Diophantine approximations,
substituions, and fractals

Shunji ITO (F#E #&K)
(Tsuda College) (FEHBKZF)

at Tsuda College

1996.7.29. — 1996.8.1.

i HRE i



Contents

1 Substitution

2 Endomorphism

3 Dynamical system

4 Renormalization

5 Fractal boundaries

6 Diophantine algorithm and substitutions

7 Applications
7.1 Quasi-periodic tiling related to the stepped surface . ... ..
7.2 Markov partition of group automorphisms on 7% . ... . ..
7.3 Diophantine approximation . ... .......... ... ..



1 Substitution
Let W* be the set of words with the alphabet {1,2,3}, that is,
Ww* .= U {1,2,3}"
For any words W = w; -+~ wg, V = v, ---v; € W*, let us define the product
W -V by the concatination:
WV =1w - wpvy -

Then W™ is a semi-group. Let ¢ : W* — W* be an endomorphism, that is,
let us assume the following property:

o(W) = o(w)o(ws) - -o(wg) for W=w - -wr € W

We call o satisfying above property by a substitution.
Let f : W* — Z3 be the canonical homomorphism, that is,

(@) = e, 1=1,2,3,
f(¢) = o,

k
f(W) = Zf(w,-) for W=w,---wr € W*

=1

where {e; | i = 1,2, 3} the canonical basis of Z® C R>. For each substitution
o:W* — W=* let us define the 3 x 3 matrix L, by

L, =[f(o(1)), f(a(2)), F(e(3))],
then the following lemma holds.

Lemma 1.1 The commautative relation holds:
W* L) W*
! L f
Z3 ir_) ZB

The matrix L, is called the matrix of o or abeliarization of .



Example 1 (Rauzy substitution [R]) Let us define the substitution o as
follows:

Q
WO I =
— e et

W N

then the matriz of o is given by

it

The substitution o is called Rauzy substitution.

O e
— O
OO =

Example 2 (Modified Jacobi-Perron substitution [I-O 93]) For each
a € N and e € {0,1} let us define the substitution a( . ) as follows:

£

a times a times
" 1 — 11---12 ” 1 — 11---13
=)' 9 3 R ER R 1 ’
(3) 3 1 (%) 3 o
then the matriz of a( . ) and cr(-,, ) are given by
0 1

L,

O = R
-0 O
O O =
- O N

(s)z[ J()[ ‘?:EJ

These substitutions o/ , ), a € N,e€{0,1} are called Modified Jacobi-Perron

3

substituions (The definition of Modified Jacobi-Perron algorithm is given in
the section 6).

Definition 1.2 The substitution o : W* — W* is said to be Pisot substitutidn
if

(1) det L, = +1,
(2) there exist N such that

LY > 0 (Aperiodic condition)



(8) the eigenvalues A, X and X" of L, satisfy
A>1>| XN |[,|A"| (Pisot condition) .
In this lecture, we discuss only on Pisot substitutions.

Let us denote the column and row eigenvectors of L, associated with the
maximum eigenvalue A by

)

Let P be the plane given by

{R <H> }

then it is easy to see the following lemma.

Lemma 1.3 The plane P is the contracting invariant plane with respect to
L,, that is, ,

L,P="P.
More precisely,
(1) In the case of X', X" € R, put the eigenvectors of X', \" by

1 1
vi=|d |, v:=|o" | €R,
ﬂl ﬂ”
then
v’,'v” eP
and

(L', L") = [0/, ") [ > ]

(2) In the case of N = N € C, put the eigenvectors of X', X' by

1 1
vi=|d |, vVi=]|a"
/BI 6”

€ C?,




and

1
Do 2 fay! ” Moo o ay — "
u.—g(v—}-v), u”: 22.(11 v"”)
then
ul’ullep
and there erists 6 such that
1 cosd —sind
' T L P
[Low', Lou ]_\/j"[u’u][sino 0050]

Let us assume o(1) = 1 - W;, that is, the first alphabet of (1) coin-
sides with 1. Then there exists the sequence u of {1,2,3} given by u =
lim, .., 0"(1) and satisfies

. o(u) = u,
that is, u is the fixed point of o.

For each Pisot substitution, let 7 : R®> — P be the projection along
[1,a, 8], and let us define the set

k
Yv = {7‘-263,‘ k=1127"'7N}2

k
Yn; = {WZe,J. sj=i,k=1,2,---,N,i=1,2,3},

1=1
Y = | Yu,
N=1
oo
K = U YN,H

X := the closure of Y,
X; := the closure of Y;,
where s;, 7 € IN are given by
u= lim a"(1)=3132...3k ...... i
n—+00

Then we can find the domain X and Xj;, : = 1,2,3 with fractal bounda:ies.



On Example 1 [Rauzy substitution]:

1
v

o872
7
3

|
I
|

Figure 1: The figure of the domain X with fractal boundaries on Rauzy substitution

On Example 2 [Modified Jacobi-Perron substitution]: in the case of ¢ =1
and € = 0.

Figure 2: The figure of the domain X with fractal boundaries on Modified Jacobi-Perron
substitutions



Note. We introduce the substitution on W* = [J22,{1,2,3}" in this lec-
ture, but it is easy to extend the definition of substitutions on the alphabet
{1,2.--, N}. In particular, the simplest case of N = 2 is fundamental. In
this note, we will give a kind of survey at the end of each sections in the case
of N =2. :

On the alphabet{1,2}, we can define Pisot substitution ¢ and its matrix
L,. Using the column and row eigenvectors with respect to the maximum

eignvalue A:
o a v v

we can define the contracting invariant line /, with respect to L, by

c-fel 2]

and the projection 7 : R* — [, along [1, @] analogously. And for the substi-
tuion satisfying

0'(1)=1W1

let Y,Y;, 7 =1,2, and X, X;, ¢ = 1,2 be projective sets as in Page 4. Then
we find the set X, X;, ¢ = 1,2 which are intervals usually on the following
example.

Example 3 In the case of N = 2, for each a €N let us define the substitu-

ions o, by
a times

1---12.

|

—

[y

1
2

The matriz of o, are given by

a 1
= $ 0]

The substituion o,, a € N are called continued fraction substituions (The
definition of the continued fraction algorithm can be found in the section 6).




2 Endomorphism

For € Z° and i € {1,2,3} let us consider the pair (,7*) by
(z,0"):={x+Xej+tpe |0<AL], 0<pu<1}

where (j, k) is taken as (4,7, k) € {(1,2,3),(2,3,1),(3,1,2)}.

(0,1%)  (0,2%) (0,3%)

Figure 3: The figure of (0,¢*), i =1,2,3 and (z,1*)

All of the pair (,7*), z € Z° and i € {1,2,3} is denoted by A, that is,
A={(=,i) | ze€2z%i={1,23}}.

Let G be the Z-module generated by A as follows:

Q:: {'2:7HAA
A€A
Let us consider the following endomorphism © of G associated with o:

00, = Y T (L*(FW).57),

j=1,2:3 w:
o(j)=Y i-W

O(z,:*) = L'z + 60(o,:%)
where y + (2,7") := (y + ,7"), and for S cpmar € G

0 (Z m,\/\) = 3" maO()).

AEA A€A

my € Z, #{)\|m,\7é0}<+oo}.

To discuss the geometrical property of ©, we introduce the stepped surface
of a plane.



For any 0 < 7,6 < 1 let us consider the plane P, s, that is,

and for each plane P, s let us conider the stepped surface S, (S; 5) as fol-

lows:
sto={w (=] 1|} 20 (- [ 1 ) <o}
- i - ]
( {(m,m (=5 ]) 20 {0 J})
and

8‘:-,6 = U (2:, i*)

(®,i*)esSt

,;,:5 = U (SB, Z*) .
(m,i°)eS;6

ny € {0,1}, #{A |na =1} < +oo}

I7,:={ U maA
reSz,

The set I'Y; (I‘;,,;) C G is a family of S¥; (S-J;,&) on 85 (S; 6). Then we
find the following theorem.

ny € {0,1}, #{A [na=1}< +oo}) .

Theorem 2.1 ([A-I]) For each Pisot substitution let us consider the endo-
morphism © of G associated with o and F,t& with respect to the contracting



invariant plane P. 4, then F'T,é is invariant with respect to the endomorphism
O, that is,

U Tl,\)\ € Fj,& zmplzes O U n,\)\ € F:é
xeS? \eS?

U nad el implies ©] |J mad| €T,

AeSZ AeS7
1 — 12
On Example 1, for the substitution ¢ : 2 — 13 the endomorphism ©
3 — 1
is given by
(07 1*) — (073*) + (f2= 1*) + (f37-'*)
©: (0,2*) — (o0,1%)
(0,3) — (0,2)
0 1 0
where L' = | 0 0 1| = [fy,fs f3]. The figure of © is given as
1 -1 -1
follows:

E (0,3%)
'.,.f'. . e / o

(0,1%)

4o

- - "‘ £y
(0,29) (0,11

4
.. (o, z:;"'

(0,3%)

(1) (15,20)

Figure 4: The figure of ©



3 step

1 step 2 step

0 step

4 step

Figure 5: The figure of |J;_; , 30"(0,i"), n =0,1,2,3,4

Figure 6: The figure of |J;_, , 3 ©%(0,*)

10



On Example 2, for the substitution o ( . ) :
0

and

a

times

0,1*) —

—_
—_

0,1*) —
0,2") —
0,3*) —

a times

e —
1 — 11---12
2 — 3
3 — 1

(0,2) + > ((e1 — kez),17)

1<k<a
(0,37)
(0,17)

, €=0,1 are as follows:

Figure 7: The figure of ©

11

and




0 step 1 step

Figure 9: The figure of {J;_, , 3©%(0,4*) and {J;_, 5 3©'%(0,i") in the caseof a =1, =0

On Example 1 and Example 2, we can see that ©"(0,:*), z = 1,2,3 are
simply connected. See [I-O] and [F-I] if you are interested in the geometrical
properties of ©*(0,:*), ¢ = 1,2,3. In general, ©"*(o0,¢*), : = 1,2,3 are not
simply connected.

12



Example 4 This is an example that ©"(0,7*), ¢+ = 1,2,3 are not simply
1 - 21
connected. For the substitution o : 2 — 13, the endomorphism O is
3 — 1
given by
(0,17) — (0,17) +(0,3") + (£3, 27)
0: (0.27) — (fi.1)
(0,3) — (0,27)
0 1 0
where L7 = |0 0 1 } = [f1, 2. f3]. The figure of © is given as
1 -1 -1
follows: '

E(0,1%)

. S 0,0

(0,3*)

Figure 10: The figure of ©

13



1 step

0 step

3 step

=0,1,2,3,4

i*),n

(0;

n
23e

=1,

The figure of | J;

Figure 11

910(0, i*)

!213

1

12: The figure of J;

Figure

14



Notation. For v = ZXesﬂu naA, 6 = ers+ maA € F,ys, ~ > 6 means that
ny # 0 if my # 0, that is, the patch 6 is the subpatch of v (See Figure 13).

¥ > 6

Figure 13: The figure of v »~ 6

On the above notation we have the following lemma.
Lemma 2.2 Let
U:= (e, 1), U = (0,7%),

i=1,2,3 i=1,2,3

then

(i) O(U) = U

(i) (U) = U'.
Note. In the case of alphabet {1,2}, the element (z,i*) € Z* x {1*,2*} of
the set A is given by

(z,i")={x+Xe; | 0<A<L 1}

where (z,7) € {(1,2),(2,1)}, and G is given by

={ZW

A€A

my € Z, #{/\!m,\#O}<+oo}.

The endomorphism © associated with o of G is given analogously by

0. = 3 ¥ (L7 (Fw)),57)

7=1,2
(J)—Y W

O(z,*) := L;'z + 6(o,:),

15



and for Zyepamad € G

O (Z m\)\) = Z m\e(,\)

AEA €A

For any 0 < v < 1, let us consider the line ,, that is,

e el e[ 1]}

and for each line /, let us consider the stepped curve S* (S57) as follows:

ST RYRE®
[2 2o []) <o

St:= J (=,

(T,i*)eS+

(s— = U (= i*)) :
(x,i*)eS—

St = {(a:,i*)

(s-={e)

and

Let I't (') be

r+ :._.{ U

AeS+

then the same statement of Theorem 2.1 holds on this frame work.
On Example 3, for the substitution

ny € {0,1}, #{A |ny =1} < +oo}

ny €{0,1}, #{A | ny =1} < +°°}) :

a times
s e,
11---12
1

—
—_

DN =



the endomorphism 0, is given by

o . (017 — (0.2)+ Y (e~ kex), 1)
a k=1
(072*) - (011*)
(0,2%) l
(0,1%) (e,—e,,2%) (0,2%) (0,1%)

(el—aez,z*)

Figure 14: The figure of ©

L5

Figure 15: The figure of |J;-,  ©7(0,4%), n=0,1,2,3, in the case of a = 1

— 12 . .
Example 5 For the substitution o : L 121 the endomorphism © 1is
2 — 12

given by

0. (01 — (0,1 +(Fi+ f.17) +(f,,2)
- (0,2*) - (flal*)+(0a2*)

17



where L} = [ _i _i } = [f,, f2] - The figure of © is given as follows:
(f2,2*)
| i (0,2¢)

(0’1*) (0’1*) (0,2*) (fbl*)

Figure 16: The figure of ©

]

Figure 17: The figure of Ui=1,2 e"(0,:*),n=0,1,2

On Example 3 and Example 5, we see that ©"(0,:*), ¢ = 1,2 are simply
connected. But in general it is not true.

Example 6 This is an ezample that ©"(0,:*), : = 1,2 are not simply con-

18



nected. For the substitution

the endomorphism ©, is given by

0,2) + (£, 1") + (Ff1 + F2,17)
0,1 2%)

*

(0,1%)
©: (0,2%)

—
ki

where L7! = [ a5 } = [f1. fal.

L (f2,1*)

l l (f1+121%) L
— —_— —_—
(0,1%) (0,2%) @ l__

(f1,2%)

Figure 18: The figure of ©

—

BT

Figure 19: The figure of Uiz12©7(0,4*),2=10,1,2,3

19



We have the following interested theorem.

Theorem 2.3 ([W] and [E-I]) ©"(0,:*), i = 1,2 are simply connected for
all n iff the substitution o s invertible substitution, that is, there exists the
automorphism 6 : G{1,2} — G{1,2} such that

0'09=000'

where G{1,2} be a free group of rank 2 generated by {1,2}.

20



3 Dynamical system

For each Pisot substitution ¢ and its endomorphism © let us consider the
domains on the contracting invariant plane P, 5 as follows:

DY = 7(0"(e;i*)), 1=1,2,3
DY = 7(0(0,i")), i=1,2,3
D, T (O™(U)),
D, = =(6"(U"))

where U = Ui=1,2,3 (eia i*)a U = Ui=1,2,3 (01 i*)-
Notice that & € T} 5, U’ € T 5 and by Theorem 2.1 and Lemma 2.2 we
know that

o) » O (u)
o) > erlu).

Therefore, the sets D), D)’ are well-defined and D, = D!, (See [A-]] in
detail).
We have the following theorem.

Theorem 3.1 Let L;" be denoted by
L7" = [ gn)v gn)v gn)]’
and the following dynamical system W, on D, is well-defined:

D, * D,
Tz :c—wf,(-n) if wEDg),i=1,2,3

and the dynamical systems (D,,W,) are isomorphic each other.

We will show the figures of W,, on the examples.

21



1 — 1
On Example 1, for the substitution o: 2 —— 13 , the figure of W, is
3 — 1

as follows:

Figure 20: The figures of W,

22



12
3, the figure of
1

L1

On Example 2, for the substituion o ( i ) :
0

W, is as follows:

Figure 21: The figure of W,

23



Theorem 3.2 The induced transformation W, |p,_, of W, into D,_, coin-
cides with W,,_;. More precisely, let us denote the substitution o by

(1) g(1) ., . D)
1 — ss Syt

. .(2) o(2 (2)
o: 2 — PP .55,

3 — s ... 50
then the following relation holds:

i s(i) .
(1) W (DD,) c D), k=1,2,--,1()

(2) Wi (D)) = DY,.

On Example 1, in the case of n = 3:

Figure 22:

24



Corollary 3.3 Let us denote o™ by

ny n,i 4 n,i —
o (i) = smslr )...sf(n,‘?), e =1,2,3,

then
(1)

o)

I’V:—l (D(()z)) C D’rg )7 k= 1721"'31(”’2.)
Wi (o) = DY

(See Figure 23), and in particular, we have

(2)

{WEo) | k=1,2,,i(n,1)} = {—wzkjfi?l,l,
=1

where L™ = [f{"’, g"’, g”)] (See Figure 24).

25

k=1,2,---



On Example 1, in the case of n=3:

Figure 23:

26



A 1 — 1213121

Figure 24:
1 -1 -1
where 3(1) = 1213121. and [ ®) §3’,f§;°’)] =|-1 2 0
0 -1 2

Remark 1 The domain exchange transformaiton Wy : Do — Dy coincides
with the quasi-periodic motion, that is,

DO -_— DO

x — x—me; (mod L)

Wol

where Lo = {nn(e; — e,) + mn(es —e;) | m,n € Z}.

Wo

Figure 25: The figure of Wy

27



& — r —Te;

Figure 26: The figure of the quasi-periodic motion

Note. In the case of two alphabets, let us introduce the union of intervals
on the line L, analogously:

DY = 7(0"(e;,i")), i=1,2,
DY = 71(0"0,i*)), i=1,2,

)
D] = 7!'( ( o,z*)))

28



then the following “union of intervals” exchange on D, is well defined:

D, = D,
z - w—Trff-n) if ¢ DY,

and it is 1somorphic to the interval exchange

Do 2% Dy

T — x—Te; if:cEDéi)

where L™ = [fg"), g”)] .

29



f)
On Example 5, for the substitution o : ; : 151 , the figure of W, is

as follows:

JCf;o) \
,\;f/ Wo
SREANN

x

xf?

Figure 27: The figures of W,

30



112

On Example 6, for the substitution o : ] 9] ° the figure of W, is

L

as follows:

Figure 28: The figures of W,

The same statements given by Theorem 3.2, Corollary 3.3 hold in the case
of alphabets {1,2}.

31



4 Renormalization

Let us consider the following limit set in the sense of Hausdorff metric of the
family of compact subsets of P, 5 :

X = lim L} (r (OMU))) (= lim L7 (,—.(@n(u')))) :
X; = lim L7 (7 (©"(ei,17))),
X{ = Jim L2 (r(0%(0,i%)).

Then the following theorem holds.

Theorem 4.1 Let o be Pisot substitution and let us assume that there exists
N >0, N€ N and ¢ such that

OV (e, i) = U.
Then the limit set satisfies the following properties:
(1)
X= |J X: (disjoint),

1=1,2,3
that is, | Xi N X; | =0 (¢ # j) in the sense of Lebesgue measure, and
Ps= |J (X+2) (disjoint),
ZELO
that is, | (X +2) N (X +2") | =0 (z # 2’) in the sense of Lebesgue

measure, where Lo = {nw(e2 — e;) + mm(es—e;) | m,n€ Z}.
(2) The transformation W : X — X
We=z2z—-7re; if z€X;
is well-difined and isomorphic to Wy : Dy — Dy.

(8) The induced transformation WL, x is isomorphic to W and sat-
isfies

WYX € Xo, k=1,2,---,1()
k
Wl(i)(X(I)) = x
where o(z) = sgi) e 553) and XV := L, X; (Xi(l)’ = L, Xj).

32



(4) The transformation T : X — X
Tz =L]'e — L7 (f(W))+e; if Lj'me L' (f(W))+ X;

where the word W is given by the following formula:

o= U (LW,

1=1,2,3 w:
o(j)=Y W
is well-defined and the transformation T is Markov endomorphism whose
structure matriz is L.

Remark. In Theorem 4.1, we find the assumption that there exists N and
2 such that

ON(e;,i*) = U.
We don’t have the example which does not hold above. I believe that the
assumption holds for any Pisot substitution. But it is still open problem even
in the case of two alphabets. If it is O.K., then we can say the dynamical
system associated with the substitution has the discrete spectrum, moreover
it 1s isomorphic to the quasi-periodic motions.

On Example 1, the transformation W is given as follows:

i

Nk

Figure 29: The figure of W
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On Example 2 (in the case of a = 1, € = 0), the transformation W is given
as follows:

Figure 30: The figure of W

On Example 4, the transformation W is given as follows:

Figure 31: The figure of W

34



5 Fractal boundaries

The boundary of the domain X seems to be fractal. To observe the property

of boundaries, let us introduce some notations.
Let (x,i) € Z° x {1,2,3} be

(z,))={x+Xe; |0< A <1}, 1=1,2,3,

)
X
23 /
J\ < J\
2 (0,1) 0,2) (0,3) (x,1)

Figure 32: The figure of (0,3*), 1 =1,2,3

and let us define the boundary map 0 by
a(m’Z*) = (zaj) + (:t + €;, k) - (w’ k) - (z + ek7j)

where {7, 7, k} is taken in {{1,2,3},{2,3,1},{3,1,2}}. Foreachy = L_ycp mrA €
G let us define the boundary of v by

67 = Z m,\o”')\,

A€A

and the all of the set 0v, v € G is denoted by G;. Then G, is a Z-module.
Now, let us define the boundary endomorphism 6 associated with © if
there exists the endomorphism @ which satisfies the following commutative

relation:

¢ = ¢
o | l 0
G - G

35



Theorem 5.1 (Ito-Sano) Let us denote Pisot substitution o by
o(i) = s s, i=1,2,3,
and let us define § by

o) = £ T (1 (4(59)) + 277 (¢ (59) )

1S3 (1)
1<u<s ’
L ()

where {1, 7,k} is taken in {{1,2,3},{2,3,1},{3,1,2}} and (z,t Au), t,u €
{1,2,3} means

etnao{ @9 (E0E{(23),6,1),(12)
’ —(a:,s) zf (t’u) € {(3s2)’(1’3) (2 )}
where {s,t,u} = {1,2,3} and 5O means the suffiz of sl(t) in o(t), that is,
o'(t) = sl(t) e Sl(t) [P sl(‘t)(t)a
~ plgtgo.
For (z,1) let us define
0(z,i) = L'z +6(0,7),

9(2 nAA) = Zn,\b‘(z\)

AEA A€A

where y + (2,1) := (y +x,%). Then the map 0 is the bounday endomorphism
of © .

On Example 1, 0 is given by the following manner:
6(o,1) = (0,1A2)=o,3),
6(0,2) = (L,7(e2),2A1)+(0,2A3)

B 1 b
= — 0 |,3]|+(o,1),
-_lJ

0(0,3) = (L;%(es)i2A1)+(0,3A1)

[ 0 ]
= —-( 1 ,3)+(0,2).
~1

36




0,1) »~(0,3)
T(0,1)
€
(0,2) (e;—€3,3)
€, —
(0,2)
(0,3)

(e;-e,,3)

Figure 33: The figure of 4

Note. Using the boundary endomorphism 6, if § satisfies some conditions

with respect to the cancellation, then we can caluculate the Hausdorff di-
mention explicitely. (See [I-K], [I-O 93] and [I-O 91}).
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6 Diophantine algorithm and substitutions

Let X be the domain given by X = [0,1) x [0,1) and let us define the
transformation on T by

gé_[ﬂ) it (a,8) € Xo—{(0,0))
T(e,B) := %_[%]%) if (a,8)€X,
(0,0) it («,8)=(0,0)

where

Xo = {(ewB) a2 B},
X1 = {(e,B) |a<B}.

By using the integer value functions

']; if (a, ,B) € Xo
a(a,B) = ? ,
E if (a1ﬂ) € Xl
_Jo if (eB)€X
&(a,f) = { 1 i (af)e X

on X — {(0,0)}, we define for each (a, 8) € X — {(0,0)} a sequence of digits
“(an,€n) by

Han &) = * (a (T" (e, B)) & (T" (e, B))) if T* (e, B)# (0,0).
The triple (X, T, (a{a, 8),&(a, B))) is called Modified Jacobi-Perron algorithm.

And we denote
(an’ ﬂn) = Tn(a-; /3)

For the modified Jacobi-Perron algorithm, we introduce a transformation
(X,T) called a natural extension of the modified J acobi-Perron algorithm.
Let X = X x X and let us define the transformation T on X by

81 5 1 )
— s a’a1+’7’01+’7) if (a,8) € Xo—{(0,0)}

T(e,8,7,8) =13 (1 1 v (@) € X,

B
(ana'ya‘s) if (a’B) = (070)

I
!
|
-
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Then we know that the transformation T is bijective from (X — {(0,0)}) x X
to X x (X —{(0,0)}).

We denote
(s Bas ¥y 60) =T (, B,7,6).

Let us introduce the family of matrices as follows:

a 01 a 1 0
Ajv=]100], A,,\=|001
(0) 010 (1) 1 00
for each integral *(a,¢), a € N, ¢ = {0,1}. Then we have the following
formulas:

).__._ (;)
8, 08By () () () g )]
”$)=_1_.f,4 Ao (
5. e (o) C(e) ()

where

ok = ma'x(akaﬂk')s

n = Gk + Vk-1 if | (ak—hﬂk—l) € XO
¢ ak + 6""1 if (ak—h ﬂk-—l) € X1

>:R3->R3by

an
En

In Tn-1 L Tn—1
=7t n— = A7 e Yn- .
(’i:) SO(Z::)(znj) (e:)(gni)

-1 _
¥ an ’P‘Yn—l Won—-1 — 'P‘Yn,ﬁn‘
( &n

Let us introduce a transformation ¢ (

Then we see

Moreover the substitution © ( e ) satisfies the following property:

€

&n &2 \ &

Ofan\ O s \Of o \U)ETT 5.
(o) 0P ) W € T
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Now let us consider the renormalization of 70 ( an ) -0 ( a2 )O ( a1 )(Z/{ )s

€n

that is, . 1
lim L; LT @\ O (U
) T )™ ) )

Bn

Theorem 6.1 ([I-O 93]) For almost everywhere v,6 € [0,1) x [0,1) there
exist the limit sets

1
where 7, : R® — P,_s, be the projection along [ oy, :’ .

Xibas = lm Elay  H o)™ () Oyt

&n

Xt(yi);;,q,a = nlLIEQ LZIM ) ) “Lzlan )W"O( an ) @( a1 )(O’i*)v

3] €n

and satisfy the following property:
(1) Xo8v6 = Uiz1,23 Xg,)pm& is the periodic tiling on P, s, that is,

U (Xaprs +2) = Pas

ZGLo

and

int.(Xa,p,.Y,g -+ z) ﬂ int.(Xa’g,7,§ + z') =¢ (Z # z')

(2) the domain exchange transformation Wy 6,5 : Xo g~ — Xapas
such that .
Weoprs(®) =2 —moe; if z € Xg,)ﬁ,—y,ﬁ

is well-defined. Moreover, put
X.:= J x¥

on.Bn,¥n.bn
1=1,2,3

C p’Yﬂyén

and

an
€n

X, = L L7
(2) (2)7
X'n.,i = LZIG1 ) “es Lzla" )(ng,ﬁnﬂmtsn) C Xa,,@,w,&a

€n

) (Xn) C Xo8.1,65

€1
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then
(n,i)

Webhs (Xamsnsinsn) © Xatpngr 1S5 < aut putru
gn+Pn+7n ~(2) — ~(3)’
LVa,ﬁ,y,& (A amﬁnﬂ’n:sn) - ‘on,ﬁ,-y,é

where 0'( o ) ---a( an )(z) = s sl(?nlf) and

€1 €n

gn * x*
n =As o NA o, Ay,
fn : : (‘i) (Ei) (En)

Note. In the 1-dimensional case, we consider the continued fraction algo-
rithm

Ta= :11--— [i] on [0,1]

and the continued fraction expansion:

o =

a1—|-

Cep—
a, + T"a,

where a; := [Tk_lﬁ] .

Instead of the plane P, 45, we introduce the line L,,

SHHIHERIRD

and whose stepped surfaces S,. We also introduce the natural extension of

T by
T(a,7) = (-l——a L )

P 1’a1+')’

Let us introduce a map ¢, : R* — R? by

Tn _ -1 Tn-1 - A—l Tn-1
(yn) v (yn—l)' : (ym)
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where
-1 _ ay 1 _ 0 1
Aa - [ 1 0 } - [ 1 —a } )
Then the map ¢, satisfies
(loa_.nl l’Yn-—l = l"/n

where
(QnyTn) 1= T, 7).

Then we know

Oun (Stuss) = Si

where O, is given in Note of the section 3.
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7 Applications

7.1 Quasi-periodic tiling related to the stepped surface

Let P, s, 0 < 7,6 <1 be the plane given by

11
P‘f,6 =32 <:B, Y > =0 d
]

and let S, s be the stepped surface with respects to P, .
1
Let 7 : R® — P, along | a |, then we have a tiling 7S, g generated

B

by three parallelograms 7(0,:*), ¢« = 1,2, 3 and whose translations.
Let us denote the above tiling by 7, 3(= 7S,,3). Let I';, be the family of
patches which is generated by n parallelograms and simply conneted, that is,

[n={y|7<Tap, #y=mn, 7 is simply connected }.

Definition 7.1 A tiling T of a plane is said to be quasi-periodic if for any
n > 0 there ezists R > 0 such that any configuration vy € I'y, occurs somewhere
in a neighbourhood of any point of the radius R.

Theorem 7.2 Let (1,7, 6) be the linearly independent with respect to Q, then
the tiling 7, 5 is a quasi-periodic tiling.

The essential idea is coming from the following fact: for each (1,4, §) there
exists a sequence
ay @y e e
51 62 “ e e

such that the stepped surface of P, s is given by
lim ©

ay © az -0 an (u)
==(a) (7)) ()
where the sequence is obtained by the modified Jacobi-Perron algorithm, and
S} ( . ) is appeared in Example 2 (See [I-O 94] in detail).

€
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7.2 Markov partition of group automorphisms on T3

Let us consider the following special matrix A = L, which is given by Pisot
substitution, that is, which satisfies the assumption of Theorem 4.1. On the
assumption, let us define the sets X;,i = 1,2,3 of R® by

X-i—_-{(z’y) |z€Xi, y=/\(e,~—7re,-), 0S)\<1},

then the domain A:

is the 3-dimensional torus, that is,
) Uyeze (b4 2)=R
(2) nt.(A+2z)Nint. (A+2)=¢ if z# 2.

Theorem 7.3 Let £ be the partition of the 3-dimensional torus A~ T°),
that is,
6 = {Yi’i = 172$3}’

then the partition ¢ be the Markov partition with structure matriz *L,.

Note. The existence of Markov partitions of group automorphisms on T™
are discussed in [A-W] and [S]. Bowen claims that the boundary of Markov
partition of 3-dimensional group automorphisms must not be smooth in [Bo).
Theorem 7.3 says that how we can construct the (not smooth) Markov par-
tition (analogous discussion can be found in [Be]). '

The following question is reasonable. For any element of A € SL(3, Z),
does there exist the substituion o and L, satisfying the assumption in The-
orem 4.17 and is L, isomorphic to A? We only know with the private
discussion between I and FURUKADO that for any A there exists N > 0
such that AV which satisfies the assumption in Theorem 4.1.
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7.3 Diophantine approximation

Let (1,a,8) be the integer basis of the cubic field Q()) given by

tHRH

for some A € SL(3,Z), and let us assume that A be a complex Pisot number.
On the above setting, let us consider the limit set of the points

qa —p 3
{\/E( qﬂ_,.) | (.p,7) € 2%, > 0}-
Theorem 7.4 The limit set of above points consists of the family of ellipses.

Therem 7.4 is found by the method of algebraic geometry in [A]. But by
using the substitution, we can give another proof (See [F] in detail).
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