1<i<pandp+1=<j <7, then

Hence, v; = h=10;h is represented by the following matrix:

v _6 S 'U/ — h/—la h/,
(6.10.4) — <(855)* viﬁ ) ,  where Uzl _ h”iléth”.

On the other hand, from (1.6.12) it follows that the curvature form R; = R(h:)
is represented by the following matrix:

— BADB* —-D'B
-D"B* R/ —B*AB

R; = R(h})

6.105) R = (T
108 Ri= R = ().

) where

and B = By,.
From (6.10.4) and (6.10.5) we obtain

tr(vRy) — tr(v,Ry) — tr(vy RY) = — tr(viB A B*) — tr(vy’ B* A B)
+tr(@,S 0 D' B*) — tr((,S)* o D'B),
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Since

tr(9;S o D" B*) = d"(tr(0;S o B*)) — tr(0; B A B¥),
tr((0;S)* o D'B) = d'(tr((0:.5)" o B)) — tr((8:B)* A B),

we obtain

tr(veRy) — tr(viRy) — tr(vy R}) = — tr(viB A B*) — tr(v; B* A B)
— tr(@ B A B*) + (9, B)* A B)

modulo d’A%! + d”” A0, The right hand side can be written as
—tr(8,B A B*)—tr(B A ((8:B)* + B*v, — v}/ B*)).

We claim
(0;B)* + B*v, — v, B* = 8;(B")

so that

tr(veRy) — tr(vyR}) — tr(vy R}) = —tr(0; B A B*) — tr(B A 0;(B"))
— _0,(tr(B A B")).

In order to establish our claim, we apply 0, to
W'(§ Bn)=n"(B*¢, n)  for Eek' nek"

Then

(0:1')(&, Bn) + h' (&, 0:Bn) = (9:h")(BE, n) + h"(0:(B*)E, ).

But
(9:h)(&, Bn) =W (v'E, Bn) = h"(B*'E, n),
hl(é-v 8tB77) = h”((atB)*gu 77)7
(0:0")(B*E, m) = h" (v B*¢, ).
Hence,

W(BE, m) + W (0B)€, m) = h'(v" BE, n) + W' (0(B")E, ).
This proves our claim. Thus,
(6.10.6) tr(v Ry) = tr(v,Ry) + tr(v) Ry) — 0 (tr(B A B*))
modulo d’ A% + d"” A0,

Multiplying (6.10.6) by ¢ and integrating from ¢ = 0 to ¢t = 1, we obtain (ii).
Q.ED.
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Corollary 6.10.7 Given an exact sequence (6.10.1) such that
W(E) = u(E") (where p = deg /rank)

and a pair of Hermitian structures h,k in E, the Lagrangian L(h, k) defined in
(6.3.5) satisfies the following relation:

L(h, k)= L(W, k') + L(A", k") + || Byl — || Bx|1*.

Proof From the assumption that E and E’ have the same degree/rank
ratio, i.e., u(E) = p(E"), we conclude also pu(E) = p(E’) = p(E"”). Then

L(h, k) :/M (Qalh, 1) = ZQu(h, k)2) A(nill)!,
LW, K) = /M (Qu', #) = Zau(w', ¥)@) A (fill)!,
L, k") = /M (@, ¥ = SQi(n", 1)) A (:)n_ll)!.

We note that the constant factors ¢ appearing above are all equal, i.e., ¢(E) =
¢(E") = ¢(E") since ¢(E) = 2ru(E)/vol(M). Hence, from (6.10.2) we obtain

n—1
L(h, k)—L(K', K'Y= L(R", k") = — / i(tr(Bo ABy) —tr(By ABE)) AN ——.
By a direct calculation we see that
@n
—i(tr(B, ABp)) A O™ = |Bh\27.
This implies the desired formula. Q.E.D.

We recall tbe following equation of Poincaré-Lelong. Let U be a domain in
C™ and s a holomorphic function in U. Let V be the hypersurface in U defined
by s = 0. As current, V coincides with (¢/7)d’'d"” log |s], i.e.,

(6.10.8) / n = ~u(log|s|)d'd"n
v ™

for every (n — 1, n — 1)-form 7 with compact support in U.

We extend this to an algebraic manifold M and a closed hypersurface V'
as follows. Let L be an ample line bundle over M with a global holomorphic
section s such that V is defined by s = 0. Let a be a C'°° everywhere-positive
section of L& L. We may consider a as an Hermitian structure in the line bundle
L. Since L is ample, we can always choose one such that its Chern form

®=_"dd"loga
2T
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is positive. Set

f=1sl*/a.
Then f is a globally defined C'**° function on M vanishing exactly at V. Then
as current, we have the following equality:

L dd"og f = Ld'd" log|s| — ®.
2T s

Using (6.10.8) we may write this as follows:

(6.10.9) i /M(log fHdd'n= /V n— /M nA®

for every (n — 1, n — 1)-form 5 on M.

We use the Chern form ® of L as our Kéhler form on M and its restriction
|y, as our Kéhler form on V. Let E be a holomorphic vector bundle of rank r
over M. We shall now denote the Lagrangian L(h, k) by L (h, k) to emphasize
the base space M. For the restricted bundle E|y over V, we denote the corre-
sponding Lagrangian by Ly (h, k). Using (6.10.9) we shall find a relationship
between Lys(h, k) and Ly (h, k).

First, we observe that the constant ¢/n appearing in the definition (6.3.5)
of Lys(h, k) remains the same for Ly (h, k) because

[ amne = [ @ ne

14

/ (I)n:/ (bn_l
M 14

by (6.10.9). We set therefore
A=—

n
Now, letting n = (Qa2(h, k) — AQ1(h, k)®) A "2 in (6.10.9), we obtain

and

(n— 1)!Ly(h, k) :/ (Qa(h, k) — AQy(h, k))A®" !

M
:/V(Qz(f% k) — X1 (h, k)) A ®"2
_ %/M(logf)d/d//(Qz(h, k) — AQ1(h, k)) A D2,

Applying (iii) of (6.3.23) to the last term, we obtain

(n— W) Las(hy k) =(n — 2)!Ly (h, k)

(6.10.10) 417 [ Qog HiestiR() - xe1P) p o

- 4i (log f)(t(iR(k) — ABT)2) A B2,
T JMm
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Since we fix k, the last term on the right can be bounded by a constant inde-
pendent of h = hy. It is the middle term that we have to estimate.
We apply Hodge’s primitive decomposition to R(h). Then

1 1
iR(h) = gA(iR(h))é +iS = EK(h)q) +1S,
where S is a primitive (1, 1)-form with values in End(E) so that
Snemt=o.

Hence,

(iR(h) — ABPI)2 A D" 2 = <1

n

2
(K(h) —c)® + iS) A P2

1
= —(K(h) - cl)?®" — SAS NP2

It follows that
(IOg f)(tr(ZR(h) — /\‘1)1)2) A P2
— 5 og F)(ex(K () = cI?)@" — (log f)ex(S A S) A 82,

We shall show that tr(S A S) A @72 > 0. Let S;aﬁ be the components of S

with respect to unitary bases for E and TM. Since iR(h) = (1/n)K(h)® + 1S,

the components S]’?ag (and S jﬁaﬁ) of S enjoy the same symmetry properties as

the components of R, that is,
Siraf = Skjoa
Hence, imitating the proof of (4.4.3), we obtain
n—2 __ k j n—2
n(n—1r(SAS)A®" > =n(n—1)Y SFAS,A®
= = 2_(SigaaS 5 ~ ShjanSimem) "
=2 |Si5apl@" 20

since Z Sijam = 0 by the primitivity of S.
Without loss of generality, we may assume that f = |s|?/a < 1 since we

can multiply a by any positive constant without affecting ® = (i/27)d’'d” log a.
Then log f £ 0, so that

—(log f)tr(S A S) A D" 2 > 0.

Hence,

(Iog ) (tx(iR(h) ~ ABT)?) A @" 2 = (1og )| K (h) — eI |"®"
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and

1
/ (log f)tr(iR(h) = ARI)*) A" % 2 —— (/ (—log f)(I)”) Max |K (h) —cI|?.
M n M M
We substitute this into the middle term of the right hand side of (6.10.10).
The last term of (6.10.10) is independent of h. Hence, we have established the
following:

Proposition 6.10.11 Let E be a holomorphic vector bundle over a projective
algebraic manifold M of dimensionn = 2. Let V be a non-singular hypersurface
of M such that the line bundle L defined by the divisor is ample. We use a
positive closed (1,1)-form ® representing the Chern class of L as a Kdhler form
for M. Following (6.3.5) we define the Lagrangians Ly (h, k) and Ly (h, k) for
E and E|v, respectively. Then, for a fized Hermitian structure k in E and for
all Hermitian structures h in E, we have

1

n—1

Lyt(h, k) 2 ——Ly(h, k) = C (Max|K(h) = eI[*) — ',

where C and C' are positive constants independent of h.

Theorem 6.10.12 Let E be a semistable holomorphic vector bundle over a
compact Riemann surface M. Then, for any fixed Hermitian structure k €
Herm™ (E), the set of numbers {L(h,k);h € Herm™ (E)} is bounded below.

Proof  The proof is by induction on the rank of E. We know (see (5.2.7),
Theorem of Narasimhan-Seshadri [117]) that if E is stable, then there exists
an Einstein-Hermitian structure hg. By (6.3.37), L(h, k) attains its absolute
minimum at ho, i.e., L(h, k) = L(ho, k) for all h € Herm™ (E).

We assume therefore that E is semistable but not stable. Then there exists a
proper subbundle E; of E with the same degree-rank ratio, i.e., u(E1) = u(E).
Clearly, E; is semistable. If it is not stable, there is a proper subbundle Fs of
E, with pu(FE2) = p(E7). By repeating this process we obtain a stable subbundle
E' of E such that u(E') = u(E). We set E” = E/E’. Then p(E") = u(F) and
E” is semistable. Applying (6.10.7) to the exact sequence

0—F —E—E'"—0
and to a pair of Hermitian structures h, k in F, we obtain
L(h, k)= L(', k') + L(h", k") + || Bu|* = | Bxl1?,
where b/, k' (resp. b, k") are the Hermitian stmctures in E’ (resp. E”) induced
by h,k. By the inductive hypothesis, L(h', k') (resp. L(h”,k")) is bounded

below by a constant depending only on k' (resp. k”). Hence, L(h, k) is bounded
below by a constant depending only on k. Q.E.D.
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Theorem 6.10.13 Let E be a holomorphic vector bundle over a compact Kdhler
manifold M with Kahler form ®. Then we have implications (1) = (2) = (3)
for the following statements:

(1) For any fixed Hermitian structure k in E, there exists a constant B such
that L(h, k) = B for all Hermitian structures h in E;

(2) E admits an approzimate Finstein-Hermitian structure, i.e., given any
€ > 0, there exists an Hermitian structure h in E such that

Max |K —ch | < ¢
M

(3) E is ®-semistable.
If there exists an ample line bundle H on M such that ® represents the
Chern class ¢1(H), then (1), (2) and (3) are all equivalent.

Proof (1) = (2) This follows from (iii) of (6.9.1).

(2) = (3) This was proved in (5.8.6).

Now, assume that there exists an ample line bundle H over M with [®] =
c1(H). We make use of the following result.

Theorem 6.10.14 (Theorem of Mumford and Mehta-Ramanathan [104])
Let M be a projective algebraic manifold with an ample line bundle H. Let E be
an H-semistable vector bundle over M. Then there exists a positive integer m
such that, for a generic smooth V€ |Op(m)|, the bundle E|y is H-semistable.

Using (6.10.11) and (6.10.14), we shall now prove the implication:
(3) = (1) Let h be an arbitrary Hermitian structure in E and let hy,0 < t <
00, be the solution of the evolution equation

atht = —(K(ht) — Cht)
with the initial condition hg = h, (see (6.8.25)). First we prove

Lemma 6.10.15 If E is H-semistable, then {Lyr(ht, k), 0 £ ¢t < oo} is
bounded below (by a constant depending on h, k).

Proof Let V be a hypersurface of M as in (6.10.14). By (6.10.11), given
an Hermitian structure k, there exist positive constants C and C’ such that

1
Lag(he, k) Z ——= L (hs, k) —C(Mﬁx\[((ht) —cl|2> el

1
n—1

v

Ly (b, k) = C (Max | K (ho) — eI|?) = ",

where the second inequality is a consequence of (ii) of (6.9.1). Since Ly (h¢, k)
is bounded below by the inductive hypothesis, so is Ly (he, k). Q.E.D.

By (i) of (6.9.1), Las(h, k) = Lp(he, k) for all ¢ =2 0. By (iii) of (6.9.1),
there exists ¢; such that
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M]\?X|K(ht) —cl| <1 for t¢2t.

Hence,

1

> >

Ly(hgy, k) —C —C"  for t=t.

By the inductive hypothesis, Ly (h:, k) is bounded below by a constant (which
depends on k but not on h). Hence, {L(h,k);h € Herm™ (E)} is bounded
below. This completes the proof of (3) = (1). Q.E.D.

All conditions (1), (2) and (3) in (6.10.13) should be equivalent in general
whether M is algebraic or not. One has to find the proof which does not
make use of (6.10.14). The following theorem, proved by Maruyama [99] by an
algebraic method, is a direct consequence of (4.5.3) and (6.10.13). It should be
also true whether M is algebraic or not.

Theorem 6.10.16 Let M be a compact Kahler manifold with Kdhler form ®.
Assume that © represents the first Chern class c1(H) of an ample line bundle
H over M.

(1) If E is ®-semistable, so are E®P @ E*®1 NPE and SPE;

(2) If E and E' are ®-semistable, so is E® E'.

Note that if F is ®-semistable, its dual E* is ®-semistable whether M is
algebraic or not, (see (5.7.7)).

Remark 6.10.17 If E and E’ are ®-stable in (6.10.16), then E @ E' is &—
semistable. But it should be a direct sum of ®-stable bundles with p = u(E) +
w(E"). This conjecture is consistent with (4.1.4).

Using (6.10.13) and results of Uhlenbeck [155], [156], Donaldson [25] derived the
following

Proposition 6.10.18 Let M be an algebraic surface with an ample line bun-
dle H and a Kdhler form ® representing the Chern class c¢1(H). Given a ®-
semistable bundle E' over M, there exists a holomorphic vector bundle E over
M with the same rank and degree as E and such that

(1) E' admits an Einstein-Hermitian structure;

(2) there is a nonzero homomorphism f: E — E'.

As a consequence of (6.10.18), he obtained

Theorem 6.10.19 Let M be as above and E a ®-stable bundle. Then E admits
an Finstein-Hermitian structure.

In fact, £’ is ®-semistable by (5.8.3). The theorem follows from (5.7.12).
It is the use of Uhlenbeck’s results which limit (6.10.18) to the 2-dimensional
case.






Chapter 7

Moduli spaces of vector
bundles

Atiyah-Hitchin-Singer [8] constructed moduli spaces of self-dual Yang-Mills
connections in principal bundles with compact Lie groups over 4-dimensional
compact Riemannian manifolds and computed their dimensions. Itoh [53], [54]
introduced Kéhler structures in moduli spaces of anti-self-dual connections in
SU(n)-bundles over compact Kéhler surfaces. Kim [61] introduced complex
structures in moduli spaces of Einstein-Hermitian vector bundles over compact
Kahler manifolds.

Let E be a fixed C*° complex vector bundle over a compact Kahler mani-
fold M, and h a fixed Hermitian structure in E. In Section 7.1 we relate the
mod space of holomorphic structures in F with the moduli space of Einstein-
Hermitian connections in (E, h).

Generalizing the elliptic complexes used by Atiyah-Hitchin-Singer and Itoh,
Kim introduced an elliptic complex for End(E, h) using Einstein-Hermitian con-
nections. This complex makes it possible to prove smoothness of the moduli
space of Einstein-Hermitian connections under cohomological conditions on the
tracefree part End’(E, h) of End(FE, h) rather than End(E, h) itself. This tech-
nical point is important in applications. In Section 7.2 we reproduce his results
on this complex.

In Section 7.3 we construct the moduli space of simple holomorphic struc-
tures in E using the Dolbeault complex for End(F) and the Kuranishi map. The
results in this section have been obtained also independently by Liibke-Okonek
[90]. For a different analytic approach to moduli spaces of simple vector bundles,
see Norton [122].

In Section 7.4, following Kim [61] we prove that the moduli space of Einstein-
Hermitian connections in (E, h) has a natural complex structure and is open in
the moduli space of holomorphic structures in F.

In Section 7.5 we prove the symplectic reduction theorem of Marsden-Weinstein
[93] and its holomorphic analogue. The reduction theorem was used by Atiyah-
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Bott [7] to introduce K&hler structures in moduli spaces of stable vector bundles
over compact Riemann surfaces. It will be used in Sections 7.6 and 7.7 for similar
purposes.

In Section 7.6, generalizing Itoh [54] we introduce a Kéahler structure in the
moduli space of Einstein-Hermitian connections in (E, h).

Mukai [113] has shown that the moduli space of simple holomorphic struc-
tures in E over an abelian surface or K3 surface M carries a natural holomorphic
symplectic structure. In Section 7.7 we generalize this to the case where M is
an arbitrary compact Kahler manifold with a holomorphic symplectic structure.

In Section 7.8 we apply results of preceding sections to bundles over compact
Kéhler surfaces.

7.1 Holomorphic and Hermitian structures

Let E be a C'°°° complex vector bundle of rank r over a complex manifold
M. Let GL(E) denote the group of C'*° bundle automorphisms of E (which
induce the identity transformations on the base M). The space of C* sections
of the endomorphism bundle End(E) = F ® E* will be denoted by gl(E) and is
considered as the Lie algebra of GL(F).

Let AP9(E) be the space of (p, ¢)-forms on M with values in E, and set

A"(B)= Y APY(E).
ptg=r
Let D”(E) denote the set of C-linear maps

D" : A°%E) — AY(E)
satisfying
(7.1.1) D"(fs)=(d"f)s+ f-D"s for sec A%E), fe A"
Every D" extends uniquely to a C-linear map
D" : AP9(E) — APTTY(E),  p, ¢ 20,
satisfying
(7.1.2) D"(wo)=d"y Ao+ (=1)"T*YAD"oc for o€ API(E),p € A™*.

If we fix D} € D(E), then for every D € D" (E) the difference « = D" — D{
is a map
a: AYE) — A%Y(E)

which is linear over functions. Hence, a can be regarded as an element of
A%Y(End(E)). Conversely, given any Djj € D”(E) and a € A%} (End(E)), D =
Dy + « is an element of D”(FE). In other words, once Dy € D”(E) is chosen
and fixed, D”(E) can be identified with the (infinite dimensional) vector space
A%Y(End(E)). Thus, D”(E) is an affine space.
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Let H"(E) C D"(E) be the subset consisting of D" satisfying the integra-
bility condition

(7.1.3) D" oD" =0.
We know that if E is a holomorphic vector bundle, then
d": A°E) — AYY(E)

can be well defined and is an element of H”(E). Conversely, every D" € H"(E)
defines a unique holomorphic structure in E such that D" = d”, (see (1.3.7)).
Thus, H”(E) may be considered as the set of holomorphic bundle structures in
L.

The group GL(FE) acts on D”(E) by

v D”'—>Dﬁf:f_loDHOfZDH-‘rf_ldﬁf
(7.1.4) for D" € D"(E), f € GL(E).

Then GL(FE) sends H”(E) into itself. Two holomorphic structures DY and D}
of E are considered equivalent if they are in the same G L(E)-orbit. The space
H'"(E)/GL(E) of GL(E)-orbits with the C*°-topology is the moduli space of
holomorphic structures in E. This space is, however, in general non-Hausdorff,
(see Norton [122] on this point). This difficulty will be resolved by considering
only (semi)stable holomorphic structures. For technical reasons we shall use
later appropriate Sobolev spaces instead of the C*°-topology.

Again, let E be a C'°° complex vector bundle of rank r over a complex
manifold M. We fix an Hermitian structure h in E. Let U(E, h) denote
the subgroup of GL(E) consisting of unitary automorphisms of (E, h). Its
Lie algebra, denoted by u(F, h), consists of skew-Hermitian endomorphisms of
(E, h).

Let D(E, h) be the set of connections D in E preserving h, i.e., C-linear
maps D : A°(E) — Al(E) satisfying

(7.15) D(fs)=df -s+f-Ds for sc A%E) and fec A°
d(h(s, t)) = h(Ds, t)+ h(s, Dt) for s,t€ A%E).
Every D € D(F, h) extends to a unique C-linear map
D : APY(E) — APTL(E) 4 APITHE)
satisfying

(7.1.6) Dy Ao)=db Ao+ (—=1)""p A Do for o€ APIU(E), ¢ € A™*.

Set
D=D'+D",
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where D’ : A°(E) — AYY(E) and D" : A°(E) — A%'(E). Then D" € D"(E).
Thus, we have a natural map

(7.1.7) D(E, h) — D"(E), D+~ D".
The map (7.1.7) is bijective. In fact, given D" € D" (E), D’ is determined by
(7.1.8) d"(h(s, t)) = h(D"s, t)+ h(s, D't) for s,tc A°(E).

Then D = D'+ D" is in D(E, h).

Let End(E, h) be the vector bundle of skew-Hermitian endomorphisms of
(E, h). If we fix a connection Dy € D(E, h), for every D € D(E, h) the
difference o« = D — D satisfies

(7.1.9) h(as, t) + h(s, at) =0

and can be regarded as an element of A(End(E, h)), i.e., a 1-form with values in
the bundle End(E, h) of skew-Hermitian endomorphisms of (E, h). Conversely,
given any such form o, D = Dy + « is an element of D(E, h). Hence D(E, h)
is an infinite dimensional affine space, which can be identified with the vector
space AY(End(E, h)) once an element Dy € D(E, h) is chosen as origin.

Let H(E, h) denote the subset of D(E, h) consisting of D = D' + D" such
that D” o D" = 0; in other words,

H(E, h) = {D € D(E, h); D" € H'(E)}.

If D € H(E, h), then D" defines a unique holomorphic structure in E such that
D" =d"’. Hence, D is the Hermitian connection of (F, h) with respect to this
holomorphic structure. Conversely, every holomorphic structure D’ € H"(FE)
determines a unique connection D = D'+ D" € H(E, h), which is nothing but
the Hermitian connection of (E, h) with respect to the holomorphic structure
D”. Thus we have a bijection H(E, h) — H”(F). Combining this with (7.1.7),
we have the following diagram:

(7.1.10) D(E,h) <——> D'(E)
U U
H(E, h) H'(E).

The unitary automorphism group U(E, h) acts on D(E, h) by

D+ Df=f1oDof=D+ fldf

(7.1.11)
for D€ D(E, h), f € U(E, h)

and leaves the subset #(E, h) invariant.
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Since D(E, h) is in one-to-one correspondence with D" (E), the group GL(E)
acting on D”(E) must act also on D(E, h). This corresponding action is given
by

DHD‘f:f*ODIOf*_l—i—f_lODHOf

(7.1.12)
for D€ D(E, h), f € GL(E),

where f* is the adjoint of f, i.e., h(s, f*t) = h(fs, t). To prove (7.1.12), set
D’ = Dy + D!. Since the correspondence D(E, h) — D"(E) is given by
D+ D", we obtain DY = f~'o D" o f. Then using (7.1.8) we obtain

hs, Df*t) = d"(h(s, £°)) — h(D!s, {1
= d”(h(fsa t)) - h(DH(fS), t)
= h(fs, D't) = h(s, f*D't).

Hence, D} = f*o D’ o f*~1,

Since GL(FE) acting on D”(E) by (7.1.4) leaves H"(E) invariant, GL(F)
acting on D(E, h) by (7.1.12) must leave H(E, h) invariant.

The action of U(E, h) on D(E, h) or H(E, h) is not effective. For f €
U(E, h) and D € D(E, h), the equality Df = D means Do f = fo D, i.e., the
endomorphism f of E is parallel with respect to the connection D. Hence,

Proposition 7.1.13 The subgroup of U(E, h) fizing a given D € D(E, h)
consists of automorphisms [ of E which are parallel with respect to D. It is
therefore naturally isomorphic to the centralizer in the unitary group U(r) of
the holonomy group of the connection D. In particular, it is compact.

If the holonomy group of D is irreducible, the subgroup in (7.1.13) consists
of scalar multiplication by complex numbers A\ of absolute value 1 and, hence,
is isomorphic to U(1) = {Ag; A € C and |A| = 1}. We remark that U(1) is
much smaller than the center of U(E, h) which consists of automorphisms of
the form AIg where X are functions with || = 1.

Proposition 7.1.14 The action of U(E, h) on D(E, h) or H(E, h) is proper.

Proof Set U =U(E, h) and D = D(E, h). Proposition means that the
map

DxU-—DxD, (D,f)— (D, DY)

is proper. Let D; € D be a sequence of connections converging to Do, € D and
let f; € U be a sequence of automorphisms of £ such that D;j converges to a
connection D* € D. The problem is to show that a subsequence of f; converges
to some element f., € U and D* = Dfx.

We work in the principal U(r)-bundle P associated to (E, h). Fix 29 € M
and vy € P over xg. Taking a subsequence, we have

fj(’U()) — US e P.
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Since f; commute with the right action of the structure group U(r) of P, we
have

fi(voa) = (fj(vo))a — via forall a € U(r).

We define f, as follows. Let € M and c a curve from zy to z. Let ¢; be
the horizontal lift of ¢ with respect to the connection D; such that the starting
point is vg. Then f;(&;) is the horizontal lift of ¢ with respect to the connection

D;j such that its starting point is f;(vo). Since D; — Do, it follows that ¢;
converges to o, (Where ¢4 is the horizontal lift of ¢ with respect to Do such
that its starting point is vg). Let & be the horizontal lift of ¢ with respect
to D* such that its starting point is v;. Since D;j — D* and f;(vo) — v, it
follows that f;(¢;) — ¢*. We have to define f in such a way that fo(¢sc) = ¢*.
This condition together with the requirement that f,, commutes with the right
action of the structure group U(r) determines fo, uniquely. (Because if ¢ is a
closed curve in M and if a horizontal lift ¢ of ¢ gives an element a € U(r) of
the holonomy group, then for any f € U, the horizontal lift f(¢) gives the same
element a € U(r)). Q.E.D.

Corollary 7.1.15 The quotient spaces D(E, h)/U(E, h) and H(E, h)/U(E, h)
are Hausdorff.

Assume that M is a compact K&hler manifold with Ké&hler metric g. Let
E(E, h) denote the subset of H(E, h) consisting of Einstein-Hermitian connec-
tions D, i.e.,

(7.1.16) E(E, h) = {D € H(E, h); K(D) = cg},

where K (D) denotes the mean curvature of a connection D and ¢ is a constant.
We recall that the Einstein condition can be expressed in terms of the operator
A as follows, (see (4.1.2)):

iAR(D) = clg.
In general, if D € D(E, h) and f € U(E, h), then
(7.1.17) R(DN=(ftoDof)o(ftoDof)=ftoR(D)of
and
(7.1.18) K(D?)=ftoK(D)of.

It follows that the action of U(E, h) on D(E, h) leaves £(F, h) invariant.
Trivially, the natural map

E(E, h)JU(E, h) — H(E, h)/U(E, h)

is injective. By the uniqueness of Einstein-Hermitian connection (see (6.3.37)),
even the natural map

E(E, h)JUE, h) — H"(E)/GL(E)
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is injective. We call E(E, h)/U(E, h) the moduli space of Einstein-Hermitian
structures in E.

Proposition 7.1.19 The moduli space E(E, h)/U(E, h) of Einstein-Hermitian
structures in E is Hausdorff and injects into the set H"(E)/GL(E) of holomor-
phic structure in E.

The following chart organizes various spaces discussed in this section.

(7.1.20) D(E,h) <> D"(E)

U
E(E,h) c H(Eh) ~— = H"(E)

inj

E(E,h)JUE,h) C H(E, h)%U(E,h)
/

where inj indicates that the map is injective.

7.2 spaces of infinitesimal deformations

As in the preceding section, let E be a C'*° complex vector bundle of rank
r over a complex manifold M and H”(E) the set of holomorphic structures in
E, (see (7.1.3)). We shall determine the space of infinitesimal deformations of a
holomorphic structure D" of E, i.e., the “tangent space” to H"(E)/GL(E) at
D”. Let
DY =D"+a), |t| <3,

be a curve in H"(E), where of € A% (End(E)) and of = 0. Then
(7.2.1) D"aff + o Ao = 0.
For, if s € AY(E), then
0 = D{(D{(s)) = D"(D"(s)) + D"(af{ (s)) + o (D"(5)) + (cff A arf)(s)
= (D"af)(s) + (af Aaf)(s).
Differentiating (7.2.1) with respect to ¢ at ¢ = 0, we obtain

(7.2.2) D"a” =0, where o' = 0a}|i—o-

If D} is obtained by a 1-parameter family of transformations f; € GL(E),
so that

Dzlf/:ft_loDNOfta with fO:IE7
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then
(7.2.3) D] =D"+ f;toD"f.
For, if s € AY(E), then

D{(s) = f {(D"(fi(s))) = D"s + (f; ' D" f)(s).

Set

(7.2.4) o = f7ID" i, o = 90! |i—o.
Then

(7.2.5) o' =D"f where f=0;fi|i—o.

From (7.2.2) and (7.2.5) we see that the tangent space to H”(E)/GL(FE) is given
by

_ {a” € A% (End(E)); D"a" = 0}

0,1 n D"
(7.2.6) H*'(M,End(E”")) (D"f; f € A%End(E))}

provided that H"(E)/GL(E) is a manifold. (Here, EP" is the holomorphic
vector bundle given by E and D”. H%'(M, End(EP")) is the (0,1)-th D"-
cohomology of the bundle End(E” N).

Assume that M is a compact Kéahler manifold with Kéahler metric g and
Kéhler form ®. Given an Einstein-Hermitian connection D € E(E, h) in E, we
shall determine the tangent space to E(E, h)/U(E, h) at D. Let

Di=D+oay, [t|<d
be a curve in £(E, h), where oy € AY(End(E, h)) and ap = 0. Then
(727) DtODt :DOD+DOLt+OZt/\Oét.

Since the curvature R(D;) = D; o D, is of degree (1,1) for all ¢, differentiating
(7.2.7) with respect to ¢ at t = 0 we see that

(7.2.8) Da € AY(End(E, h)), where o = 0sa]i=o.
Since each D; is an Einstein-Hermitian connection, we have
(7.2.9) iAR(Dy) =iA(Do D+ Doy + oy A oy) = clp,

where c¢ is a constant (independent of ¢). Differentiating (7.2.9) with respect to
t at t = 0, we obtain

(7.2.10) ADa =0, where a = diat|i—o.
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If D, is obtained by a 1-parameter family of transformations f; € U(E, h), i.e.,
Dt = ft71 (] D ] ft7 then
(7211) o = Df, where f = atft|t=0-

The proof of (7.2.11) is the same as that of (7.2.5). It follows that the tangent
space of £(E, h)/U(E, h) at D is given by the space H! defined by

_ {a € AY(End(E, h)); Da € AV (End(E, h)) and ADa = 0}
- {Df; f € A%End(E, h))}

(7.2.12) H!

provided that E(E, h)/U(E, h) is a manifold.
Since {Df; f € A°(End(E, h))} represents the tangent space to the U(E, h)-
orbit at D,

(7.2.13) {a € AY(End(E, h));D*a =0}

represents the normal space to the U(E, h)-orbit at D. Hence, H' is isomorphic
to
(7.2.14)

H' = {a € AY(End(E, h)); Da € A (End(E, h)), ADa =0, D*a = 0}.

Let

a=a +ao” € AEnd(E, h)),
where o’ (resp. o) is of degree (1, 0) (resp. (0,1)). Since End(FE, h) is the
bundle of skew-Hermitian endomorphisms, we have

(7.2.15) o = -ta”,

which shows that o’ determines a, i.e., a — o' gives an isomorphism A!(End(E, h))~A%!(End(E)).
Corresponding to the conditions on a defining H' in (7.2.14), we have the fol-
lowing conditions on o’.

Da € AMY(End(E, h)) <= D"a” =0.

(7.2.16) ADa =0« A(D"o/ + D'a”) =0

— D"a" =0.
D*azO@A(D"o/—D’o/’)zO} “

This follows from that formulas AD”o/ = —iD"*a’ and AD’a” = iD"*a’" which
are consequences of (3.2.39).

Hence, the map a — o gives an isomorphism of H! onto the space of
harmonic (0, 1)-forms with values in End(E):

(7.2.17) H*'(End(E"")) = {a € A% (End(E)); D"a"” = 0 and D"*o" = 0}.

Since H%'(M, End(EP")) is isomorphic to H*!(End(EP")), we have an iso-
morphism:

(7.2.18) H' ~ H%'(M,End(EP")).
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In order to view the isomorphism (7.2.18) in a wider perspective, we consider,
in addition to the Dolbeault complex (C*), the following complex (B*) intro-
duced by Kim [61] which generalizes those considered by Atiyah-Hitchin-Singer
[8] and Itoh [53]. Let

(B*): 0 B p Pr g P2 pgos D'_ .. D" pon

ljo ljl \LJQ ljs Jn
(C*):0 0,0 D" 0.1 D" 0.2 D" B3 p”_ . _ D" Con
where

BP = AL (End(E, h)) = {real p-forms with values in End(E, h)},

BP? = APY(End(E, h)) = APY @ B = AP? @ AY(End(E, h)),

B =B’N(B**® B & B'®) = {w+w+ f®; we B*%and B € B},
C%1 = A%(End(E)) = A% @c A>°(End(E)).

Before we explain the mappings in the diagram above, we define the decompo-
sition which is well known in Kéhler geometry, (see Weil [167]):

B? =DB2 ¢ B?,

where B? consists of effective (or primitive) real (1,1)-forms with values in
End(E, h), i.e.,

B2 = {w € AN (End(E, h));w = and Aw = 0}.

Let
P, :B* — B?, P_:B?> — B%,

p20. B2, g20 po2. g2 __, go2
be all natural projections. Set

D, =P,oD, Dy, = D" o P2,
Proposition 7.2.19 D, o D =0 if D is Finstein-Hermitian.

Proof For f e B®= A°End(E, h)), we have

1
D.oD(f) = PyoDoD(f) = PyoR(f) = P+(Rof—foR) = —(ARof—foAR)®.
Since AR = (ic/n)Ig, we obtain Dy o D(f) =0. Q.E.D.
The vertical arrows jo, j1,- - - , jn are all natural maps, and

jo is injective, j§ : B® x C — C%0 is bijective,
j1 is bijective,
jo is surjective with kernel {3®; 3 € B},

Js,- -+ ,jn are all bijective.
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Lemma 7.2.20 If D € H(E, h), the complex (C*) is elliptic. If D € E(E, h),
the complex (B*) is elliptic.

Proof This is well known for the Dolbeault complex (C*); the proof is the
same as and simpler than in the case of (B*). To prove that (B*) is an elliptic
complex, we have to show that the sequence for (B*) is exact at the symbol
level. Let w # 0 be a real cotangent vector at a point x of M. Let

w=w + w//7

where w’ is a (1,0)-form at  and w” = w’. Then the symbol o is given by

o(D, w)a = wAa,
o(Dy, w)a = Pi(wAa),
(D, w)a = w" AP%%a,
o(D", w)a = w'Aa.

The symbol sequence for (B*) is clearly exact at B®, B4, ... | B". To see that
it is exact at B, suppose (D, w)a = 0 for a = a’ + a”. Then w” Aa” =0
and hence o’ = w”’ Ab for some b € End(E, h),. Then a’ = w’ A b, so
a=wAb=oc(D, w)b.

Chasing the commutative diagram

B-2‘r BO,S BO,4
00.2 00,3 00,4

we see that the symbol sequence is exact at B%3.
Although the exactness at Bi can be shown explicitly, it can be established
also in a indirect way from the vanishing of the following alternating sum:

dim BY — dim B} + dim B? , — dim B)® + -+ - 4 (=1)" dim B)"

n
2 2 n
=r?ql—2n+(n*—n+1)4+2) (-1)? =0.
[1oaret e ()
p=3
Theorem 7.2.21 Let D € E(E, h). Let HY be the g-th cohomology of the

complex (B*) and H%Y the g-th cohomology of the complex (C*). Set h1 =
dimg H? and h%7 = dimc H%?. Then

HO ® C~ HO’(), hO — hO'O,

Hl ~ HO,I hl — 2h0,1

H?>~ H2g H®,  h?=2n"24+ A",
H®~ H% h? =2n%9 for q = 3.

In particular,

D (=1)7ht =2 (~1)9n0.
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Proof (0) Let f1,fo € B and f = f1 +ify € C%9. Then
Dfl = Df2 =0= D//fl = D//fg =0= D/If =0.

D'f=0=D"f=0& D'f=0= Df; = Dfs = 0.

This proves
H°®C ~ H*O,

(1) Since the natural map j; : B — C%! is bijective, the induced map
J1 : H' — HO! is surjective. The proof that j; is bijective is the same as that
of (7.2.18). We define spaces H! and H%! of harmonic forms by (7.2.14) and
(7.2.17) and obtain isomorphisms:

Hl ~ Hl ~ HO,l ~ HO,I

(2) In order to prove H? = H%2 @ H°, we define spaces H°, H? and H%? of
harmonic forms. We have

(7.2.22) H° = {feB’Df=0},
(7.2.23) H? = {we B%*Dyw=0and D}w=0}.
Given w € Bi, write
w=w +w'+ f&, where ' € B?% " e B%2 f®e B,

Then
Dow =0+= D"w" =0.

Since, for any 6 = 0’ + 6", (¢’ € B*" and 0" € B%!) we have
(Dtw, 0) = (&, Dy0)+ (", D0)+ (f&, D,0)
— (W, D)+ (", D" + ( £, ;(ADG)@>
= (D", 0) + (D"W", 0) + (D*(f®), 0),

we obtain
Dj_w — D" + D" JrD*(f’:I)).

Hence, using (3.2.39), we obtain

D/*w/—i—DN* @ :0 D/*w/+iD/ :0
Diw—0<:>{ (r2) { /

D/l*w/ + D/*(f®) — 0 D//*W” _ iD//f — 0
D/*W/ — D/f — 0
— D//*wll — D/If — 0.
Therefore,

(7.2.24)
H={w=uw +J"+f®cB* D'w' =0, D" =D"w' =Df =0}.
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As is well known,
(7.2.25) H? = {0 € C*?; D"w” = 0 and D"*w" = 0}.
Comparing (7.2.22), (7.2.24) and (7.2.25), we obtain an exact sequence
(7.2.26) 0—H"—H>— H"? —0,

where the map HY — H? is given by f —— f® while the map H? — H"? is
given by w — w”. The sequence splits in a natural way; the splitting map
H? — H° is given by w — f.

(3) The isomorphism

HY — H% for ¢2=3

is easily seen. Q.E.D.

Let End®(E) (resp. End°(E, h)) be the subbundle of End(E) (resp. End(E, h))
consisting of endomorphisms (resp. skew-Hermitian endomorphisms) with trace
0. Then

End(E) = End’(E) + C,

(7.2.27) .
End(E, h) = End”(E, h) +R.

Let(C*) (resp. (B*)) be the subcomplex of (C*) (resp. (B*)) consisting of
elements with trace 0. Let H%9 (resp. H?) be its g-th cohomology group. Then

HO% — f0a 4 HO?‘J(]\/[7 C) for all g,
H° = H° + H°(M, R),

(7.2.28) H'=H'+ H'(M, R),
H?*=H? + H*(M, C),
HY=H?+ H% (M, C)  for q = 3,

and

H°®C~ 0%,

H' ~ g1

H? ~ ﬁ0’2,+ e,

H?~ H"  for q23.

(7.2.29)

So far we have considered only C* forms. In discussing harmonic forms, the
Hodge decomposition and Green’s operator, it is actually necessary to consider
Sobolev forms. We shall summarize necessary results following Kuranishi [80].
Let V be a real or complex vector bundle over M, e.g., V = E® APT*M or
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V = End(E) ® APT*M. By fixing an Hermitian structure and a compatible
connection in V' and a metric on M, we define the Sobolev space L} (V) by
completing the space C>°(V) of C*° sections with Sobolev norm || ||, 5. We
are interested here in the case p = 2 since LZ(V) is a Hilbert space. We have
natural inclusions

(7.2.30) C®(V) C - C Ly (V) CLY(V) C -+ C LY(V),

where each inclusion L7 | C L7 is compact.
The Hélder space CF+(V) of sections can be defined also as in Section 6.5
of Chapter 6. These Sobolev and Hélder spaces are related by (6.5.4).
Consider two vector bundles V and W over M. Let

P O®(V) —s C%(W)

be a linear differential operator of order b. Then it extends to a continuous
linear operator

P:L;(V) — Li_,(W).
Its adjoint

P C®(W) — C(V)
defined by

(Pv, w) = (v, P*w)

is also a linear differential operator of order b.

Let P : C*(V) — C*°(V) be a linear elliptic self-adjoint differential operator
of order b. For example, the Laplacian O : AP9(E) — APY(E) is such an
operator of order 2. Then the kernel of P is a finite dimensional subspace
of C>(V) and agrees with the kernel of the extended operator P : L% (V) —
L? (V). An element of KerP is called P-harmonic. Let (KerP)l be the
orthogonal complement of KerP in the Hilbert space L3(V). Then

(7.2.31)  C®(V) =KerP @ ((KerP): N C>®(V)) = KerP @ P(C>®(V)).

Let H : C*(V) — KerP be the projection given by the decomposition above.
Then there is a unique continuous linear operator, called Green’s operator for
P,

G (C=V), Hlzk) = (C=V), ] Ml2,645)

such that
(7.2.32) I=H+Po(G, PoG=GoP, KerG =KerP.
In extends to a continuous linear operator

G:Ly(V) — Li ., (V).

Now we consider an elliptic complex of differential operators, i.e., a sequence
of vector bundles V7,5 =0,1,--- ,m, with linear differential operators of order
b

D:C®(VI)y — Cc>®(WVITYH, =01, -, m,
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such that

(i) Do D =0,

(ii) for each nonzero ¢ € T M, the symbol sequence

0 —>V£ a(§) V)l( a®, o) V0

is exact.

In this section we have considered two such complexes, namely (B*) and
().

Let D* be the adjoint of D, and define

P=DoD*+D*oD:C®V’) — C>®WV%, j=01,---, m.

Then P is a self-adjoint elliptic linear differential operator of order 2b for each
j. Let H7 denote the kernel of P on C*°(V?) and H the projection onto H7.
Let G be Green’s operator for P. Then

(7233) I=H+DoD*oG+D*oDoG, DoG=GoD, D*oG=GoD",

(7.2.34) 1GVll2, k120 < cllvllap, D7 0 Gulla ks < ¢f|v]

2.k

for all v € C>° (V7).
If we denote the j-th cohomology of the elliptic complex {V7, D} by H,
ie.,

~ {KerD : C>=(VJ) — C>°(Vith)}
~ {ImD : C=(Vi-1) — C(Vi)}’

(7.2.35) HI

then we have the usual isomorphisms
(7.2.36) HI ~H.
Finally, if we have elliptic complexes
D(s) : C®(VI) — C>=(VI T

depending infinitely differentiably on some parameter s, ( where V7’s are inde-
pendent of s), then dim H7(D(s)) is upper semi-continuous in s, i.e.,

(7.2.37) Jim dim H/(D(s)) < dimH/(D(so)).

See also Kodaira [78] for some of the details.

7.3 Local moduli for holomorphic structures

Let F be a C*° complex vector bundle of rank r over an n-dimensional
compact Kédhler manifold M with Kéahler form ®. We fix an Hermitian structure
hin FE.
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If we fix a holomorphic structure D" € H"(E) of E, any other element of
D"(E) is of the form

(7.3.1) D" +a with o C% = A" (End(E)),

and it is in H"(E) if and only if

(7.3.2) 0=D"+a)o(D"+a)=D"a+aAa.
Hence, the set H"”(F) of holomorphic structures in E is given by
(7.3.3) H'(E) ={D" + a;a € C%' and D"a +a Aa =0}

For the elliptic complex (C*) = {C%¢ = A%4(End(E)), D"} defined in
the preceding section, we denote its Laplacian, Green’s operator and harmonic
projection by O0Y,, G and H, respectively, so that (see (7.2.33))

(7.3.4) Oy =D"oD" + D" o D",

(7.3.5) I=H+O/oG, GoD'=D"oG, D"oG=GoD".

In the notation of (3.2.32), we may write d” for D" and d; for D"*.
We can extend these operators to appropriate Sobolev spaces LZ(C%%) =
L?(A%(End(F))) as explained in the preceding section. We set

Li(D"(E)) = {D" 4+ ;e € LZ(C™Y)},

(7.3.6) (D"
o Li(H"(E)) = {D" + a;a € LE(C™') and D"a + a Ao =0}.
Applying (7.3.5) to D" o+ a A «, we obtain

D"a+aNa=H(D"a+aANa)+D"(D"*oGoD"a+ D" oGlaAa))
+ D" o D" oG(aAa).

But

D//*OGOD//a:D//*OD//OGa: I}ZOGQ_DNODN*OGQ
=a—Ha—D"0oD" oGa.

Substituting this into the equation above, we obtain
(7.3.7) D"a+aha=H(aha)+D"(a+D" oG(aAa))+D"* oD"oG(aNa).

From this orthogonal decomposition we obtain
D'(a+ D" oGlaha))=0

(7.3.8) D'a+aha=0<= D" oD"oGlaNa)=0
H(a N a)=0.
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We consider a slice D" + Sp» in H(E), where
(7.3.9) Spr ={a e C*;D"a+aAa=0and D"*a = 0}.

While the first condition D”a+aAa = 0 simply means that D"+« is in H" (E),
the second condition D"*a = 0 says that the slice D" 4+ Sp is perpendicular to
the GL(E)-orbit at D”. In fact, for a 1-parameter group e/, f € A°(End(E)),
the tangent vector to its orbit at D" is given by D" f, (see (7.2.5)), and

D"*a=0< (D"f, a)=(f, D"*a)=0 for all f.
We define the Kuranishi map k by
(7.3.10) k:C% — C%, k(a)=a+ D" oG(ana).
If D" + o is in H'(FE), then
(7.3.11) D" (k(a)) =0
by the first equation on the right of (7.3.8). On the other hand,
(7.3.12) D"*(k(a)) = D"«
If we write
(7.3.13) H™ ={peC*,0/8=0}={pcC®:;D"3=0& D" =0},
then (7.3.10), (7.3.11) and (7.3.12) imply
(7.3.14) k(Spr) c HL.

We recall that End®(E) denotes the bundle of trace-free endomorphisms of E,
(see (7.2.27)) and that (C*) = {C*7 = A%9(End’(E)), D"} is the subcomplex

of (C*) consisting of trace-free elements. The g-th cohomology of (C*) denoted
by

(7.3.15) H% = HY(M, End°(EP"))

is isomorphic (see (7.2.36)) to the space of harmonic forms
(7.3.16) H = { ¢ C*;00/8 = 0}.

We consider

HO = {holomorphic sections of EndO(EDN)}

— {trace-free holomorphic endomorphisms of E” ”}.

We see that the holomorphic vector bundle EP” is simple if and only if H%0 = 0.
With this in mind, we state now
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Theorem 7.3.17 Let D" € H"(E) be a holomorphic structure in E such that
the holomorphic vector bundle EP" is simple. Let

p:Spr — H'(E)/GL(E)

be the natural map which sends o € Spr to the point [D" +a] of H"(E)/GL(E)
represented by D"+« € H"(E). Then p gives a homeomorphism of a neighbor-
hood of 0 in Sp» onto a neighborhood of [D"] = p(0) in H'(E)/GL(E).

Proof We prove first that p is locally surjective at 0. Let D” + 8 €
H"(E), where 3 € C%! is sufficiently close to 0. We must show that there is a
transformation f € GL(E) such that

(D" +B) = f o (D"+B)ofeD"+Spn.
Set
(7.3.18) a=f"rto(D"+p)of-D"
with f yet to be chosen. Then
D'"+a=f"1lo(D"+B)ofeH " (E) forevery feGL(E),

so that (see (7.3.3))
D'a+ana=0,

which is one of the two defining conditions for Sp~. The problem is then to
show that, for a suitable f € GL(FE), « satisfies the other condition for Sp~,
(see (7.3.9)):

D"™a = 0.

We consider C%° = A°(End(E)) as the Lie algebra of the group GL(E).
Since EP" is simple, H*® = H°(M, End(EP")) is 1-dimensional and consists
of transformations cIgz,c € C. Let S be the orthogonal complement of H% in
C%0 e,

(7.3.19) S = {u € 0070;/ (tr u)®" = 0} ,
M
so that
C*=H" 5.

Then S is an ideal of the Lie algebra C%° since tr([u, v]) = 0 for all u,v € C%°.
We define a map
F:Sx0% — 8

by
(7.3.20)  F(u, B) = D" (e o (D" +B)oe*—=D"), (u, B) €S xC".

We extend F' to a map
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F:L7 ((S)x LYC*) — L;_((S) for k>n.
For 8 =0, we consider the derivative of F(-, 0): S — S at u = 0. Then

F
O 0,0 = D" 0 D = O L3.41(8) — L34 (9)

is an isomorphism. By the implicit function theorem, there is a smooth map
(v, B)—u=u(v, B) €S
defined in a neighborhood of (0,0) in S x C%! such that
F(u(v, B), B) =v.

Thus the mapping (u, 3) — F(u, () fibers a neighborhood of (0,0) in S x C%!
over a neighborhood of 0 in S; the fibre over v € S consists of points (u(v, 3), 5)
where 3 runs through a neighborhood of 0 in C%1.

In particular, for v = 0 and 8 small, we obtain v = u(0, 5) such that
F(u, B) =0. We set f =e". Then

OZF(U, /8) :D//*(f—lD//f+f—1 oﬁof)

= 75O f + lower order terms).

This shows that f is a solution to an elliptic differential equation and hence is
of class C*°. Thus we have found f € GL(FE) such that

a:f_lo(D//"‘ﬂ)Of—D// GSD”.

Next, we shall show that p is locally injective at 0. We have to show that
if two holomorphic structures D” + a7 and D" + oo with aj,as € Spr are
sufficiently close to D" (i.e., @y and ag are sufficiently close to 0) and if there
is a transformation f € GL(E) such that

(7.3.21) Flo(D" +a1)of=D"+as,

then a; = as. When f is sufficiently close to the identity, i.e., f = e", where
u € C%9 is near 0, this follows from the implicit function theorem stated above.
In fact, since oy, as € Spr, we have

F(u, a1) = D" a3 =0, F(0, ay) =D"*ay = 0.

Hence, u = 0 and a1 = as.
If f is an arbitrary element of GL(E), we rewrite (7.3.21) as

(7322) D//f = f O — Q1 0O f
Applying the decomposition C%° = H%? + S to f, we write
f=clg+ fo, where ceC, fyebS.
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Since .
(1f> o (D" +a1)o (if) — oD +an)o f,

C

replacing f by (1/c)f we may assume that
f=1g+ fo, fo€S.
We apply the following estimate (see (7.2.34))
D" 0 G¥lla,p41 = cllib]
to 1 = D" fy. Then we have
I foll2r41 = 10, 0 G fo
On the other hand, from (7.3.22) we obtain

D" fo

2,k ¢ € 00,1

2k11 = |[D" 0 G o D" foll2 k41 = ¢ D" foll2,k.

2k = 1D fll2k = I fll2 k1 (lanllon + llazll2r)
< d(Hgllzps1 + [ foll2er1) (leallze + [lezll2k)-

Hence,

[ follzk+1 = (e ll2.k41 + [l follzkr1) (leall2,x + llazll2.5)s

which gives

< ¢8|

I follorsr < 2.k+1 (| |2,k + ||z ] 27,€).

L= ([leallzk + [lezll2.x)

This shows that if ||aq||2,x and ||az||2 are small, then fy is near 0 and f is near
the identity. Then the special case considered above applies. Q.E.D.

Theorem 7.3.23 Let D" € H'(FE) be a holomorphic structure such that
H*? = H*(M, End®(EP")) = 0.

Then the Kuranishi map k gives a homeomorphism of a neighborhood of 0 in
the slice Spr onto a neighborhood of 0 in H®! ~ H'(M,End(EP)).

We note that by (7.2.28) the condition H%2? = 0 is equivalent to
(7.3.24) H?(M,End(EP")) = H*?(M, C).

Proof  Since the differential of the Kuranishi map & : LZ(C%1) — L (C%1)
at 0 is the identity map, by the inverse function theorem there is an inverse k=!
defined in a neighborhood of 0 in L(C%'). Let 8 € H®!' c C%! be near 0 so
that £=1(f) is defined, and set

a=k"1(p).
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Then
(7.3.25) B=k(a)=a+ D" oG(ana).
Applying O} to (7.3.25) we obtain
0=0/=0/a+D"* o0 oGlaha)=Tla+ D" (a Na— H(aAa))
=0/a+ D" (aNa),

showing that « is a solution to an elliptic differential equation and hence is of
class C*°. Also from (7.3.25) we obtain

(7.3.26) 0=D"B=D"a+D"oD" oG(aa)
(7.3.27) 0=D"*3 = D"a.

Applying (7.3.5) to a A @, we obtain

(7.3.28)
D'"a+aANa=D"a+D"oD" oGlaNa)+ D" oD"ocG(aNa)+ H(aAa)
=D"oD"oG(aNa)+ H(aAa)

by (7.3.26). Since a A « is trace-free, H(a A ) is in the trace-free part H%? of
H%2. By our assumption, H(aA«) = 0. Denoting the left hand side of (7.3.28)
by v, we have

y=D"a+aha=D""oD"oG(aNa)
(7.3.29) =D"oG(D"aNa—aAD"a)
=D" oGy Na—aA7y).

Apply the following estimate (see (7.2.34))

D" 0 Gollg k41 = cf[vll2.k

tov=9Aa—aA~. Then

V2 V21 = 1D 0 Gy A — a A2 k41

(7.3.30)
< cllyllze - ez, k-

Taking « sufficiently close to 0 so that |lal2x < 1/c, we conclude v = 0 from
(7.3.30). This, together with (7.3.27), shows that « is in Spr. Q.E.D.

We know (see (7.2.1)-(7.2.5)) that, given a l-parameter family D} € H"(E)
of holomorphic structure with D’ = Dy, the induced infinitesimal variation
0y D} |i—o defines an element of H! ~ H%!. Conversely, we have

Corollary 7.3.31 Let D" € H"(E). Under the same assumption as in (7.3.23),
every element of H*! ~ HY(M, End(EP")) comes from a 1-parameter family
of variations D € H"(E) of D".
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Proof Let 8 € H%!. For each small ¢, there is a unique oy € Spr such
that

tB8=k(ow) = ar+ D" o G(au A ayp).

Then
tp=H(tB) = H(au).

Differentiating this equation with respect to t at ¢t = 0, we obtain
B = H(atat|t20)~

This shows that 8 comes from the 1-parameter family of holomorphic structures
D} =D" + . Q.E.D.

From (7.3.17) and (7.3.23) we obtain

Corollary 7.3.32  The moduli space H"(E)/GL(E) of holomorphic struc-
tures in E is a nonsingular complex manifold in a neighborhood of [D"] €
H"(E)/GL(E) if the holomorphic vector bundle EP" is simple and if H? =
H2(M, End°(EP")) = 0. Then its tangent space at [D"] is naturally isomor-
phic to H! ~ HY (M, End(EP")).

Proof Since the Kuranishi map &k : C%! — C%! is a (quadratic) polyno-
mial map and is non-degenerate at 0, by (7.3.23) the slice Sp~ is a complex
submanifold of C%!. By (7.3.17), a neighborhood of 0 in Sp» can be considered
as a coordinate neighborhood of [D”] in H"(E)/GL(E). Q.E.D.

Now we consider a holomorphic structure D" € H"(E) in E such that EDP”
is a simple vector bundle with H%? = H?(M, End’(EP")) # 0. In general, at
such a point D", the Kuranishi map

k:Spr — HO' ~ HY(M, End(EP"))

is only injective but not necessarily surjective at the origin. Since k : Li(C’OJ) —
L% (C%') is a biholomorphic map in a neighborhood of 0 in L3 (C%*1), k1 (H*)
is a nonsingular complex submanifold in a neighborhood of 0. Since the con-
dition D"*a = 0 in (7.3.9) is automatically satisfied by « in k~1(H%!), (see
(7.3.12)), the slice Spr is given by

(7.3.33) Spr ={a € k' H");D"a+aAna =0}

It follows that Spr, is a (possibly non-reduced) analytic subset of a complex
manifold k~1(H%!) in a neighborhood of 0; it is, in fact, defined by quadratic
polynomials.

Let H’ "(E) denote the set of simple holomorphic structures in E. The group
GL(E) acting on " (E) leaves H"(E) invariant, and we can speak of the moduli
space H'"(E)/GL(E) of simple holomorphic structures in E. We have shown
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Theorem 7.3.34  The moduli space H'(E)/GL(E) of simple holomorphic
structures in E is a (possibly non-Hausdorff and non-reduced) complex analytic
space. It is nonsingular at [D"] if H*2 = H*(M, End®(EP")) = 0, and its
tangent space at such a nonsingular point is naturally isomorphic to H%! ~
H'(M,End(EP")).

We shall now consider the question of Hausdorff property for moduli spaces.
The following argument is due to Okonek.

Lemma 7.3.35 Let D", D" € H"(E) be two holomorphic structures in E rep-
resenting two distinct points [D"] and [D"] of H"(E)/GL(E). If every neigh-
borhood of [D"] in H'"(E)/GL(E) intersects every neighborhood of [D"], then
there are nonzero (sheaf) homomorphisms

¢ EP" — EP" and ¢ EP” — EP
Proof  There are sequences D) € H"(E) and f; € GL(FE) such that
D! — D" and D/M'=f'oDl!ofi — D"

as 1 — oo. Write
/! 1"f;
Dy =D’

Since f; o DY = D! o f;, the map

fi: EPY — BV
is holomorphic, i.e., fi € H°(M, Hom(Em/7 ED/E/)). By the upper semi-
continuity of cohomology (see (7.2.37)), we have

dim H°(M, Hom(EY", EP")) > limsup dim H°(M, Hom(EPY, EPV)) > 1.

Hence, there is a nonzero homomorphism ¢ : ED" 5 ED". By interchanging
the roles of D" and D" in the argument above, we obtain a nonzero homomor-
phism ¢ : EP" — ED” Q.E.D.

Lemma 7.3.36 If EP" is simple in (7.3.35), then
potp=0.

Proof  Since po1) is an endomorphism of a simple bundle, we have pot) = cl
with ¢ € C. Since EP” and EP” have the same rank, it follows that ¢ and v
are isomorphisms if ¢ # 0. Since [D”] # [D”] by assumption, we must have
c=0. Q.E.D.

Proposition 7.3.37 Let D", D" € H"(E) represent two distinct points [D"]
and [D"] of H'(E)/GL(E). If EP" is ®-stable and EP" is ®-semistable, then
[D"] and [D"] have disjoint neighborhoods in H"(E)/GL(E).
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Proof Assume the contrary. Let ¢ and 1) be the nonzero homomorphisms
obtained in (7.3.35). By (2) of (5.7.11), ¢ is an isomorphism. Hence, p ot # 0,
contradicting (7.3.36). Q.E.D.

Remark 7.3.38 Let S”(E) denote the set of ®-stable holomorphic structures
D" in E. Then §"(FE) C H"(E), and by (7.3.37) §"(E)/GL(FE) is Hausdorff.
But there does not seem to exist an analytic proof showing that S"(E)/GL(E) is
open in H'(E)/GL(E). In the algebraic case, this is known for Gieseker stable
bundles, (see Maruyama [95]).

7.4 Moduli of Einstein-Hermitian structures

In this section we present results of H-J. Kim [61]. Let E be a C*° complex
vector bundle of rank r over an n-dimensional compact Kéhler manifold M with
Kéhler form ®. We fix an Hermitian structure h in E. We continue to use the
notation in Sections 7.2 and 7.3.

We fix an Einstein-Hermitian connection D € £(E, h). Using the projec-
tion P, : B? — Bi introduced in Section 7.2, the Einstein condition can be
expressed by

(7.4.1) P,(R) = %(AR)@ = f%C[E@.

Any h-connection in E is of the form D + «, where o € B! = AY(End(E, h)).
Its curvature R(D + «) is given by
(7.4.2) R(D+a)=D+a)o(D+a)=R+Da+aAia.

The connection D + « is Einstein-Hermitian if and only if
ic
P(R(D +a)) = ——Ip = PL(R),
or equivalently, if and only if P, (Da + o A o) = 0. Hence the set E(E, h) of
Einstein-Hermitian connections is given by
(7.4.3) E(E, h)={D+a; a€ B'and Dya+ P, (aAa)=0}.

For the elliptic complex (B*), we denote its Laplacian, Green’s operator and
harmonic projection by A, G and H, respectively, so that (see (7.2.33))

(7.4.4) I=H+AoG.

The commutation relations GoD” = D" oG and D"*oG = GoD"* of (7.3.5) must
be modified by replacing D" with D, D, and Dy at appropriate dimensions, (see
the definition of (B*) in Section 7.2). In particular, on B%, the Laplacian A is
given by

(7.4.5) A =D, oD} + DjyoDs,.
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As in Section 7.3, we can extend these operators to appropriate Sobolev
spaces.

Applying (7.4.4) and (7.4.5) to Py (aAa), we obtain the following orthogonal
decomposition of Dy« + Py(a A «):

Dia+ P (aNa)=Di(a+ D} oGoPilaNa))
+DioDyoGoPi(aNa)+ HoP(aha).

Hence,

Dy(a+ D} oGoPi(aNa)) =0,
(746) Dia+Pi(aha)=0<= 1 DjoDyoGoPi(ana)=0,
HoPi(aNa)=0.

We consider a slice D + Sp in E(E, h), where
(7.4.7) Sp={a€ B Dia+ P (aNa)=0, D'a=0}.

We note that the second condition D*a = 0 above says that the slice is perpen-
dicular to the U(E, h)-orbit of D while the first condition is nothing but the
condition for D + « to be in E(E, h), see (7.4.3). In fact, for a l-parameter
group et/ f € A°(End(E, h)), the tangent vector to its orbit at D is given by
Df, (see (7.2.11)), and

D*a=0<«= (Df, o) =(f, D*a) =0 for all f.
We define the Kuranishi map k by
(7.4.8) k:B'— B', k(a)=a+DioGoPiaNa).
If D+ aisin E(E, h), then
(7.4.9) D, (k(a)) =0
by the first equation on the right hand side of (7.4.6). On the other hand,
(7.4.10) D*(k(a)) = D*av.

Hence, if we write

(7.4.11) H? = { € B%;AB =0},
then
(7.4.12) k(Sp) cH' = {3 € B'; D, =0 and D*8 = 0}.

We recall that End®(E, h) is the bundle of trace-free skew-Hermitian endo-
morphisms of (E, h), (see (7.2.27)) and that (B*) = {B? = A9(End®(E, h)), D"}
is the subcomplex of (B*) consisting of trace-free elements. (Here, D" should be
replaced by D, Dy and Dy in dimension ¢ = 0,1 and 2, (see Section 7.2).) The
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g-th cohomology of (B*) denoted by HY is isomorphic to the space of harmonic
forms

(7.4.13) H' = {3 e B AB=0}.
We consider

H' = {8 B’ D=0}
= {trace-free parallel sections of End(E, h)}.

Since H® = H° ® C, (see (7.2.29)), we have

Proposition 7.4.14 For D € E(E, h), the following conditions are equivalent.
(a) H' = {8 € A°(End’(E, h)); DB =0} = 0;
(b) H”® ~ HO(M, End®(EP")) = 0;
(¢) the holomorphic vector bundle EP" is simple;

(d) the connection D is irreducible in the sense that its holonomy group is
irreducible.

With this in mind, we state

Theorem 7.4.15 Let D € E(E, h) be irreducible. Let
p:Sp — E(E, h)/U(E, h)

be the natural map which sends a € Sp to the point [D+a] of E(E, h)JU(E, h)
represented by the connection D + o € E(E, h). Then p gives a homeomor-
phism of a neighborhood of 0 in Sp onto a neighborhood of [D] = p(0) in
E(E, h)JU(E, h).

The proof is analogous to that of (7.3.17). Leaving details to Kim [61], we
shall only indicate how the proof of (7.3.17) should be adapted. Generally, we
have to replace C%°,C%!, D" and O} by B°, B}, D or D; and A. We have to
replace a A a by Py(a A «). The most notable change is in the decomposition
of an element f € U(E, h). Since f is not necessarily in B®, we complexify the
decomposition B = HY + S to obtain the decomposition C%° = H*? + g,
where S¢ = S ® C, and decompose f € C%0 accordingly. Then the remainder
of the proof will be the same.

Theorem 7.4.16 Let D € E(E, h). If
HO(M, End°(EP")) = 0 and H*(M, End’(EP")) =0,

then the Kuranishi map k gives a homeomorphism of a neighborhood of 0 in the
slice Sp onto a neighborhood of 0 in H' ~ H'(M,End(EP)).
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Since A ~ H" +I~IO’2, (see (7.2.29)), the assumption in (7.4.16) is equiv-
alent to qu = 0. In the proof, the assumption is used in the form of H =o0.
We note also that the isomorphism H' ~ H"' is in (7.2.21).

The proof is analogous to that of (7.3.23), see Kim [61] for details. We have
to replace D" by either D, D or Dy. Asin the case of (7.4.15), we must replace
aAaby Pi(aAa).

We know (see (7.2.7)-(7.2.11)) that, given a 1-parameter family D, € E(E, h)
of connections with D = Dy, the induced infinitesimal variation 0;D;|;—¢ defines

an element of H' ~ H'. The proof of the following converse is similar to that
of (7.3.31).

Corollary 7.4.17 Let D € E(E, h). Under the same assumption as in (7.4.16),
every element of H* ~ H'(M,End(EP")) comes from a 1-parameter family of
variations Dy € E(E, h) of D.

From (7.4.15) and (7.4.16) we obtain

Corollary 7.4.18  The moduli space E(E,h)/U(E,h) of Einstein-Hermitian
connections in (E,h) is a nonsingular complex manifold in a neighborhood of
[D] € E(E,h)JU(E,h) if the holomorphic vector bundle EP" is simple and if
H2?(M, End®(EP")) =0

Let £(E, h) denote the set of irreducible Einstein-Hermitian connections in
(E, h). In analogy with (7.3.34) we have

Theorem 7.4.19 The moduli space E(E, h)/U(E, h) of irreducible Einstein-
Hermitian connections in (E, h) is a (possibly non-reduced) complex analytic
space. It is nonsingular at [D] if H>? = H*(M, End°(EP")) = 0, and its
tangent space at such a nonsingular point is naturally isomorphic to H%' =
HY(M,End(EP")).

Comparing (7.4.19) with (7.3.34) we can see that E(E, h)/U(E, h) is open
in H"(E)/GL(FE) at its nonsingular points. However, we can prove the following
stronger result (due to Kim [61]) more directly.

Theorem 7.4.20 The moduli space E(E, h)/U(E, h) of Finstein-Hermitian
connections in (E, h) is open in the moduli space H" (E)/GL(E) of holomorphic
structures in E.

Proof Let D € E£(E, h) and D" € H"(E) the corresponding point. We
shall show that given D" € H"(E) sufficiently close to D", there exists D; €
E(E, h) and f; € GL(E) such that DY = f;' o D" o f;.

Let

(7.421) P =A{f € GL(E); h(f§, n) = h(&, fn), h(f& &) 20, det f =1},
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in other words, P consists of positive definite Hermitian automorphisms of F
with determinant 1. Its tangent space T; P at the identity transformation I is
given by

(7.4.22) Q =TrP = {a € A°(End(E)); h(a&, n) = h(&, an), tra =0},

i.e., @ consists of Hermitian endomorphisms of E with trace 0.
We consider a general h-connection D € D(E, h). Then, for f € P, we have
(see (7.1.12))

(7.4.23) D/ =f*oD of* 14 floD"of=foD of '+ f1loD"of.
Hence, the curvature R(D7) of Df is given by
(7.4.24)
R(D¥)=foD oD of 4+ ftoD"oD"of
+(fOD/Of_1Of_1ODI/Of+f_1ODHOfOfODIOf_l).
Its mean curvature is denoted by K (D'). We set
1 ,
(7.4.25) KD’y = K(D') — —(tr K (D¥))I.
T
Since K (DY) is an Hermitian endomorphism of E, its trace-free part K°(DY)
belongs to Q. We define a mapping
(7.4.26) F:D(E, h)x P — Q, F(D,f)=K"D/).

We recall that the tangent space Tp(D(E, h)) to D(E,h) at D is naturally
isomorphic to A'(End(E,h)). We wish to calculate the differential of F at
(D, I):

(7.4.27) dFpp : AY(End(E, h)) x Q — Q.

Let a € Q and f(t) = e*. From (7.4.24) it follows that the (1,1)-component
ROLD(DF®) of the curvature R(D7®) is given by

(7.4.28) ROD(DI®) = ¢ oD oe 2 o D" 0e™ +e % oD" 00D 0™,
Differentiating (7.4.28) with respect to ¢t at ¢t = 0, we obtain
(7.4.29) KRV (DI®),_g = D'D"a — D"D'a.
Taking the trace of (7.4.29) with respect to the Kéhler metric g, we obtain
(7.4.30) K (DIM)] ;g = Aa.
From (7.4.26) it follows that
(7.4.31) dFp,n(0, a) =Aa foraec Q.
We extend F' to a smooth map
F:LAD(E, b)) x Ly (P) — LE_,(Q), (k> n),
so that



7.4. MODULI OF EINSTEIN-HERMITIAN STRUCTURES 245

dFp,1)(0, a) = Aa fora e L}, ,(Q).

Now assume that D is irreducible in the sense that its holonomy group is
an irreducible subgroup of U(r). We shall show that A : L7, (Q) — L _,(Q)
is an isomorphism. Since I = H + G o A, it suffices to show that A is injective.
If Aa =0, then a is of class C*° and

0= (Aa, a) = (D*Da, a) = (Da, Da),

i.e., a is parallel. Since D is irreducible, ¢ must be of the form clg with ¢
constant. On the other hand, tr(a) = 0. Hence, a = 0.
Assume in addition that D isin E(E, h), (see (7.1.16)), so that, in particular

F(D, I) = K°(D) = 0.

Since
ac Li+1(9) — Flo,n(0, a) = Aa € L7 1(Q)

is an isomorphism, the implicit function theorem implies that if D" € H"(E)
is sufficiently close to D” € K"(E) so that the corresponding D € D(E, h) is
sufficiently close to D, then there exists a unique f € L}, ;(P) near the identity
Ir such that

(7.4.32) F(D, f) = K°(D7) = 0.

Linearizing the differential equation (7.4.32) for f, we obtained the elliptic equa-
tion (Aa = 0, (see (7.4.31)), where A is the Laplacian defined by D. Hence,
(7.4.32) is an elliptic equation. By the elliptic regularity, f is of class C'°.

We shall now prove that there exists Dy € £(E,h) and f; € GL(E) such
that DY = f; ' o D" o f;. Since GL(E) acting on D(E,h) by (7.1.12) leaves

H(E, h) invariant, D € H(E, h) implies D/ € H(E, h). On the other hand, the
equation K°(D¥) = 0 of (7.4.32) means

where ¢ is a function on M, (see (7.4.25)). By (4.2.4) there is a positive function
b on M such that the Hermitian structure h’ = b?h, together with the holomor-
phic structure D"f € H"(E) (corresponding to DI € H(E,h)), satisfies the
Einstein condition. Let D be the Hermitian connection defined by A’ = b%h and
the holomorphic structure D’/ i.e., D' = 0 and D" = D"f. Since it satisfies
the Einstein condition, D is by definition an element of £(E, h'). Since

d(h(&, m)) = d(h'(b~'E, b~ ')
(7.4.33) = R(D(b7LE), b 'n) + R (b7, D(by))
= h(bD(b7'€), m) + h(&, bD(O™'n)),
we set

Dy =boDob™! (where b denotes blg).
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Then Dih =0 and Dy oDy = Do D. Hence, D; € E(E, h). Moreover,
D! = boD"ob ' =boD"ob ! = (foH)toD"o(fb71) = it oD" o fy,

where f; = fb~ 1. Q.E.D.

7.5 Symplectic structures

In this section, let V' be a Banach manifold although, in later applications,
we use only Hilbert manifolds. By a symplectic form w on V we mean a 2-form
w satisfying the following conditions:

(a) For each z € V,w, : T,,V x T,V — R is continuous;
(b) For each = € V,w, is non-degenerate, i.e.,
(7.5.1) if wy(u, v) =0 for all v € T,,V, then u = 0;
(¢)wg is C* in x;
(d)w is closed.

For short, we say that w is a non-degenerate closed 2-form on V. The form w,
defines a continuous linear map 7,V — TV. The non-degeneracy condition (b)
means that this linear map is injective. We do not assume that it is bijective.

A transformation f of V is called symplectic if f*w = w. A vector field a
on V is called an infinitesimal symplectic transformation if the Lie derivation
L, =doi,+1,0d annihilates w, i.e., L,w = 0. Since w is closed, the condition
L,w = 0 reduces to doi,w = 0, i.e., the 1-form i,w is closed. We shall be soon
interested in the situation where this 1-form is actually exact.

Let G be a Banach Lie group acting on V' as a group of symplectic trans-
formations. Let g be the Banach Lie algebra of G, and g* its dual Banach
space.

A momentum map for the action of G on V is a map pu: V — g* such that

(7.5.2) (a,dpy(v)) =wlag, v) foraeg, veT,V, zeV,

where du, : T,V — g* is the differential of y at z,a, € T,V is the vector
defined by a € g through the action of G, and ( , ) denotes the dual pairing
between g and g*. A momentum map p may or may not exist. Its existence
means that the closed 1-form i,w is exact and is equal to d({a,u)). It is not
hard to see that a momentum map is unique up to an additive factor; if p' is
another momentum map, then ' — p is a (constant) element of g*.

We shall now impose the following three conditions (a), (b) and (c) on our
momentum map p.

(a) Assume that p is equivariant with respect to the coadjoint action of G
in the sense that

(7.5.3) u(g(@)) = (ad g)* (u(x)) for g€ G, z € V.
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Then G leaves p~1(0) C V invariant. The quotient space
(7.5.4) W =u"10)/G

is called the reduced phase space in symplectic geometry. More generally, for
any o € g* we can define
Wa = n~(a)/Ga,

where G, = {g € G; (ad g)*a = a}. However, we shall be concerned only with
W = Wy. The following diagram organizes V, p~1(0) and W:

(7.5.5) 11 (0) 1%

|

W =pu=(0)/G

where j is the natural injection and 7 is the projection.
(b) Assume that 0 € g* is a weakly regular value of p in the sense that

(7.5.6) p~1(0) is submanifold of V;

(7.5.7)
for every x € = 1(0), the inclusion T, (1~ (0)) C Ker(du,) is an equality.

If du, : T,V — g* is surjective for every z € p~1(0), then the implicit
function theorem guarantees (b).

(c) Assume that the action of G on u~1(0) is free and that at each point
x € p~1(0) there is a slice S, C u~*(0) for the action, i.e., a submanifold S, of
p~1(0) through z which is transversal to the orbit G(z) in the sense that

T (0™ 1(0) = T (Sa) + Tu(G(2)).

If we take S, sufficiently small, then the projection 7 : u=1(0) — W defines
a homeomorphism of S, onto an open set 7(S,) of W. This introduces a local
coordinate system in W and makes W into a manifold, which may or may not
be Hausdorff. In order to have a Hausdorff manifold, we have to further assume
that the action of G on p~1(0) is proper. For our later applications we have to
consider the case where the action of G may not be proper.

We are now in a position to state the reduction theorem (Marsden-Weinstein
[93]) .

Theorem 7.5.8 Let V' be a Banach manifold with a symplectic form wy . Let
G be a Banach Lie group acting on V. If there is a momentum map p:V — g*
satisfying (a), (b) and (c¢), there is a unique symplectic form wy on the reduced
phased space W such that

mrow = jfwy  on pH(0).



248 CHAPTER 7. MODULI SPACES OF VECTOR BUNDLES

Proof In order to define wy, we take u,v € T,(1~1(0)) and set
ww (mu, ™) = wy (u, v).

The fact that wy is well defined is a consequence of the following three facts:
(i) If u' € Ty, (1 1(0)) and 7’ = u, then v/ = g(u + a,) for some g€ G
and a € g;
(i) wy is G-invariant, i.e., wy (g(u), g(v)) = wy(u,v) for ve G;
(iil) tqwy = 0, i.e., wy(az,-) =0 for every a € g.
This establishes the existence of a 2-form wy such that 7*wy = 7*wy. The
uniqueness follows from the fact that m : T, (11 (0)) — Tr(s) (W) is surjective.
Since 7 : Sy — 7(Sy) C W is a diffeomorphism and since

Twwls, = wvls,,

it follows that wyy is also smooth and closed.

To see that wyy is non-degenerate, let u € T, (u~1(0)) be such that wy (u,v) =
0 for all v € T, (u~1(0)). We have to show that mu = 0, i.e., u = a, for some
a € g. This will follow from the lemma below (Marsden-Ratiu [92]):

Lemma 7.5.9 Let X be a Banach space and w : X x X — R a continuous skew-
symmetric form which is non-degenerate in the sense that w(u,v) =0 holds for
all v € X if and only if u = 0. For any closed subspace Y of X, set

YY={veX; wuv)=0 for all u e Y}.
Then (Y¥)¥ =Y.

We show first that this lemma implies the desired result. Let X =T, V)Y =
{ag;a € g} = {u € T,(u1(0)); 7u = 0}. Using (7.5.2) and (7.5.7) we obtain

YY={veT,V; wy(azv) =0 for all a € g}
={veT,V; du(v) =0}
= Tu(n™1(0)).
By Lemma,
Y = (YY) ={ueT,V; wy(u,v) =0 for all v € Tp.(u~1(0))},
and this is exactly what we wanted to prove.

Proof of (7.5.9)  Given X and w, we consider the following family of semi-
norms {p,} on X:

po(u) = |w(u, v)|.
With these seminorms X becomes a locally convex topological vector space; it

is Hausdorff since w is non-degenerate.
Let i : X — X™* be the injection defined by
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i(v) =dpw =w(-,v) forveX.

Then the dual of X as a locally convex topological vector space is i(X) C X*.
That is, a linear map o : X — R is continuous in the locally convex topology
given by {p,} if and only if there exists an element v € X such that a(u) =
w(u,v) for all w € X.

To prove this statement, let o : X — R be continuous with respect to the
family of seminorms {p,}. Then there exist vy, -+ ,v, € X such that

|a(u)] = C-maxp,,(u) foralluec X

for some positive constant C'. Then « vanishes on
E= ﬂkeri(vj) = (span(vy, -+ ,v,))%.

Since F is a closed subspace of finite codimension < n, there is a finite dimen-
sional complement F so that X = F @ F, (a Banach space direct sum). Since
i(v1)|p, -+ ,i(vn)|F span F*, there exist a1, -+, a, € R such that

a=ay-i(vy))+---+ap-i(lv,) on F.
Since both sides of this equality vanishes on E, we have
a=ay-i(vy)+ -+ ay-i(vy).

This proves the statement above.

We shall now complete the proof of (7.5.9). Trivially we have Y C (Y“)%. To
prove the opposite inclusion, let v ¢ Y. By the Hahn-Banach theorem for locally
convex topological vector spaces, there exists a linear functional a : X — R
(continuous in the locally convex topology given by {p,}) such that « = 0 on
Y and a(v) = 1. By the statement above, there is an element w € X such
that a(u) = w(u,w) for all u € X. Then w(v,w) # 0 and w(u,w) = 0 for all
u €Y. Then w € Y. Since w(v,w) # 0, v & (Y¥)*. Thus, (Y¥)¥ C Y. This
completes the proof of (7.5.9). Q.E.D.

We need also a holomorphic analogue of (7.5.8). Let V be a complex Banach
manifold of infinite dimension with a holomorphic symplectic form wy , where w,,
is a non-degenerate closed holomorphic 2-form on V satisfying the conditions
analogous to those of (7.5.1). Let G be a complex Banach Lie group acting
holomorphically on V' as a group of symplectic transformations, i.e., leaving wy
invariant. Let g be the Banach Lie algebra of G and g* its dual Banach space.
A momentum map for the action of G on V is a holomorphic map p: V — g*
such that

(7.5.10) (a,dp, (v)) = w(ag,v) for a€g, veT,V, z eV,

which should be interpreted in the same way as (7.5.2). We note that if V is
compact, then a momentum map cannot exist since there is no holomorphic
map V — g* other than the constant maps.
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We shall now impose the following conditions (a'), (b’) and (¢’) which are
analogous to the conditions (a), (b) and (c¢) imposed on the real momentum
map.

(a') Assume that p is equivariant with respect to the coadjoint action of G,
i.e., p satisfies (7.5.3).

The reduced phased space W = p~1(0)/G is defined in the same way as in
the real case.

(b’) Assume that 0 € g* is a weakly regular value of i in the sense that (7.5.6)
and (7.5.7) are satisfied. We note that ~1(0) is now a complex submanifold of
V.

(¢') Assume that the action of G on p=1(0) is free and that at each point = €
p~1(0) there is a holomorphic slice S, for the action, i.e., a complex submanifold
S, of u=1(0) through = which is transversal to the orbit G(z). The requirement
that 7 : S, — 7(S,) C W be biholomorphic makes W into a complex manifold,
which may be non-Hausdorff in general. Now the holomorphic analogue of
(7.5.8) states as follows:

Theorem 7.5.11 Let V' be a complex Banach manifold with a holomorphic
symplectic form wy. Let G be a complex Banach Lie group acting on 'V leaving
wy tnvariant. If there is a holomorphic momentum map V. — g* satisfying
(@), (b') and ('), then there is a unique holomorphic symplectic form ww on
the reduced phase space W = p=1(0)/G such that

T ww = j*wy on ut(0).

The proof is identical to that of (7.5.8).

7.6 Kahler structures on moduli spaces

Let E be a C* complex vector bundle of rank r over a compact Kahler
manifold M of dimension n. We fix an Hermitian structure h in E. Let
E(E,h)/U(E,h) be the moduli space of irreducible Einstein-Hermitian con-
nections in (E,h). We know that it is an open subset of the moduli space
H"(E)/GL(E) of simple holomorphic vector bundle structures in E and is a
Hausdorff complex space, see (7.4.20). We shall now construct a Kéhler metric
on the non-singular part of £(E, h)/U(E, h).

First we clarify linear algebra of Hermitian forms involved. Let X be a real
vector space (possibly an infinite dimensional real Banach space) with a complex
structure J,JJ2 = —I. Extend J to the complexification X ® C as a C-linear
endomorphism and write

(7.6.1) XC=2Z+2,
where

(7.6.2) Z={2€eX®C;Jz=iz}, Z={2€ X®C;Jz = —iz}.
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Then we have a linear isomorphism
1
(7.6.3) X —Z, zr—>z:§(:177i<]zv).

Under this isomorphism, J in X corresponds to the multiplication by ¢ in Z.
Let h be an Hermitian inner product in Z, i.e.,

(7.6.4) h:ZxZ—C

such that

(i) h(z,w) is C-linear in z,

(i) h(z,w) = h(w, 2),

(iii) h(z,z) > 0 for every nonzero z € Z.
Then h induces a real inner product g in X, i.e.,

(7.6.5) g(z,u) = h(z,w) + h(w, z) = 2Re(h(z,w))

if z,w € Z correspond to x,u € X under the isomorphism (7.6.3). Then

(7.6.6) g(Jz, Ju) = g(x,u).

Conversely, every real inner product ¢ in X satisfying (7.6.6) arises from a
unique Hermitian inner product A in Z. The Hermitian form h induces also a
non-degenerate skew-symmetric 2-form w on X. Namely, we set

(7.6.7) w(z,u) = %(h(z,w) — h(w, 2)) = 2Im(h(z, w)).
Then
(7.6.8) w(z,u) = g(z, Ju).

All these are familiar relations between a Kéhler metric and the corresponding
Riemannian metric and Kéhler form. We shall use these relations in the infinite
dimensional case as well as in the finite dimensional case.

Let

(7.6.9) X = L3(AY(End(E,h)), k>n,

i.e., the L?-space of 1-forms over M with values in the skew-Hermitian endo-
morphisms of (E, h). Given £ € X, we decompose &:

(7.6.10) E=¢+¢",

where &’ (resp. £”) is a (1,0)-form (resp. (0, 1)-form). Then the condition that
¢ is skew-Hermitian, i.e., ' = —¢, is equivalent to

(7.6.11) ¢ =—tg’.
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Define a complex structure J on X by

(7.6.12) JE = —if +ig”
so that
(7.6.13) Z = Lj(A» (EndE)), Z = L{(A"°(EndE)).

The isomorphism X — Z is given by
(7.6.14) Er— &,

In order to define an Hermitian inner product k£ in Z, we consider first the
local inner product (a, 8), where o, 8 € Z. In terms of an orthonormal basis

81, - ,8. of the fibre of E and an orthonormal coframe 01, <o, 0™ of M, we
write
(7.6.15) a(sj) = Zaﬂe si,  B(sj) = ijG Si
ie., a;X and b;‘X are the components of a and (3, respectively. Then
(7.6.16) Za]/\ Y
Since
1
(7.6.17) ftr(a/\tﬂ = zZa )\bﬂf)“ AO*,

we may write

1 _
(7.6.18) (o, By = A (,tr(a A tﬁ))

i
where A is the adjoint of the operator L = ® A -. We can also write
(7.6.19) %tr(a AB) A DL = (o, B)D"

Now we define an Hermitian inner product honZ by
(7.6.20)

o, 9= [ @mer= [ a(Jutan®)er = [ u@adaent

The corresponding inner product § on X is given by (see (7.6.5))

g(&m) = h(&" ") + h(n",¢")
/
L5

" t // i n—1
(7.6.21) (€ AT A N

S
w\: s\: -

§ /\77” f// /\77/) /\CIDn_l.
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The corresponding 2-form w on X is given by (see (7.6.8))
(7.6.22) w(é,n) = / n-tr(E An)AD?
M

The affine space L (D(E, h)) =~ Li(D"(E)) with k is a flat K&hler manifold
with the Kéhler form w. (The tangent bundle of LZ (D" (E)) (resp. LZ(D(E, h)))
is naturally a product bundle with fibre Z (resp. X).)

We can define a natural Hermitian metric on the nonsingular part of the mod-
uli space E(E, h) /U (E, h) of irreducible Einstein-Hermitian connections. Let [D]
be a nonsingular point of £(E, h)/U(E, k) represented by D € £(E, h). The
tangent space T}p (E(E,h)/U(E,h)) is identified with H*' ~ H'(M, End(EP")),
(see (7.4.19)). We define an inner product in H®' by applying the formula
(7.6.20) to harmonic forms «, 3 € H%'. It is simple to verify that this definition
is independent of the choice of D representing [D]. Thus we have an Hermitian
metric on the nonsingular part of £(E, h)/U(E, h) induced from the flat Kihler
metric A of LZ(D"(E)). This metric is actually Kihler. This fact may be veri-
fied as in Itoh [55] by means of the local normal coordinates introduced around
[D] by the slice Sp and the Kuranishi map k : Sp — H* ~ H"'. However,
we shall use instead the symplectic reduction theorem of Marsden-Weinstein
proved in the preceding section.

In order to set up the situation to which the reduction theorem can be
applied, let V be the nonsingular part of L (H”(E)) in the following sense. For
each D" € H"(E) such that H°(M,End®(EP")) = 0 and H2(M,End°(EP")) =
0, consider its L}, (GL(E))-orbit. The union V of all these orbits form an
open subset of H”(E) which lie above the nonsingular part of the moduli space
H"(E)/GL(E) of simple vector bundles. Let U C Sp» be a neighborhood of
0 in the slice Spr and N C L3, (GL(E))/C* a neighborhood of the identity.
From (7.3.17) and its proof we see that the set {(D” + a)f; a € U, f €
N} is a neighborhood of D” in L3 (H"(E)) homeomorphic to U x N. It is
easy to see that V is covered by neighborhoods of this type and hence is a
complex submanifold of L2 (D" (E)). The Kahler metric h of L2(D”(E)) induces
a Kahler metric fz|v on V', which will be sometimes denoted simply h. Tt is
convenient to consider V as a submanifold of L?(D(E,h)) as well under the
identification D”(E) = D(E, h). With the Kéhler form w|y, V may be regarded
as a symplectic manifold. We write often w instead of wly .

Let G = L, (U(E, h))/U(1), where U(1) is considered as the group of scalar
multiplication by complex numbers of absolute value 1. Let g=L7 ,, (End(E, h))/u(1)
be its Lie algebra.

We define a momentum map u: V — g* by

(7.6.23) (a, up(D)) = /M i-tr(ao (K(D)—cl)®", ac€g,

where K (D) is the mean curvature of D and the equation K (D) —cI = 0 is the
Einstein condition as in (7.1.16).
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In order to show that p satisfies (7.5.2), using the Kéhler metric of M we
take the trace of both sides of the equation

(7.6.24) R(D +1€)|i—0 = D((D +1€) o (D + t€))1-0 = D¢
to obtain

(7.6.25) WK (D + t&)|i=0 = D"¢.

Hence

(@, dup(©) = [ i+ Birao (KD +16) - cI)) "
(7.6.26) M

= / i-tr(ao D*E)O".
M

On the other hand, the tangent vector ap of V' at D induced by the infinitesimal
action of a € g is given by

(7.6.27) ap = 0i(e”" " o Do e™)|;—¢ = Da.

Hence,
w(ap,§) = / n-tr(DaA€) AO"!
M

(7.6.28) =— / n-tr(ao DE) A P!
M

= / i-tr(ao D*E)D".
M
This establishes

(7.6.29) (a,dpup(§)) = w(ap,§),

i.e., p satisfies (7.5.2).
In order to verify (7.5.3) for pu, let f € G. Then

(7.6.30) R(D¥)=floRD)of, K(MD)=f"1loK(D)of.

Hence,

(@D = [ it fHED) - D) po”

M

(7.6.31) - /Mi tr(faf "o (K(D) — cl))®"

= (faf™", w(D)).

This means
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(7.6.32) (D) = (ad f)* (D),

i.e., p is equivariant with respect to the coadjoint action of G.
Clearly we have

(7.6.33) pt(0)={D e H(E, h); K(D) = cl},

i.e., u=1(0) consists of Einstein-Hermitian connections in (E, h).
In order to verify (7.5.6) and (7.5.7) for u, we consider a map

(7.6.34) F:V — L [ (A°End(E,h)))/u(l), F(D)=iK(D) mod u(1),

where u(1) is considered as the space of skew-Hermitian endomorphisms of (E, h)
of the form ial with a € R. (This map F' is essentially the momentum map p.)
From (7.6.25) we obtain

(7.6.35) dFp (&) = iD*¢ mod u(1).

Let H? be the space of harmonic 0-forms with values in End (E, ) defined by
(7.2.22). Then H? consists of endomorphisms of the form ialg,a € R, since D
is irreducible. On the other hand,

L (A°(End(E,h))) = D*L?(AY(End(E, h))) @ H°.

Hence, the map dF : TpV — L7 _,(A°(End(E, h))) is surjective modulo H® =
u(1). By the implicit function theorem, F~1(0) is a nonsingular submanifold
at D and Tp(F~1(0)) = Ker(dFp). This shows that (7.5.6) and (7.5.7) are
satisfied by pu.

We already know that G acts freely (see (7.1.13)) and properly (see (7.1.14))
on pu~1(0). A slice with the desired property is given by (7.4.7).

Now, by the reduction theorem (7.5.8) there is a symplectic form wy on the
reduced phase space W = p~1(0)/G such that 7*wy = j*wy on g~ 1(0). From
the construction of W it is clear that W is the nonsingular part of the moduli
space £(FE, h)/U(E, h) and that wy is the Kihler form of the Hermitian metric
constructed on the nonsingular part of £(E,h)/U(E,h). We have established

Theorem 7.6.36 The inner product (7.6.20) induces a Kdihler metric on the
nonsingular part of the moduli space E(E,h)/U(E,h) of irreducible Finstein-
Hermitian connections in (E,h).

Remark 7.6.37 The real part of the Kahler metric, i.e., the corresponding Rie-
mannian metric on the moduli space above depends on the Riemannian metric
of M but not on its complex structure. For example, if M is a compact Rie-
mannian manifold whose holonomy group is contained in Sp(m),m = n/2, so
that M is a Ricci-flat Kdhler manifold with respect to any one of the complex
structures compatible with Sp(m), the Riemannian metric on the moduli space



256 CHAPTER 7. MODULI SPACES OF VECTOR BUNDLES

1s independent of the complex structure on M we choose although the complex
structure and the Kdhler structure of the moduli space do depend on the complex
structure of M. In fact, the Kdhler metric h on moduli space was defined by ap-
plying (7.6.20) to harmonic forms o, B € H™', where H*" is identified with the
holomorphic tangent space of (‘:'(E,h)/U(E,h) at [D]. The corresponding Rie-
mannian metric is obtained by applying (7.6.21) to harmonic forms &,n € H',
where H' is identified with the real tangent space of E(E,h)/U(E,h) at [D].
Thus,

(", n") + (& n")
/ e
=/M<£, ne,

where (£,m) is defined by the Riemannian metric of M and ®™ is the Riemannian
volume element of M. This shows that § does not involve the complex structure
of M. This remark will be important in the next section when we consider
symplectic Kdhler manifolds M .

9 m

Theorem (7.6.36) for dim M = 1 has been obtained by Atiyah-Bott [7]. The
same theorem has been proved for moduli spaces of anti-self dual connections
on compact Kahler surfaces by Itoh [55]. In order to prove that the Hermitian
metric constructed in (7.6.20) is actually Kéhler, instead of using the symplectic
reduction theorem Itoh calculated explicitly partial derivatives of the Hermitian
metric in local coordinates induced by the Kuranishi map. He calculated also
the curvature in these coordinates and obtained the following

Theorem 7.6.38 If dim M = 1, then the holomorphic sectional curvature of
the Kdhler metric in (7.6.36) is nonnegative.

This is definitely not true if dim M > 1. We shall derive (7.6.38) from a
geometric theorem on submersions of C R submanifolds.

Let V' be a complex manifold (possibly an infinite dimensional complex Ba-
nach manifold). Let J be its complex structure, i.e., an endomorphism of the
tangent bundle TV such that J? = —I. Let N be a real submanifold of V. We
set

T"N =TNNJ(TN).
If T" N is a O complex subbundle of TV |, then N is called a C R submanifold
of V. This is the case if dim 7}' N is finite and constant.
Assume that V is a Kdhler manifold and let TV N be the orthogonal comple-
ment of T"N in TN it is a real subbundle of TN. Thus we have a direct sum
decomposition:

(7.6.39) TV|y =T'"N @ T°N ¢ T+N,
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where T+ N is the normal bundle of N in V. Clearly, .J leaves T" N and T'N &
T+ N invariant. We assume that J interchanges T'N and T+ N, i.e., J(T'N) =
T+N and J(T+N) =T"N.

We assume further that there is a submersion 1 : N — W of N onto an
almost Hermitian manifold W such that (i) T'N is the kernel of 7, and (ii)
Ty © TZ’}N — TrW is a complex isometry for every p € N. Under these
assumptions we have

Theorem 7.6.40 The almost Hermitian manifold W is Kdhler. Let HY and
HW denote the holomorphic sectional curvature of V. and W, respectively. Then,
for any unit vector x € T"N, we have

HY (z) = B (m.2) — 4|B(a, )2,
where B: TN x TN — TN is the second fundamental form of N in V.

For the proof of (7.6.40), see Kobayashi [74].
We shall now explain how to derive (7.6.38) from (7.6.40). Let

(7.6.41) V= LX(D(E,h)), N =LFE(Eh), W =E(E h)/UE,h).

We may identify W with L} (E(E,h))/L} . (U(E,h)). We note also that since
dimM = 1,D(E,h) = H(E,h) and the moduli space W is nonsingular, (see
(7.4.19)).

The complex structure J of V' is given by (7.6.12). The K&hler metric and
the corresponding Riemannian metric on V' are given by (7.6.20) and (7.6.21).
As we have already remarked, these metrics are flat. Now we claim that the

decomposition (7.6.39) of TV |y at D € N is given by

TAN = H', T{N = Do D*oG(Li(BY)),

(7.6.42) TAN = D% o Dy o G(LE(BY))

where B! = AY(End(E, h)),H' and D, are as in Section 7.2 and G is the
Green’s operator for the Laplacian A = D* o D + D, o D} . We have to show
that J leaves T" N invariant and interchanges TN and T+ N. Since J preserves
the Hilbert space inner product (7.6.21) of LZ(B%), it suffices to show that (i)
J(T"N + T+ N) ¢ TN + TN and (i) J(T"N + T*N) ¢ TN + T+N, i.e.,
that (i) if D*¢ = 0, then D, J¢ = 0 and (ii) if Dy& = 0, then D*J¢ = 0 for
¢ € L(B'). But this verification is straightforward, (see (7.2.16) as well as
(3.2.39)). The metric in the moduli space W was constructed in such a way
that 7, : TAN — T,(pyW is an isometry. Since V is flat, (7.6.40) implies that
the holomorphic sectional curvature of W is nonnegative. This completes the
proof of (7.6.38).

Even when dim M > 1, (7.6.40) can be applied to V = LY (H(E, h)). How-
ever, in this case, L} (H(E,h)) is a complex subvariety of X = L¥(D(E,h))
and has nonpositive holomorphic sectional curvature. Thus the holomorphic
sectional curvature of W is of the form b? — a2, where a? is the term determined
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by the second fundamental form of V in X while b? is given, as in (7.6.40) by
the second fundamental form of N in V.
Going back to the 1-dimensional case, we make a few remarks.

Remark 7.6.43 In general, if W is a Kdhler manifold of dimension m, then its
scalar curvature o at p € W is given as an average of the holomorphic sectional
curvature H at p. More precisely (see Berger [16]), we have

m(m + 1) / H(X)w
2a2m71 Xesgnl—l ’

where Szm_l denotes the unit sphere in the tangent space T,W,w its volume
element and asm—1 its volume. (The scalar curvature o defined in (1.7.16) is a
half of the Riemannian scalar curvature.) From (7.6.38) and (7.6.44) it follows
that the scalar curvature of the moduli space W is nonnegative.

As we have seen in (7.2.28), the tangent space H' of W at [D] is decomposed

(7.6.44) o(p) =

as
H'=H'+ H'(M,R).

We can deform the holomorphic structure of E by tensoring it with topologically
trivial holomorphic line bundles. The subspace H'(M,R) in the decomposition
above corresponds to the space of infinitesimal deformations coming from such
line bundles. It is not hard to see that the holomorphic sectional curvature
vanishes on H'(M,R). The question remains if it is strictly positive on H*.
Consider the subspace Wi, of the moduli space W consisting of EP" such that
its determinant bundle is holomorphically isomorphic to a fized holomorphic line
bundle L so that H* appears as the tangent space of Wi, at [D]. It is known that
if the rank r of E and the degree d of L are relatively prime and if the genus
of M 1is greater than 1, then Wy, is compact, simply connected and unirational,
(see Newstead [119] and Atiyah-Bott [7]). Therefore, it would not be outrageous
to hope that the holomorphic sectional curvature is positive on H*.

Remark 7.6.45 In order to prove (7.6.36) we made use of the symplectic re-
duction theorem. However, it is also possible to derive (7.6.36) easily from
(7.6.40).

7.7 Simple vector bundles over compact sym-
plectic Kahler manifolds

The main purpose of this section is to prove the following (Kobayashi [73])
Theorem 7.7.1 Let M be a compact Kdhler manifold with a holomorphic sym-

plectic structure wyr. Let E be a C°° complex vector bundle over M and let
H"(E)/GL(E) be the moduli space of simple holomorphic structures in E. Then
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wys induces, in a natural way, a holomorphic symplectic structure on the non-
singular part

W = {[D"] e #"(E)/GL(E); H*(M,End’(EP")) =0}
of H"(E)/GL(E).

As we noted in Section 2.5 of Chapter 2, there are two classes of compact
Kéhler surfaces which carry holomorphic symplectic structures, namely, (i) com-
plex tori and (ii) K3 surfaces. Mukai [113] has shown the theorem above when
M is an abelian surface or a K3 surface by an algebraic geometric method.

We note that since the canonical line bundle of M is trivial, the Serre
duality (3.2.50) implies that if M is a symplectic compact Ké&hler surface,
then ?—Al”(E)/GLgE) is nonsingular. In fact, H2(M,End’(EP")) is dual to
HO(M, EndO(ED/ )), which is zero if EP" is simple, (see the paragraph pre-
ceding (7.3.17)).

Our differential geometric proof relies on the holomorphic version of the
symplectic reduction theorem (7.5.8) of Marsden-Weinstein.

Proof  We shall set up the situation to which the holomorphic analogue
(7.5.11) of (7.5.8) can be applied. Taking k& > dim M, we set

V =Ly(D"(E)), G=Li(GL(E))/C", g= L (End(E))/C.

Then G acts smoothly and effectively on V.
We define a holomorphic symplectic structure wy on V' by

(172w = [ weAp A AT af e TouV),

where o and 8 are considered as elements of L (A%!(End(E))) ~ Tp~ (V) and
2m denotes the dimension of M.
We define a momentum map p: V — g* by

(7.7.3)  {a,u(D")) = —/ tr(ao N(D")) Awit AT, acg, D" €V,
M

where

(7.7.4) N(D"y=D"oD":L3(A*%(E)) — L} _,(A%*(E)).

We may consider N(D") as an element of L? ,(A%?(End(E))). We make use
of the following formulas to verify (7.5.2) for p.

(7.7.5) 0N (D" +tB)|—0 = D"of+BoD" = D"B for B € Li(A*(End(E))),

(7.7.6) apr = 0(e " oD" 0e™)|yzg=—aoD"+D"oa=D"a foracy.
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The latter means that D"a is the tangent vector ap~ € Tp» (V') induced by the
infinitesimal action of a € g. We verify (7.5.2) as follows.

(@.dupr () = =01 [ trlao N(D"+18)) nfy n 3y
t=0

(777) = f/M tr(ao D"B) Awiy ATt

= /M tr(D"a A B) Awiy A&
= wy(D"a, B) = wy (apr, B).
Since
tr(ao N(D"T)) = tr(ao f 1o N(D")o f) = tr(foao f~Lo N(D")) for f €G,
we obtain
(7.7.8) (a,m(D")) = (foao f~, u(D"),

which verifies (7.5.3) for p.

We do not verify (7.5.6) and (7.5.7) directly. The proof will proceed in such
a way that we will consider only the points of V' where (7.5.6) and (7.5.7) hold.
Let

D" € p~H(0) ={D" e V; N(D") =0} = Lj(H"(E)).

If {(a,dup~(B)) =0 for all 8 € Tp+(V), then D"a = 0 by (7.7.7). We consider
first the open subset V’ of V consisting of D” such that ¢ = 0 is the only
solution of D”a =0 in g = L}, (End(E))/C ~ LiH(EndO(E)). Then

pH 0NV ={D" € V; N(D") =0 and E”" is simple}

(7.7.9) .
= L{(H"(E)).

To see that G acts freely on p=1(0) N V', let f € L7, (GL(E)). If D" €
p~1(0) NV’ and D" = D" ie., D"of = foD" then D"f = 0 and hence
f = alg with a € C*. This shows that G acts freely on p=1(0)NV’. We defined
a slice Spr, in (7.3.9). Instead of verifying (7.5.6) and (7.5.7) we consider
only the nonsingular part W of H”(E)/GL(E) and the portion of x=1(0) NV’
which lies above it. Then there is a unique holomorphic symplectic form wy,
on W ¢ H'(E)/GL(E) = (1~ (0) N V')/G such that m*wy = j*wy in the
notation of (7.5.11). Q.E.D.

As we remarked in Section 2.5 of Chapter 2, every compact Kéhler manifold
M with a holomorphic symplectic form w admits a Kahler metric which makes
w parallel or, equivalently, a Ricci-flat Kédhler metric. (It is also part of Yau’s
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theorem that the new Kéahler metric can be chosen in the same cohomology
class as the given metric.)

Since the moduli space £(E, h)/U(E, h) of irreducible Einstein-Hermitian
connections is open in the moduli space H"(E)/GL(E) of simple holomor-
phic structures, (see (7.4.20)), the holomorphic symplectic form constructed
in (7.7.1) induces a holomorphic symplectic form on the nonsingular part of
E(E, h)/U(E, h). On the other hand, by (7.6.36) we have also a Kihler metric
on the nonsingular part of £(E, h)/U(E, h).

Having made these remakrs, we now state

Theorem 7.7.10 Let M be a compact Kdahler surface with parallel holomorphic
symplectic form wyr. Then there is a natural holomorphic symplectic form on
the nonsingular part W of E(E, h)/U(E, h) which is parallel with respect to the
natural Kahler metric of W. In particular, the Kdhler metric of W has vanishing
Ricci tensor.

Proof The holonomy group of M is contained in Sp(1), and we have a
family of complex structures on M parameterized by a 2-sphere, namely

T ={J = a1 + azJo + asJs; af + a3 +aj =1},

where J; may be taken as the given complex structure, (see Section 2.5 of
Chapter 2). Every J € J is parallel with respect to the given Riemannian
metric g of M. In other words, every pair (g,J) with J € J defines a Kéhler
structure on M. In particular, the given Kéhler structure is defined by (g, J1).

Let V = R* be a typical (real) tangent space of M and g the inner product
in V defined by the Riemannian metric of M. We consider J as a family of
complex structures on V' compatible with the action of Sp(1). Let

wr(X, V)=g(LX,Y) for X,;Y €V, and A=1,2,3.

Then each wy € A2V* is invariant by Sp(1). Let (A2V*), denote the subspace
of A2V* consisting of elements invariant by Sp(1). Then wy,ws,ws form a basis
for (A\2V*),. Using J; we identify V = R* with C2. Let (2, w) be the natural
coordinate system in C2. Let

z=x 41y, w=u-+1iv.
Then
wr=2(xANy+uAv)=i(z ANZ+wAWD),
(7.7.11) we =2(x ANu—yAv)=2-Re(z Aw),
ws=2(xANv+yAu)=2 -Im(z A w).
Applying this algebraic fact to tangent spaces of M, we see that the term
B? = A%End(E) ® (A°T*M)4) in the complex (B*) of Section 7.2 does not

change when we vary the complex structure J within J. Hence, by (7.2.19),
E(E, h) does not vary with J € J.
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Since the terms B° and B! in the complex (B*) are completely independent
of the complex structure J, the first cohomology H'! of the complex (B*) does
not vary with J € J. We recall that H' ~ H' is identified with the (real)
tangent space of £(E,h)/U(E,h) at [D]. The inner product in H' does not
depend on J, (see (7.6.37)).

Let W denote the nonsingular part of the moduli space E(E, h)/U(E, h). By
what we have just stated, the Riemannian metric g on W does not depend on
J € J. Each J € J induces a complex structure JonW. By (7.6.36), the pair
(g, ) defines a Kahler structure on W, i.e., J is parallel with respect to §.

n (7.6.36), from the Kéhler form ® = w; on M associated with the pair
(9, Jl), we obtained the Kéhler form w; on W associated with (g, jl) Applying
(7.6.36) to the pair (g, J2), from the Kéhler form wq of (g, J2) we obtain the
Kéhler form &y on W associated with (§,.J2). But wsy is (the real part of) the
holomorphic symplectic form wpys and s is (the real part of) the holomorphic
symplectic form wy. Being the Kéhler form, @y is parallel with respect to g.
Hence, wy is also parallel. Q.E.D.

7.8 Vector bundles over Kahler surfaces

We fix a C*° Hermitian vector bundle (E, h) over a compact Kéhler surface
M. We know that the moduli space E(E, h)/U(E, h) of Einstein-Hermitian con-
nectionsin (E, h) is nonsingular at [D] € E(E, h)/U(E, h) if H*(M, End®(EP")) =
0 and H2(M,End®(EP")) = 0, (see (7.4.18)). The first condition expresses irre-
ducibility of D, (see (7.4.14)). By Serre duality (3.2.50), H2(M, End®(EP")) is
dual to HO(M, End®(EP")® Ky), where K, denotes the canonical line bundle
of M. Since (EP" | h) is Einstein-Hermitian, so are End(E”") and End’(EP")
with mean curvature 0, i.e., with proportionality constant 0, (see (4.1.4)). Since
Ky is a line bundle, it admits an Einstein-Hermitian structure with mean cur-
vature of the form clk,,, where the proportionality constant c has the same sign
as the degree of Kj;:

deg(KM):/Mcl(KM)A<I>:/M—cl(M)A<I>.

The tensor product F' = End® (ED ”) ® Kjs admits an Einstein-Hermitian with
mean curvature cIp (by (4.1.4)).

If ¢ < 0, then F' admits no nonzero holomorphic sections (see (3.1.9)). If
¢ = 0, every holomorphic section of F is parallel by the same theorem (3.1.9).
Let f be a nonzero holomorphic section of F'. At each point x of M, f defines a
traceless endomorphism A, of E; A, is unique up to a constant multiplicative
factor. Although the eigenvalues of A, are determined only up to a common
multiplicative factor, the eigen subspaces of F, are well determined. Since
f is parallel, it follows that these eigen subspaces of F, give rise to parallel
subbundles of E. But this is impossible if D is irreducible. This shows that if
c¢ =0 and D is irreducible, then F' admits no nonzero holomorphic sections.
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We have established (see Kim [61] when ¢1 (M) > 0 or ¢1(M) = 0).

Theorem 7.8.1 Let M be a compact Kdahler surfaces with Kdhler form ®.
Let (E,h) be a C* Hermitian vector bundle over M. Then the moduli space
E(E,h)JU(E,h) of irreducible Einstein-Hermitian connections in (E,h) is a
nonsingular Kdahler manifold if

/M c1(M)A® > 0.

In order to find the dimension of this moduli space, we calculate y (M, End(EP"))
using the Riemann-Roch formula of Herzebruch (2.4.4):

(7.8.2) x(M,End(EP")) = / td(M) - ch(E) - ch(E*).
M
From
td(M) =1+ %cl(M) + 1—12(01(M)2 + ca(M)),
ch(E)=r+c(E)+ %(cl(E)2 —2c3(E)),
1

we obtain

(7.8.3) x(M, End(EP")) = / (r=)er (BY? ~2res(B) + 5 (e1(M)? + (M)
M

Also by the Riemann-Roch formula, we have

1
(7.8.4) 1— A% +h02 = o c1(M)? + ca(M).
M

For simplicity, write
H? = HP(M,End(EP")), H? = H?(M,End°(EP)), x = x(M, End(E"")).
Then
(7.8.5) dim H' = dim H° + dim H? — x = 1 + dim H° + h%2 + dim H? — .
Assume that
HO(M,End®(EP")) =0 and H?(M,End’(EP")) = 0.
From (7.8.3), (7.8.4) and (7.8.5) we obtain

(7.86)  dim H' = 2rcy(E) — (r — Ve (E)? +r2h%t — (r2 — 1)(1 + h%2).
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If [e1(M)A® >0, ie., if the degree of the canonical line bundle K is
negative, then Kj; has no nonzero holomorphic sections, i.e., h%? = 0, (see
(3.1.24)).

If [¢1(M)A® =0, then every holomorphic section of K, is parallel by the
same theorem (3.1.24) so that h%? < 1 and the equality means that Ky is a
trivial line bundle.

If c;(M) > 0, then we have h%! = 0 as well as k%2 = 0. In fact, by Serre
duality and Kodaira’s vanishing theorem (3.3.1), we have

ROt = p™t = dim H" (M, K)p) = 0.
In summary,

Theorem 7.8.7 Let M and (E,h) be as in (7.8.1). Then the dimension of the
moduli space £(E, h)/U(E, h) (if nonempty) is given by

(1) 2rea(E)—(r=1)c1 (E)?+r2h%t+1—r2, (r = rank(E)), if [ c1(M)A® =0
and if the canonical line bundle Ky is non-trivial;

(2) 2rca(E) — (r — 1)ey(E)? + r2h%Y + 2 — 202 if Ky is trivial;

(3) 2rca(E) — (r — Der(E)? +1—1r2 if 1 (M) > 0.

Remark 7.8.8 If the canonical line bundle Ky is trivial (i.e., M is a torus
or a K3 surface), then the moduli space above admits a holomorphic symplectic
structure. In particular, the dimension appearing in (2) above must be an even
integer (provided that the moduli space is nonempty).

Remark 7.8.9 By (4.4.7), if (E,h) admits an Einstein-Hermitian connection,
then

2rcy(E) — (r — 1)er(E)? 2 0.

In some special cases, (7.8.7) gives a better lower bound. For example, for an
irreducible Finstein-Hermitian bundle E over a compact Kdihler surface M with

c1(M) > 0, we have
2rco(E) — (r — 1)c3(E) 2 r? — 1.

We know also (see (4.4.7) again) that, for an Einstein-Hermitian vector bundle
E, the equality 2rca(E) — (r — 1)cy(E)? = 0 holds if and only if E is projec-
tively flat. So (7.8.1), (2) of (7.8.7) and (7.7.10) imply that if M is a torus of
dimension 2 and if E is a C°° complex vector bundle satisfying 2rco(E) — (r —
Dei(E)? =0, then the moduli space E(E, h)/U(E, h) (if nonempty) is the mod-
uli space of projectively flat Hermitian connections in (E, h) and is a symplectic
Kdhler manifold of dimension 2.

Remark 7.8.10 We know (see (5.8.3)) that every irreducible Einstein-Hermitian
vector bundle over M is ®-stable. Conversely, if M is a projective algebraic
surface and © represents the first Chern class c1 (M) of an ample line bundle
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H, then every H-stable vector bundle E over M admits an irreducible Einstein-
Hermitian structure, (see (6.10.19)). It follows that when M is an algebraic sur-
face with Kdhler form ® representing c1(H), the moduli space £(E, h)/U(E,h)
can be naturally identified with the moduli space of H-stable holomorphic struc-
tures in E. Hence, (7.8.1) and (7.8.7) can be stated as results on moduli spaces
of H-stable holomorphic bundles.

The following result follows from (7.7.1) and (7.3.34) in the same way as
(7.8.1) and (7.8.7), (see Mukai [113]).

Theorem 7.8.11 Let M be a K3 surface or a complex torus of dimension
2. Let E be a C*° complex vector bundle over M. Then the moduli space
H"(E)/GL(E) of simple holomorphic structures in E is a (possibly non-Hausdorff)
complexr manifold with a holomorphic symplectic structure. Its dimension is
given by

2rco(E) — (r — 1)ey(B)? +r2h%! 42 — 272

where h% = 0 (resp. = 2) if M is a K3 surface (resp. a torus), provided that
the moduli space is nonempty.
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Notations

Throughout the book:

M Usually a complex manifold, sometimes a real manifold, except in Sections
5.3 & 5.4 of Chapter 5 where it is a module.
g an Hermitian metric on M, usually a Kahler metric.
® the Kéahler form corresponding to g, see p.25.
E a complex (often holomorphic) vector bundle over M.
h an Hermitian structure in a vector bundle F.
A" the space of complex r-forms on M.
A"(E) the space of complex r-forms on M with values in E.
AP the space of (p, g)-forms on M.
AP9(E) the space of (p, g)-forms on M with values in E.
D a connection in a vector bundle E and also the exterior covariant differ-
entiation A"(E) — A"T1(E) defined by the connection, see p.1, p. 3.
D', D" the (1,0) and (0, 1) components of D so that D = D’ + D", see p.7.
w= (w;) the connection form corresponding to D, see p.2, p.9.
8’ = D' the adjoint operator of D’. §' is used in Chapter 3 while D" is used in
, Chapter 7, see p.59. B
8y = D™ the adjoint operator of D". ¢} is used in Chapter III while D * is used in
Chapter VII, see p. 61.
R = Do D the curvature of a connection D, see p. 3, p. 8.
Q= (%) the curvature form corresponding to R, p. 3, p. 8.
K the mean curvature transformation of E, (the trace of R with respect to
g), see p. 24, p. 49.
K the mean curvature form on E corresponding to K, seep. 24, p. 49.
¢i(E, h) the i-th Chern form of an Hermitian vector bundle (E, h), see p. 39.
det E the determinant line bundle of a vector bundle F, see p. 17.
det S the determinant line bundle of a coherent sheaf S, see p. 149.
c1(S) = c1(detS).

deg(E) = [,, c1(E) AN®"~ !, see p. 52, p. 124.
deg(S) = jﬁﬂj c1(S) AP see p. 154.

w(E) = deg(FE)/rank(FE), see p. 124.

w(S) = deg(S)/rank(S), see p. 154.

In Chapter 5:

dh(M) homological dimension of a module M, see p. 133.
codh (M) homological codimension of a module M, see p. 134.
Sm(S) m-th singularity set of a coherent sheaf S, see p. 144.

In Chapter 6:

Herm (r) the space of r x r Hermitian matrices, see p. 177.
Herm™ (r) the space of 7 x r positive definite Hermitian matrices, see p. 177.
Herm(F) the space of Hermitian forms in a vector bundle F, see p. 180.
Herm™ (E) the space of Hermitian structures in E, see p. 180.

L(h, k) Donaldson’s Lagrangian, see p. 182.

In Chapter 7:
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GL(E) the group of C* bundle automorphisms of E, see p. 218.
U(E, h) the subgroup of GL(F) preserving h, see p. 219 .
End’(E) the subbundle of the endomorphism bundle End (E) consisting of tracefree
endomorphisms of E, see p. 229.
End(E, h) the bundle of skew-Hermitian endomorphisms of (E, h), see p. 220.
End®(E, h) the bundle of tracefree skew-Hermitian endomorphisms of (E, h), see p.
229.
EP" a complex vector bundle F with the holomorphic structure given by D",
see p. 224.
D"(E) the set of D" : A°(E) — A%(FE) satisfying (7.1.1), see p. 218.
H"(E) the set of holomorphic structures on E, i.e., the subset of D (E) consisting
of D" such that D" o D" =0, see p. 219.
D(E, h) the set of connections D in E preserving h, see p. 219.
H(E, h) ={D € D(E, h); D" o D" =0}, see p. 220.
E(E, h) the subset of H(E, h) consisting of Einstein-Hermitian connections, see
p. 222.
A’}:[’ '(E) the set of simple holomorphic structures in E, see p. 238.
E(E, h) the set of irreducible Einstein-Hermitian connections in (E, h), see p. 243.



