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Abstract. In this article, we are going to discuss some lifting
of elliptic cusp forms to Siegel or Hermitian modular forms. The
Fourier coefficients of these lifting can be explicitly given and the
Fourier coefficient formula is similar to that of Eisenstein series.

§1. Siegel modular forms

Let hm = {Z ∈ Mm(C) |Z = tZ, Im(Z) > 0} be the Siegel upper
half space. The symplectic group

Spm(Z) =

{

g ∈ M2m(Z) g

(

0m −1m

1m 0m

)

tg =

(

0m −1m

1m 0m

)}

acts by g〈Z〉 = (AZ + B)(CZ + D)−1 for g =
(

A B
C D

)

. A holomorphic

function F (Z) on hm is called a Siegel modular form of weight k if

F (g〈Z〉) = F (Z) det(CZ + D)k

for any g =
(

A B
C D

)

∈ Spm(Z). (If m = 1, one needs an addtional

condition of holomorphy at the cusp.) Put

Sm(Z) = {B = tB = (bij) ∈ 1
2
Mm(Z), bii ∈ Z, (1 ≤ i ≤ m)}

Sm(Z)+ = {B ∈ Sm(Z) |B > 0}.
Then a Siegel modular form F (Z) has a Fourier expansion of the form

F (Z) =
∑

B∈Sm(
�
)

B≥0

A(B) exp(2π
√
−1 tr(BZ)).

A(B) ∈ C is called the B-th coefficient of F (Z). A Siegel modular
form F (Z) is called a cusp form if A(B) = 0 unless B ∈ Sm(Z)+.

The space of Siegel modular forms and Siegel cusp forms of weight
k are denoted by Mk(Spm(Z)) and Sk(Spm(Z)), respectively.

If

f(τ ) =

∞
∑

n=0

a(n)qn ∈ Mk(SL2(Z)), q = e2π
√
−1τ

is a commen eigenform of Hecke operators, then a(1) 6= 0. It is called
a normalized Hecke eigenform if a(1) = 1. If f(τ ) is a normalized
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Hecke eigenform, the L-function L(s, f) =
∑∞

N=1 a(N)N−s has an Eu-
ler product

L(s, f) =
∏

p

(1− a(p)p−s + p2k−1−2s)−1

The Satake parameter {αp, α
−1
p } is defined by

1 − a(p)X + p2k−1X2 = (1 − pk−(1/2)αpX)(1 − pk−(1/2)α−1
p X).

If a Siegel modular form F (Z) ∈ Mk(Spm(Z)) is a common eigenform
of Hecke operators, the one can also define the “standard” L-function
L(s,F, st), which is a Euler procuct of degree 2m + 1. When m = 1,
the standard L-function is given by

∏

p

[(1 − α2
pp
−s)(1− p−s)(1 − α−2

p p−s)]−1.

•Fourier coefficients of Eisenstein series

Recall that the Siegel Eisenstein series Eκ(Z) on hm is defined by

E
(m)
2κ (Z) =

∑

( A B
C D )∈Γ0\Spm( � )

det(CZ + D)−2κ,

where

Γ
(m)
0 =

{

g =
(

A B
C D

)

∈ Spm(Z) C = 0
}

.

Then we have E
(m)
2κ (Z) ∈ M2κ(Spm(Z)) if κ is sufficiently large.

Now we consider the case m = 2n is even and the weight 2κ is equal
to k + n. We recall the Fourier coefficient formula for the normalized
Eisenstein series

E(2n)
k+n(Z) = 2−nζ(1− 2k − 2n)

n
∏

i=1

ζ(1 + 2i− 2k − 2n)E
(2n)
k+n(Z).

We assume k ≡ n mod 2 and k � 0. For an element B ∈ S2n(Z)+, put

DB = det(2B), dB = |Disc(Q(
√

(−1)nDB))|, and fB =
√

DBd−1
B ∈ N.

Let χB be the primitive Dirichlet character associated to Q(
√

(−1)nDB)).

We denote e(x) = exp(2π
√
−1x).

For each prime p, let ep : Qp → C× be the additive character of Qp

such that ep(x) = e(−x) for x ∈ Z[1/p]. When x is a square matrix,
we write e(x) for e(tr(x)) and ep(x) for ep(tr(x)).

Recall that the Siegel series for B ∈ S2n(Z)+ is defined by

bp(B, s) =
∑

R∈ � 2n( � p)/ � 2n( � p)

ep(tr(BR))p− ordp(ν(R))s.
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Here S2n(Qp) = {R = tR |R ∈ M2n(Qp)}, S2n(Zp) = {R = tR |R ∈
M2n(Zp)}, and ν(R) = [RZ2n

p + Z2n
p : Z2n

p ]. Put

γp(B;X) = (1−X)(1 − pnχB(p)X)−1
n

∏

i=1

(1 − p2iX2).

Then there exists a polynomial Fp(B;X) ∈ Z[X] such that

bp(B, s) = γp(B; p−s)Fp(B; p−s).

Katsurada proved the following functional equation:

Fp(B; p−2n−1X−1) = (p2n+1X2)−ordp � BFp(B;X).

In particular, we have degFp(B;X) = 2ordpfB.

For B ∈ S2n(Z)+, the B-th Fourier coefficient of E(2n)
k+n(Z) is equal to

L(1− k, χB)f2k−1
B

∏

p| � B
Fp(B; p−k−n).

Put F̃p(B;X) = X−ordp � BFp(B; p−n−(1/2)X). Then the functional equa-

tion for Fp(B;X) implies F̃p(B;X−1) = F̃p(B;X). Then the Fourier
coefficient is equal to

L(1− k,χB)f
k−(1/2)
B

∏

p| � B
F̃p(B; pk−(1/2)).

• Lifting of cusp forms (Siegel modular case)

Now we consider cusp forms. Let k be arbitrary positive integers
such that k ≡ n mod 2. Recall that the Kohnen plus subspace

S+
k+(1/2)(Γ0(4)) ⊂ Sk+(1/2)(Γ0(4))

is the space of cusp forms in Sk+(1/2)(Γ0(4)) whose Fourier coefficient
vanishes unless (−1)kN ≡ 0, 1 mod 4. Then it is well-known that
S2k(SL2(Z)) ' S+

k+(1/2)(Γ0(4)) as Hecke modules.

Now let

f(τ ) =

∞
∑

N=1

a(N)qN ∈ S2k(SL2(Z))

be a normalized Hecke eigenform and

h(τ ) =
∑

N>0
(−1)kN≡0, 1 (4)

c(N)qN ∈ S+
k+(1/2)(Γ0(4))

a corresponding Hecke eigenform.
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For B ∈ S2n(Z)+, we put

A(B) := c(dB)f
k−(1/2)
B

∏

p

F̃p(B;αp),

F (Z) :=
∑

B= tB>0

A(B)e(BZ), Z ∈ h2n

Note that F̃p(B;αp) does not depend on the choice of the Satake pa-
rameter αp.

Then our first main theorem is as follows.

Theorem 1. Assume k ≡ n mod 2. Then F ∈ Sk+n(Sp2n(Z)) and

F 6≡ 0. Moreover, F is a Hecke eigenform whose standard L-function

is equal to

L(s, F, st) = ζ(s)
2n
∏

i=1

L(s + k + n − i, f).

§2. Hermitian modular case

Now we consider the hermitian modular case. Let K = Q(
√
−D)

be an imaginary number field with the ring of intergers O = OK . We
denote the primitive Dirichlet character associated to K/Q by χ. Put
O] = (

√
−D)−1O.

Let G = SU(m, m) be the special unitary group defined by

G(Q) =

{

g ∈ SL2m(K) g

(

0m −1m

1m 0m

)

tḡ =

(

0m −1m

1m 0m

)}

We put

Γ
(m)
K = G(Q) ∩ GL2m(O),

Γ
(m)
K,0 =

{(

A B
C D

)

∈ Γ
(m)
K C = 0

}

.

We define the hermitian upper half space Hm by

Hm = {Z ∈ Mm(C) | 1
2
√
−1

(Z − tZ̄) > 0}.

The action of G(R) on Hm is given by

g〈Z〉 = (AZ + B)(CZ + D)−1, Z ∈ Hm, g =
(

A B
C D

)

.

We put

Λm(O) = {h = th̄ = (hij) ∈ 1√
−D

Mm(O) |hii ∈ Z},
Λm(O)+ = {h ∈ Λm(O) |h > 0}.
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For H ∈ Λm(O), det H 6= 0, we put γ(H) = (−D)[m/2] det(H). Then
the Siegel series for H is defined by

bp(H, s) =
∑

R∈ � m(Kp)/ � m(Op)

ep(tr(HR))p− ordp(ν(R))s

for Re(s) � 0. Here, Hm(Kp) (resp. Hm(Op)) is the additive group of
all hermitian matrices with entries in Kp = K⊗Qp (resp. Op = O⊗Zp).

The ideal ν(R) ⊂ Zp is defined as follows: Choose an element g =
(

A B
C D

)

∈ SU(m, m)(Qp) such that det D 6= 0, D−1C = R. Then

ν(R) = det(D)Zp.
We define a polynomial tp(K/Q;X) ∈ Z[X] by

tp(K/Q; X) =

[(m+1)/2]
∏

i=1

(1− p2iX)

[m/2]
∏

i=1

(1 − p2i−1χ(p)X).

Then there exists a polynomial Fp(H;X) ∈ Z[X] such that

bp(H,s) = tp(K/Q; p−s)Fp(H ; p−s).

degFp(H;X) = ordpγ(H).

Moreover, Fp(H; X) satisfies the functional equation

Fp(H ; p−2mX−1) = ζp(H)(pmX)−ordpγ(H)Fp(H; X).

Put F̃p(H ;X) = Xordpγ(H)Fp(H; p−mX−2). Then the following func-
tional equation holds:











F̃p(H; X−1) = F̃p(H ;X), 2 - m

F̃p(H; X−1) = χ
p
(γ(H))F̃p(H; X), 2|m

F̃p(H; χ(p)X−1) = F̃p(H ;X), 2|m, and χ(p) 6= 0.

Assume k � 0. Put n = [m/2]. We define the Eisenstein series

E
(m)
2k+2n(Z) =

∑

(A B
C D )∈Γ

(m)
K,0\Γ

(m)
K

det(CZ + D)−2k−2n

and its normalization

E(m)
2k+2n(Z) = 2−m

m
∏

i=1

L(i− 2k − 2n, χi−1)E
(m)
2k+2n(Z).

We first consider the case m = 2n+1. In this case, the H-th Fourier

coefficient of E(2n+1)
2k+2n (Z) is equal to

|γ(H)|k−(1/2)
∏

p|γ(H)

F̃p(H ; p−k+(1/2))
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for any H ∈ Λ2n+1(O)+.
Let f(τ ) =

∑∞
N=1 a(N)qN ∈ S2k(SL2(Z)) be a normalized Hecke

eigenform, whose L-function is given by

L(f, s) =
∞

∑

N=1

a(N)N−s

=
∏

p

[

(1− pk−(1/2)αpp
−s)(1− pk−(1/2)α−1

p p−s)
]−1

For each H ∈ Λ2n+1(O)+, we put

A(H) = |γ(H)|k−(1/2)
∏

p|γ(H)

F̃p(H,αp).

We define

F (Z) =
∑

H∈Λ2n+1(O)+

A(H)e(HZ), Z ∈ H2n+1.

Then we have

Theorem 2. Assume that m = 2n+1 is odd. Then F ∈ S2k+2n(Γ
(2n+1)
K )

and F 6≡ 0. Moreover, F is a Hecke eigenform.

Now we consider the case when m = 2n. In this case, the H-th

Fourier coefficient of E(2n)
2k+2n(Z) is equal to

|γ(H)|k
∏

p|γ(H)

F̃p(H ; p−k)

for any H ∈ Λ2n(O)+.
Now let f(τ ) =

∑∞
N=1 a(N)qN ∈ S2k+1(Γ0(D), χ) be a primitive

form, whose L-function is given by

L(f, s) =
∞

∑

N=1

a(N)N−s

=
∏

p � D
(1 − a(p)p−s + χ(p)p2k−2s)−1

∏

q|D
(1− a(q)q−s)−1.

For each prime p - D, we define the Satake parameter {αp, βp} =
{αp, χ(p)α−1

p } by

(1− a(p)X + χ(p)p2kX2) = (1− pkαpX)(1− pkβpX).

For p | D, we put αp = p−ka(p).
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For each H ∈ Λ2n(O)+, we put

A(H) = |γ(H)|k
∏

p|γ(H)

F̃p(H,αp).

We define

F (Z) =
∑

H∈Λ2n(O)+

A(H)e(HZ), Z ∈ H2n.

The we have

Theorem 3. Assume that m = 2n is even. Then F ∈ S2k+2n(Γ
(2n)
K ).

Moreover, F is a Hecke eigenform. F ≡ 0 if and only if n is odd and

f(τ ) comes from a Hecke character of some imaginary quadratic field.

Under some normalization, the L-function of F is as follows. For
simplicity, we assume the class number of K is one.

L(s, F, ρ) =

2n+1
∏

i=1

L(s + k + n− i + (1/2), f )

×
2n+1
∏

i=1

L(s + k + n− i + (1/2), f, χ)

for m = 2n + 1, and

L(s, F, ρ) =
2n
∏

i=1

L(s + k + n− i + (1/2), f)

×
2n
∏

i=1

L(s + k + n− i + (1/2), f, χ)

for m = 2n and F 6≡ 0. Here, ρ is a 2m-dimensional representation
of the L-group of U(m,m). Note that an extenstion of F to an adelic
automoraphic form on U(m, m)(A) is not canonical unless the class
number of K is one.
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