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Abstract. The Bloch–Torrey operator −h2∆ + eiαx1 on a bounded smooth planar
domain, subject to Dirichlet boundary conditions, is analyzed. Assuming α ∈

[
0, 3π

5

)
and a non-degeneracy assumption on the left-hand side of the domain, asymptotics of
eigenvalues in the limit h → 0 are derived. The strategy is a backward complex scaling
and the reduction to a tensorized operator involving a real Airy operator and a complex
harmonic oscillator.

1. Introduction

Let Ω be a smooth bounded open connected set in R2. Given a small positive param-
eter h and a fixed real constant α ∈ [0, π], we consider the operator

(1.1) Lh,α = −h2∆+ eiαx1

in L2(Ω), subject to Dirichlet boundary conditions. On its natural domain Dom(Lh,α) =
H2(Ω)∩H1

0 (Ω), the operator is closed, has non-empty resolvent set and compact resolvent.
Consequently, the spectrum is purely discrete and can be written as an infinite sequence
of complex numbers tending to +∞ in modulus or as a (possibly empty) finite sequence.
The latter cannot be a priori excluded because Lh,α is non-selfadjoint unless α ∈ {0, π}.
Our goal is to show the existence of “low-lying” eigenvalues and derive their asymptotics
in the semiclassical limit h→ 0.

1.1. Motivations. There are two sources of motivation for this work. First, the selfad-
joint situation α = 0 has been recently analysed in [11] in the context of semiconductor
devices exposed to a strong uniform electric field. Indeed, h−2Lh,0 is the Hamiltonian of
an electron confined to a nanostructure of shape Ω, subject to singularly scaled electric
potential h−2x1. The following geometric hypothesis is adopted in [11]:

Assumption 1. The minimum min{x1 : x ∈ Ω} is uniquely attained at a point A0,
assumed to be (0, 0) (without loss of generality). Moreover, the (signed) curvature κ0 of
∂Ω (computed with respect to the inner normal of Ω) at A0 = (0, 0) is positive.

Let (λn(h))n⩾1 denote the non-decreasing sequence of the eigenvalues of Lh,0, where
each eigenvalue is repeated according to its multiplicity. The following asymptotic esti-
mate of each individual eigenvalue was established in [11]:

Theorem 1.1 ([11]). Assume α = 0 and Assumption 1. Then, for all n ⩾ 1,

(1.2) λn(h) = z1h
2
3 + (2n− 1)h

√
κ0
2

+ o(h)

as h→ 0, where z1 is the absolute value of the smallest zero of the Airy function Ai.
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The eigenvalue splitting given by the second term containing the curvature is experi-
mentally spectacular, for it enables one to determine the shape of a convex nanostructure
by imposing uniform electric fields in various directions [17].

Second, there have been an intensive study of the operator (1.1) for the purely imag-
inary choice α = π

2
in various geometric settings (and even for more general electric

potentials) [1, 6, 5, 14, 7, 12, 3, 2, 4, 13, 18]. Among the variety of physical motivations
mentioned in these references, let us point out the Bloch–Torrey equation describing the
diffusion-precession of spin-bearing particles in nuclear magnetic resonance experiments.

In particular, in [12, Theorem 1.1], quasimodes are constructed and allow to conjecture
the behavior of the eigenvalues with the smallest real part. Motivated by these construc-
tions, the behavior of the real part of the left-most spectrum has then been analyzed, see
[3, Theorem 1.6]. For our linear electric potential, we can apply, for instance, the more
general results [14, Theorem 4.1.1] and [7, Theorem 1.1], and we get the following typical
estimate1.

Theorem 1.2 ([7]). Assume α = π
2

and Assumption 1. Then

(1.3) inf Re sp(Lh,α) =
z1h

2
3

2
+ o(h

2
3 )

as h→ 0.

As observed in [7, Introduction], the lower bound in Theorem 1.2 can be proved without
Assumption 1 (see also [1, 14]).

In this article we explain the transition between α = 0 (Theorem 1.1) and α = π
2

(Theorem 1.2). First of all, we show how α enters the constant coefficient in the first
term of the asymptotic expansions (1.2) and (1.3). We also aim at providing the reader
with an accurate description of the spectrum by exhibiting spectral gaps in the left-most
part of the spectrum (similarly to Theorem 1.1 in the case when α = 0). This question
is all the more interesting that, when α ∈ (0, π), the operator Lh,α is not selfadjoint and
therefore, classical tools and strategies such as the min-max and spectral theorems (used,
for instance, in [11]) have to be replaced by unconventional arguments. Throughout this
paper, we use the nickname Bloch–Torrey operator for (1.1) even if we also consider the
case α ̸= π

2
.

1.2. Heuristics. Before stating our main results, let us explain the intuitive origin of
Theorems 1.1 and 1.2. This is also the opportunity to discuss the heuristics of our main
theorem, which is stated in Section 1.3.

When α = 0 and under Assumptions 1, due to the Agmon estimates, we can check that
the eigenfunctions associated with the lowest eigenvalues are localized near A0. We will
see that such a localization behavior persists in some sense for certain eigenfunctions when
α ∈ [0, π], especially for those associated with the left-most eigenvalues when α ∈

[
0, π

2

)
.

Anyway, this naively suggests to use the classical tubular coordinates near the (outer)
boundary defined through the map

(1.4) Γ(s, t) = γ(s)− tn(s) = (Γ1(s, t),Γ2(s, t)),

where γ is the arc-length parametrization of the outer boundary of Ω, denoted by ∂Ω0,
and n is the outward pointing normal of Ω. Let L > 0 be the half-length of ∂Ω0 and
consider the torus T2L = R/(2LZ). The map Γ induces a smooth diffeomorphism from

1With our linear electric potential, in the case α = π
2 , the analysis in [7] shows that the left-most

spectrum is determined by the left-most and right-most points of Ω.
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Bδ0 = T2L× (0, δ0) to the tubular neighborhood Tδ0 of width δ0 > 0 of ∂Ω0 lying inside Ω.
In the coordinates (s, t), the operator (1.1) becomes

−h2(1− tκ(s))−1∂t(1− tκ(s))∂t − h2(1− tκ(s))−1∂s(1− tκ(s))−1∂s + eiαΓ1(s, t) ,

acting in the Hilbert space L2(Bδ0 , (1 − tκ(s))dsdt). Here the curvature function κ is
defined via the Frenet formula n′ = κγ′.

According to Assumption 1 (which involves Γ(0, 0) = A0), we have Γ1(s, t) = t+ κ0

2
s2+

O(ts2 + |s|3). Since 1− tκ(s) ≃ 1 when t is small, this suggests to consider the operator

(1.5) Ph,α = −h2∂2s − h2∂2t + eiα
(κ0
2
s2 + t

)
,

acting on L2(R2
+, dsdt), subject to Dirichlet boundary condition at t = 0.

Taking profit of the analyticity (since it is linear) in the variable t, we make the formal
dilation t = ue−iα/3. The model operator Ph,α then becomes

(1.6) Nh,α = e
2iα
3 (h2D2

u + u) + h2D2
s + eiα

κ0s
2

2
,

which is, up to multiplications by complex constants, the sum of a real Airy operator
and a complex harmonic oscillator, whose resolvent and spectra are rather well-known.
Heuristically, this allows us to describe the spectrum of Lh,α accurately in appropriate
regions of the complex plane.

1.3. The main result. The main result of this article is the following theorem, which
can be guessed from the heuristics of the previous section.

Theorem 1.3. Consider α ∈
[
0, 3π

5

)
and R > 0 with R ̸∈ (2N− 1)

√
κ0

2
. Under Assump-

tion 1, there exist h0 > 0 such that for all h ∈ (0, h0) the following holds. The spectrum
of Lh,α lying in the disk D(h

2
3 e2iα/3z1, Rh) is made of exactly N = ⌊ R√

2κ0
+ 1

2
⌋ eigenvalues

of algebraic multiplicity 1 and they satisfy, for all n ∈ {1, . . . , N},

(1.7) λn(α, h) = h
2
3 e2iα/3z1 + (2n− 1)heiα/2

√
κ0
2

+ o(h)

as h→ 0. Moreover, for all α ∈ [0, π
2
), there exist C, h0 > 0 such that, for all h ∈ (0, h0),

we have

(1.8) inf Re sp(Lh,α) ⩾ z1h
2
3 cos

(
2α

3

)
− Ch

4
3 .

In particular,

inf Re sp(Lh,α) = z1h
2
3 cos

(
2α

3

)
+ o(h

2
3 )

as h→ 0.

Theorem 1.3 is illustrated on Figure 1: there is exactly one eigenvalue (with algebraic
multiplicity) in each small circle (which has radius o(h)) and there is no spectrum in the
gray region when α ∈

[
0, π

2

)
.

Remark 1.4.
(i) Theorem 1.3 gives an accurate description of the spectrum in large balls of size h

when α ∈
[
0, 3π

5

)
, but it only states the one-term asymptotics of the eigenvalue

with the smallest real part when α ∈
[
0, π

2

)
. When α ∈

[
0, π

2

)
, we will see that

elliptic estimates using the real part of an operator (which is isospectral to Lh,α)
are enough to establish the semiclassical localization near (0, 0) (in the Agmon

3



sense) of the eigenfunctions associated with eigenvalues having a real part less than
Mh

2
3 . This localization is the key to get the lower bound (1.8). When α ∈

[
π
2
, 3π

5

)
,

these considerations must be slightly adapted by introducing a parameter β and by
multiplying the operator by e−iβ. This rotation is the reason why the control of
infimum of the real part is lost with our method. This aspect is discussed in more
detail in Section 1.4.

(ii) Our assumptions allow us to deal with the case α = π
2

and to get the asymptotic
estimate (1.7). For more general potentials, see [7, Theorem 1.1], only the existence
of one eigenvalue in the disk is ensured (the one corresponding to n = 1). Not only
our theorem gives the existence of more eigenvalues, it also states that they are
algebraically simple and that they are the only ones in the disk. The proof of this
simplicity involves rather subtle and tedious elliptic estimates, especially to exclude
the existence of Jordan blocks.

(iii) As we explain in Section 1.5, the analysis used to establish Theorem 1.3 strongly
relies on the analyticity of V (x) = x1. However, it seems that arguments such as
analytic dilations have not yet been used to investigate the spectrum of such Bloch–
Torrey operators on domains. We believe that our method is of independent interest.
It can easily be extended to more general analytic potentials V (still satisfying the
generic assumptions in [7, 3]) and we may even think that it could be used to deal
with smooth V by means of almost analytic extensions.

(iv) Unfortunately, our strategy does not allow us to recover Theorem 1.2, even though,
at a formal level, (1.8) would give the appropriate lower bound when α = π

2
. In this

case, our analysis shows that the real parts of two networks of eigenvalues cross, see
Section 1.4.

(v) Our theorem does not say anything about the eigenfunctions (even if one could
prove that they are localized near A0 when α ∈

[
0, π

2

)
). Their accurate localization

properties (in the Agmon sense) would be quite natural to investigate.

1.4. Consequences and extensions. The analysis in this article can be used to get an
a priori location of the spectrum in the case when α ∈

[
π
2
, 3π

5

)
.

Proposition 1.5. Consider α ∈
[
π
2
, 3π

5

)
. There exists2 β ∈

(
0, π

10

]
with 2α

3
∈
(
β − π

2
, β + π

2

)
,

C > 0, and h ∈ (0, h0) such that, for all h ∈ (0, h0),

inf Re e−iβsp(Lh,α) ⩾ z1h
2
3 cos

(
2α

3
− β

)
− Ch

4
3 .

In others terms, the eigenvalues λ of Lh,α belong to the half-plane given by

cos β Reλ+ sin β Imλ ⩾ z1h
2
3 cos

(
2α

3
− β

)
− Ch

4
3 .

Proposition 1.5 is illustrated by Figure 2: there is no spectrum on the left of the dashed
oblique line. In fact, in this case, there exist eigenvalues with a smaller real part (as one
can see on the same figure). They are related to the right-most part of the domain.

Assumption 2. The maximum max{x1 : x ∈ Ω} = x1,max is uniquely attained at a
point A1. Moreover, the curvature κ1 of ∂Ω at A1 is positive.

2In fact, all β such that (α, β) ∈ T works, where T is given in Lemma 3.3.
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2
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3

)
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3

Figure 1. The spectrum in the disk of center z1e
2iα
3 h

2
3 and radius Rh,

when α ∈
[
0, 3π

5

)
.

z1e
2iα
3 h

2
3

ch ch = eiαx1,max + z1e
− 2iα̃

3 h
2
3
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3

β

Re ch − Ch
4
3
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2

α
2

α̃ = π − α

Figure 2. Case when α ∈
(
π
2
, 3π

5

)
.

5



We let α̃ = π − α and we consider α ∈
(
2π
5
, π
]

so that α̃ ∈
[
0, 3π

5

)
. Then, the affine

change of variable y = F (x) = (−x1 + x1,max, x2) transforms L ∗
h,α into the unitarily

equivalent operator

U∗L ∗
h,αU = Lh,α̃ + e−iαx1,max , Dom(Lh,α̃) = H2(Ω̃) ∩H1

0 (Ω̃) , Ω̃ = F (Ω) .

Therefore, under Assumption 2, we can apply Theorem 1.3 to Lh,α̃ and we get the
following.

Corollary 1.6. Consider α ∈
(
2π
5
, π
]

and R > 0 with R ̸∈ (2N − 1)
√

κ1

2
. Then, the

spectrum of Lh,α lying in the disk D(eiαx1,max+h
2
3 e−2iα̃/3z1, Rh) is made of N eigenvalues

of algebraic multiplicity 1 and satisfying, for all n ∈ {1, . . . , N},

λ̃n(α, h) = eiαx1,max + h
2
3 e−2iα̃/3z1 + (2n− 1)he−iα̃/2

√
κ1
2

+ o(h)

as h→ 0. Moreover, when α ∈
(
π
2
, π
]
,

inf Re sp(Lh,α) = cos(α)x1,max + z1h
2
3 cos

(
2α̃

3

)
+ o(h

2
3 )

as h→ 0.

When α ∈
(
2π
5
, 3π

5

)
, under Assumptions 1 and 2, Theorem 1.3 and Corollary 1.6 apply.

Therefore, we have coexistence of (at least) two networks of eigenvalues. This phenom-
enon is illustrated on Figure 2 when α ∈

(
π
2
, 3π

5

)
: we see that the right-most part of Ω

determines the left-most part of the spectrum.

1.5. Organization and strategy. The article is organized as follows. In Section 2,
we make the analytic dilation argument rigorous. We introduce an analytic family of
operators (Lh,α,θ)θ∈Θ in the sense of Kato. To do so, we use a real dilation with respect
to the distance to the outer boundary t (acting only near the boundary). This is where
we take advantage of the fact that Γ (see (1.4)) is always analytic in t. When θ ∈ R,
Lh,α,θ is isospectral to Lh,α (see Lemma 2.5). By the Kato theory, it is also isospectral
to Mh,α = Lh,α,−iα

3
(see Corollary 2.8).

In Section 3, we see that this special choice of complex parameter is particularly con-
venient since we can rather easily prove that the eigenfunctions of Mh,α associated with
eigenvalues located in a half-plane of the form Re (e−iβλ) ⩽ Mh

2
3 are exponentially lo-

calized near A0, at the scale h
2
3 near the boundary and h

1
3 along the boundary, see

Proposition 3.5. Let us underline that, at this stage, the analytic dilation is not crucial
to prove this localisation near A0. One could prove it for the eigenfunctions of our orig-
inal operator. The main interest of the analytic dilation will only appear in Section 4
when we establish an optimal tangential localization estimate near A0 (the scale h

1
3 is

not optimal). The introduction of the parameter β and the constraint on α ∈
[
0, 3π

5

)
originate from these localization arguments, which are based on ellipticity/coercivity es-
timates, induced by the complex electric potential (after the change of coordinates and
the complex dilation), see Lemma 3.4.

Section 4 is devoted to the spectral analysis of Mh,α. When α ∈
[
0, π

2

)
, the asymptotic

estimate of the infimum part of the spectrum is obtained, see Proposition 4.1 and its proof
given in Section 4.1. This proves (1.8) (see also Remark 4.4, which proves Proposition 1.5).
When α ∈

[
0, 3π

5

)
, we first prove that the spectrum in the disk mentioned in Theorem 1.3

is necessarily close (essentially at a distance of order h
3
2 ) to the eigenvalue of a model

operator µn(h, α) = h
2
3 e2iα/3z1 + (2n− 1)heiα/2

√
κ0

2
, see Proposition 4.2. Then, we prove
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that there is exactly one eigenvalue (with algebraic muliplicity 1) in these small discs (see
Proposition 4.3 and Figure 1), and we deduce Theorem 1.3.

The proof of Proposition 4.2 relies on three important ingredients. First, it requires
resolvent estimates of Nh,α (we recall that Nh,α is given in (1.6)), see Proposition 4.5. The
fact that we performed an analytic dilation in t is a crucial help to get the control of the
resolvent (by simply estimating the real part of the operator and by avoiding semi-groups
estimates). The second ingredient is to show that the eigenfunctions associated with the
eigenvalues in our disc are good quasimodes for Nh,α, see Proposition 4.6. To do so, we
need to prove optimal localization estimates with respect to the curvilinear abscissa s (see
Proposition 4.12) – at the scale h

1
2 , and not only h

1
3 as given by the Agmon estimates of

Section 3 – in order to estimate the remainders of order s3 when Taylor expanding the
electric potential. We stress that estimating the real part of Mh,α is a key to get such
estimates (and that this argument succeeds thanks to the analytic dilation). Proposition
4.6 and the resolvent estimate are then enough to locate the spectrum in the small discs.

The fact that the rank of the Riesz projector is at most one requires more work. This is
where the third ingredient comes into play. We assume that this rank is at least two and
even that we have a Jordan block (in the worst scenario) and we prove that a generalized
eigenfunction also satisfies accurate localization estimates, see Section 4.4 and especially
Proposition 4.13. This part of the proof is technically more involved and it is somewhat
reminiscent of Caccioppoli estimates, see Proposition 4.14. There remains to estimate the
Riesz projectors to get a contradiction, see Section 4.5.1. To prove that the projectors
are non-zero, we consider a quasimode built from the Airy and Hermite functions, see
Section 4.5.2.

2. The analytic dilation

2.1. The sesquilinear form. Before introducing the main idea of this paper, let us
stress that the operator Lh,α from (1.1) is rigorously introduced via its sesquilinear form
defined on H1

0 (Ω) by

Lh,α(φ, ψ) =

∫
Ω

∇φ∇ψ dx+ eiα
∫
Ω

x1φψ dx .

Notice that
ReLh,α(ψ, ψ) ⩾ ∥∇ψ∥2 − sup

x∈Ω
|x1| ∥ψ∥2 ,

which enables to apply the standard Lax–Milgram theorem. An elementary argument
shows that

sp(Lh,α) ⊂ {λ ∈ C : 0 ⩽ Imλ ⩽ (sinα) sup
Ω
x1} .

2.2. An isospectral operator. Following the intuition described in Section 1.2, we
would like to perform a complex scaling in the normal variable to the outer boundary.
By doing that, we will preserve the spectrum as soon as we have a family of type (B) in
the sense of Kato [16, Chap. VII]. This will reveal some hidden elliptic properties of the
new operator.

Let δ ∈ (0, δ0) where we recall that δ0 is defined just after (1.4). The heuristic consid-
erations of Section 1.2 lead to introduce the following unitary transform Uθ, depending
on the real parameter θ. For all φ ∈ L2(Ω), we let

Uθφ = (φ|Ω\Tδ
, φ|Tδ

◦ Γ(s, Jθ(u))) ,
with Jθ given by

t = Jθ(u) = ueθχ(u) ,
7



where χ is non-increasing smooth function from [0, δ] to [0, 1] such that χ = 1 near 0 and
χ = 0 near δ. For all ϵ > 0, we can choose χ so that

(2.1) ∥χ′∥∞ ⩽
1 + ϵ

δ
.

Note that t = Jθ(u) = ueθ near 0 and that t = Jθ(u) = u at a distance larger than δ of the
outer boundary and that the change of variable is smooth in between. There exists θ0 > 0
such that, for all θ ∈ (−∞, θ0), the map Jθ : (0, δ) → (0, δ) is smooth diffeomorphism
and, for all u ∈ (0, δ),

(2.2) J ′
θ(u) = (1 + θuχ′(u))eθχ(u) > 0 .

We let

(2.3) mθ(s, u) = 1− Jθ(u)κ(s) ,

where κ(s) is the curvature at the point of curvilinear coordinate s. Thanks to a change
of variables, we have the following.

Lemma 2.1. For all θ ∈ (−∞, θ0), Uθ is an isometry from L2(Ω) to the product Eθ :=
L2(Ω \ Tδ) × L2(Bδ,mθ(s, u)J

′
θ(u)dsdu). As vector spaces, we have Eθ = E0 = L2(Ω \

Tδ)× L2(Bδ).

Then, let us describe the effect of Uθ on the form domain of the operator Lh,α, which
is H1

0 (Ω).

Lemma 2.2. We have
Uθ(H

1
0 (Ω)) = {(φ1, φ2) ∈ H1(Ω \ Tδ)×H1(Bδ) : φ2(s, 0) = 0 & φ1(Γ(s, δ)) = φ2(s, δ)}

= U0(H
1
0 (Ω)) .

Proof. Let us first notice that, by standard trace theorems, the functions ϕ2 is well defined
a.e. on {t = δ} (where coordinates t and u coincide), as well as ϕ1 ◦ Γ on ∂Bδ. For a
smooth function ϕ, we have φ1(Γ(s, δ)) = φ2(s, δ) and the result follows by density and
the fact that Uθ is an isometry. □

Let us now consider the quadratic form induced by Uθ from Lh,α.

Proposition 2.3. Letting, for all φ ∈ U0(H
1
0 (Ω)),

ℓh,α,θ(φ, φ) =

∫
Ω\Tδ

(
|h∇φ1|2 + eiαx1|φ1|2

)
dx

+

∫
Bδ

(m−2
θ |h∂sφ2|2 + [J ′

θ]
−2|h∂uφ2|2 + eiαΓ1(s, Jθ(u))|φ2|2)mθJ

′
θ(u)dsdu ,

we have
Lh,α(U

−1
θ φ,U −1

θ φ) = ℓh,α,θ(φ, φ) .

Proof. For all φ ∈ U0(H
1
0 (Ω)), we let ψ = U −1

θ φ ∈ H1
0 (Ω). Let us first describe the

kinetic part:∫
Ω

|h∇ψ|2 dx =

∫
Ω\Tδ

|h∇ψ|2 dx+
∫
Tδ

|h∇ψ|2 dx

=

∫
Ω\Tδ

|h∇φ1|2 dx+
∫
Bδ

(m−2
θ |h∂sφ2|2 + [J ′

θ]
−2|h∂uφ2|2)mθ(s, u)J

′
θ(u)dsdu .

Using the changes of variable x 7→ (s, u) on Bδ for the non-kinetic part completes the
proof. □
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From Proposition 2.3, we see that UθLh,αU
−1
θ is the operator associated with ℓh,α,θ in

the ambient space Eθ (with the weighted scalar product, which depends on θ). To avoid
the θ-dependence of the ambient space through its scalar product, we can consider the
isometry

Vθ : φ 7→ (φ1,m
1
2
θ (J

′
θ)

1
2φ2︸ ︷︷ ︸

=ϕ2

) ,

from L2(Ω \ Tδ)× L2(Bδ,mθ(s, u)J
′
θ(u)dsdu) to L2(Ω \ Tδ)× L2(Bδ, dsdu).

Lemma 2.4. Let φ ∈ U0(H
1
0 (Ω)) and ϕ = Vθφ = (φ1, ϕ2). We have∫

Bδ

(m−2
θ |h∂sφ2|2 + [J ′

θ]
−2|h∂uφ2|2)mθ(s, u)J

′
θ(u)dsdu

=

∫
Bδ

(m−2
θ |h∂sϕ2|2+[J ′

θ]
−2|h∂uϕ2|2+h2Vθ(s, u)|ϕ2|2)dsdu+h2

∫ L

−L

Wθ(s)|ϕ2(s, δ)|2ds ,

where, letting X = m
−1/2
θ (J ′

θ)
−1/2 we have

Vθ = m−2
θ (∂sX)2 + (J ′

θ)
−2(∂uX)2 − ∂s

(
(m−2

θ )X∂sX
)
− ∂u

(
(J ′

θ)
−2X∂uX

)
and

Wθ(s) = (J ′
θ)(s, δ)X(s, δ)(∂uX)(s, δ) .

Proof. This follows from two integrations by parts and from the fact that ϕ2(s, 0) = 0
a.e. and that J ′

θ is constant near ∂Bδ. As we shall see later, the exact values of Vθ and
Wθ are unimportant; we only note that they are smooth. □

These considerations lead to define the following quadratic form, in the ambient Hilbert
space L2(Ω \ Tδ)× L2(Bδ, dsdu), for all φ ∈ U0(H

1
0 (Ω)),

Lh,α,θ(φ, φ) =

∫
Ω\Tδ

(
|∇φ1|2 + eiαx1|φ1|2

)
dx

+

∫
Bδ

(m−2
θ |h∂sϕ2|2 + [J ′

θ]
−2|h∂uϕ2|2 + (eiαΓ1(s, Jθ(u)) + h2Vθ(s, u))|ϕ2|2)dsdu

+ h2
∫ L

−L

Wθ(s)|ϕ2(s, δ)|2ds ,

(2.4)

where we recall that ϕ = Vθφ = (φ1, ϕ2).
We get the following lemma.

Lemma 2.5. The operator associated with Lh,α,θ is Lh,α,θ = VθUθLh,αU
−1
θ V −1

θ . In
particular, the spectrum of the operator Lh,α,θ is the same as that of Lh,α.

2.3. Complex deformation parameters. According to our heuristic discussion, we
would like to consider complex θ (as in the seminal paper [9]). More precisely, we would
like the family (Lh,α,θ)θ∈Θ to be analytic of type (B) in the sense of Kato, where Θ is a
connected open set containing θ = 0 and θ = −iα

3
. First, we notice that the form domain

U0(H
1
0 (Ω)) is independent of θ and that, for all φ ∈ U0(H

1
0 (Ω)),

Θ ∋ θ 7→ Lh,α,θ(φ, φ) ∈ C

is analytic. Then, it is sufficient to check that the form Lh,α,θ is sectorial and closed on
U0(H

1
0 (Ω)) for θ ∈ Θ.

9



Lemma 2.6. Let θ0 > 0 and β0 ∈ (0, π
4
). For η > 0 let us consider the rectangle

Θη = (−θ0, η) + i(−β0, η). Then, if η and δ are small enough, there exists c > 0 such
that, for all θ ∈ Θη, and all u ∈ (0, δ),

Re J ′−2
θ (u) ⩾ c > 0 .

Proof. Writing θ = θ1 + iθ2 with θ1, θ2 ∈ R and taking u ∈ (0, δ), we notice that

J ′−2
θ (u) = |J ′

θ|−4J ′2
θ
= |J ′

θ|−4(1 + θ1uχ
′ − iθ2uχ

′)2e2θ1χe−2iθ2χ ,

so that, by using that δ is small, we can write

(2.5) J ′−2
θ (u) = |J ′

θ|−4J ′2
θ
= e2θ1χ|J ′

θ|−4e
−2i arctan

(
θ2uχ

′

1+θ1uχ
′

)
−2iθ2χ

= e2θ1χ|J ′
θ|−4e−iA(u,θ) ,

where the argument A(u, θ) is given by

(2.6) A(u, θ) = 2 arctan

(
θ2uχ

′

1 + θ1uχ′

)
+ 2θ2χ.

When θ2 is positive, we notice that, for all a > 0, by choosing η small enough, and by
using (2.1), we have, for all θ2 ∈ (0, η), |A(u, θ)| ⩽ a.

When θ2 is non-positive, namely θ2 ∈ (−β0, 0], we have, by using again (2.1), that

−2β0 ⩽ 2θ2 ⩽ 2θ2χ ⩽ A(u, θ) ⩽
2θ2uχ

′

1 + θ1uχ′ ⩽ 2(1 + 2η)|θ2||uχ′| .

Thus,

−π
2
< −2β0 ⩽ A(u, θ) ⩽ (1 + 4η)2β0 <

π

2
.

We therefore get the result by (2.5). □

Proposition 2.7. There exist c, C > 0 such that, for all φ ∈ U0(H
1
0 (Ω)),

ReLh,α,θ(φ, φ) ⩾ c∥h∇φ∥2E0
− C∥φ∥2E0

.

Proof. Thanks to (2.4), there exists C > 0 such that the following holds: for all δ, ϵ > 0,
there exists Cδ,ϵ > 0 such that, for all φ ∈ U0(H

1
0 (Ω)),

ReLh,α,θ(φ, φ) ⩾
∫
Bδ

|h∂sϕ2|2dsdu+
∫
Bδ

Re J ′−2
θ (u)|h∂uϕ2|2dsdu

+ ∥h∇φ1∥2L2(Ω\Tδ)
− Cδ∥h∇ϕ2∥2L2(Bδ)

− C∥φ∥2E0
− C(ϵ∥h∇ϕ2∥2 + Cδ,ϵh

2∥ϕ2∥2) ,

where we used the classical estimate∫ L

−L

|ϕ2(s, δ)|2ds ⩽ ϵ∥∇ϕ2∥2 + Cδ,ϵ∥ϕ2∥2 .

This concludes the proof. □

Corollary 2.8. The operators Lh,α and Lh,α,−iα/3 are isospectral.

Proof. It is a consequence of the analytic pertubation theory, upon observing that −iα
3
∈

Θη since −β < −α
3

is equivalent to α < 3β which is satisfied for all α ∈ [0, 3π
4
) as soon as

β is close enough to π
4
. □
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3. Localization estimates

In virtue of Corollary 2.8, we now focus on the spectral analysis of Lh,α,−iα/3, for which
ellipticity properties are established in the present section.

Definition 3.1. We denote Mh,α = Lh,α,−iα/3 and by Mh,α the associate quadratic form
on E0, see (2.4) and Lemma 2.1.

In the following series of lemmas, we show bounds from below for the potential part of
e−iβMh,α, where β is introduced to correct a lack of coercivity of the real part when α is
larger than π

2
. These lemmas lead to Proposition 3.5, which provides us with a precise

semiclassical localization of the eigenfunctions of Mh,α.
The first lemma shows that the result of Lemma 2.6 remains true if we insert e−iβ.

Lemma 3.2. Consider α ⩾ 0 and β ∈ R such that

β − 2α

3
> −π

2
, β +

2α

3
<
π

2
.

Then, there exists C(α, β) >0 such that, for all u ∈ [0, δ],

Re (e−iβJ ′−2
θ (u)) ⩾ C(α, β) .

Proof. We have

Re (e−iβJ ′−2
θ ) = Re

[
e−iβ+ 2iα

3
χ(1− i

α

3
uχ′)−2

]
=

(
1 +

α2

9
(uχ′)2

)−1

Re
[
e−iβ+ 2iα

3
χ−2i arctan(α

3
|uχ′|)

]
= Re

[
e−iβ−iA(u,−iα/3)

]
,

where we recall A(u, θ) is defined in (2.6). Note that, by using (2.1), we have, for ϵ > 0
small enough,

−π
2
< β − 2α

3
⩽ β − 2α

3
χ+ 2arctan(

α

3
|uχ′|) ⩽ β +

2α

3
(1 + ϵ) <

π

2
,

so that Re (e−iβ−iA(u,−iα/3)) is uniformly bounded from below by a positive constant. This
gives the result. □

The following lemma is a preparation lemma in order to get the ellipticity of the electric
potential in Mh,α.

Lemma 3.3. We let

T =

{
(α, β) ∈ R+ × R : β − 2α

3
> −π

2
, β +

2α

3
<
π

2
, −π

2
< α− β <

π

2

}
.

Then sup{α : (α, β) ∈ T } = 3π
5
. Moreover, for all α ∈

[
0, 3π

5

)
, we have (α, π

10
) ∈ T . For

all α ∈ [0, π
2
), we have (α, 0) ∈ T . We also have that

(
π
2
, β
)
∈ T for β positive and small

enough.

Proof. These estimates follow from straightforward computations, which are conveniently
supported by drawing a picture. We leave the details to the reader. □

Lemma 3.4. Assume that α ∈
[
0, 3π

5

)
and consider β such that (α, β) ∈ T . There

exist s0, δ0, c > 0 such that the following holds. For all δ ∈ (0, δ0), for all (s, u) ∈
[−L,L)× (0, δ), if |s| ⩾ s0, then

Re (ei(α−β)Γ1(s, Jθ(u))) ⩾ c ,
11



and, if |s| ⩽ s0,
Re (ei(α−β)Γ1(s, Jθ(u))) ⩾ c(u+ s2) .

Proof. Consider (α, β) as in the statement. We have

Re (ei(α−β)Γ1(s, Jθ(u))) = Re (ei(α−β)Γ1(s, ue
−iα

3
χ)) .

From (1.4), we have
Γ1(s, e

−iα
3
χu) = γ1(s)− ue−iα

3
χn1(s) ,

and thus, by using the Taylor expansion with respect to s near 0 and Assumption 1, we
get

Γ1(s, e
−iα

3
χu) = ue−iα

3
χ +

κ0
2
s2 + O(|s|3 + us2) .

Therefore,

Re (ei(α−β)Γ1(s, Jθ(u))) = u cos
(
α− β − α

3
χ
)
+
κ0
2
s2 cos(α− β) + O(|s|3 + us2) .

Since (α, β) ∈ T ,

−π
2
<

2α

3
− β ⩽ α− β − α

3
χ <

π

2
and − π

2
< α− β <

π

2
.

Therefore, there exist s0, δ0 > 0 such that, for all δ ∈ (0, δ0), there exists c > 0 such that,
for all s such that |s| ⩽ s0 and all u ∈ (0, δ), we have

Re (ei(α−β)Γ1(s, Jθ(u))) ⩾ c(u+ s2) .

Let us now study the case when |s| ⩾ s0. We first introduce

B(s, u) = arctan

(
u sin(α

3
χ(u))n1(s)

γ1(s)− u cos(α
3
χ(u))n1(s)

)
,

so that
Γ1(s, e

−iα
3
χu) = |γ1(s)− ue−iα

3
χn1(s)|eiB(s,u).

We notice that when |s| ⩾ s0, and choosing δ small enough, we have γ1(s)−u cos(α3χ)n1(s) ⩾
c0 > 0 uniformly. This implies that

Re (ei(α−β)Γ1(s, Jθ(u))) ⩾ |γ1(s)− ue−iα
3
χn1(s)| cos(α− β +B(s, u))

⩾ c0 cos(α− β +B(s, u)) .

From the expression of B(s, u), we deduce that, with a possibly smaller c, we have, for
all |s| ⩾ s0,

Re (ei(α−β)Γ1(s, Jθ(u))) ⩾ c > 0 .

This completes the proof. □

The following proposition gives Agmon type localization estimates for some eigenfunc-
tions of Mh,α.

Proposition 3.5. Let α ∈ [0, 3π
5
) and consider suitable parameters β, δ0 introduced in

Lemma 3.4. Then for any M > 0 and 0 < δ < δ0, there exists h0, C > 0 such that for
all h ∈ (0, h0), all eigenvalue λ (of Mh,α) such that Re (e−iβλ) ⩽Mh

2
3 and all associated

eigenfunction φ = (φ1, ϕ2), we have

(3.1)
∫
Ω\Tδ

e2|x|/h
2
3 |φ1|2dx+

∫
Bδ

e2|Γ(s,u)|/h
2
3 |ϕ2|2dsdu ⩽ C∥φ∥2E0

,

and ∫
Ω\Tδ

e2|x|/h
2
3 |h∇φ1|2dx+

∫
Bδ

e2|Γ(s,u)|/h
2
3 |h∇s,uϕ2|2dsdu ⩽ Ch

2
3∥φ∥2E0

.
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Proof. The proof essentially follows from the classical Agmon estimates. Considering
φ̃ = (e2|x|/h

2/3
φ1, e

2|Γ(s,u)|/h2/3
ϕ2), we see that φ̃ ∈ U0(H

1
0 (Ω)). We have then

(3.2) ⟨Mh,αφ, φ̃⟩ = λ
(
∥e|x|/h2/3

φ1∥2Ω\Tδ
+ ∥e|Γ(s,u)|/h2/3

ϕ2∥2Tδ

)
,

and, recalling Definition 3.1, we can write that

(3.3) e−iβMh,α (φ, φ̃) = I + II + III ,

with

I = e−iβh2⟨∇φ1,∇(e2|x|/h
2/3

φ1)⟩Ω\Tδ
+ ei(α−β)

∫
Ω\Tδ

x1|e|x|/h
2/3

φ1|2dx ,

II =

∫
Bδ

[
e−iβm−2

θ h2∂sϕ2∂s(e
2|Γ|/h2/3

ϕ2) + e−iβ[J ′
θ]
−2h2∂uϕ2∂u(e

2|Γ|/h2/3

ϕ2)

+ ei(α−β)Γ1(s, Jθ(u))|e|Γ|/h
2/3

ϕ2|2
]
dsdu

and

III = h2
∫
Bδ

Vθ(s, u)|e|Γ|/h
2/3

ϕ2|2dsdu+ h2
∫ L

−L

Wθ(s)|e|Γ|/h
2/3

ϕ2(s, δ)|2ds .

Let us now bound the real part of I and II from below. We have

Re I = Re e−iβh2⟨∇φ1,∇(e2|x|/h
2/3

φ1)⟩Ω\Tδ
+ cos(α− β)∥

√
x1e

|x|/h2/3

φ1∥2 .

Then, with the chain rule, we get

h2⟨∇φ1,∇(e2|x|/h
2/3

φ1)⟩Ω\Tδ

= h2⟨e|x|/h2/3∇φ1,∇(e|x|/h
2/3

φ1)⟩Ω\Tδ
+ h

4
3 ⟨∇φ1, (∇|x|)(e2|x|/h2/3

φ1)⟩Ω\Tδ

= h2∥∇(e|x|/h
2/3

φ1)∥2Ω\Tδ
+ O(h

4
3 )∥e|x|/h2/3

φ1∥∥∇(e|x|/h
2/3

φ1)∥

+ h
4
3 ⟨∇φ1,∇|x|(e2|x|/h2/3

φ1)⟩Ω\Tδ

= h2∥∇(e|x|/h
2/3

φ1)∥2Ω\Tδ
+ O(h

4
3 )∥e|x|/h2/3

φ1∥∥∇(e|x|/h
2/3

φ1)∥+ O(h
2
3 )∥e|x|/h2/3

φ1∥2 .

Thus, with the Young inequality, we deduce that

(3.4) Re I ⩾ c(α, β)
(
h2∥∇(e|x|/h

2/3

φ1)∥2Ω\Tδ
+ ∥

√
x1e

|x|/h2/3

φ1∥2Ω\Tδ

)
− Ch

2
3∥e|x|/h2/3

φ1∥2Ω\Tδ
.

Note that we did not use any integration by parts in the last computation, so that no
boundary term appears. We proceed rather similarly to see that∫

Bδ

m−2
θ h2∂sϕ2∂s(e

2|Γ|/h2/3

ϕ2)dsdu

=

∫
Bδ

m−2
θ h2|∂s(e|Γ|/h

2/3

ϕ2)|2dsdu+ O(h1/3)∥e|Γ|/h2/3

ϕ2∥∥h∂s(e|Γ|/h
2/3

ϕ2)∥

+ O(h
2
3 )∥e|Γ|/h2/3

ϕ2∥2

=

∫
Bδ

h2|∂s(e|Γ|/h
2/3

ϕ2)|2dsdu+ O(h1/3)∥e|Γ|/h2/3

ϕ2∥∥h∂s(e|Γ|/h
2/3

ϕ2)∥

+ O(δ)∥h∂s(e|Γ|/h
2/3

ϕ2)∥2Bδ
+ O(h

2
3 )∥e|Γ|/h2/3

ϕ2∥2 ,
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where we used mθ = 1 +O(δ) from (2.3). In the same way, we get∫
Bδ

[J ′
θ]
−2h2∂uϕ2∂u(e

2|Γ|/h2/3

ϕ2)

=

∫
Bδ

[J ′
θ(u)]

−2h2|∂u(e|Γ|/h
2/3

ϕ2)|2dsdu+ O(h4/3)∥e|Γ|/h2/3

ϕ2∥∥∂u(e|Γ|/h
2/3

ϕ2)∥

+ O(δ)h2∥∂u(e|Γ|/h
2/3

ϕ2)∥2Bδ
+ O(h

2
3 )∥e|Γ|/h2/3

ϕ2∥2 .
We deduce that

Re II ⩾
∫
Bδ

cos(α− β)h2|∂s(e|Γ|/h
2/3

ϕ2)|2dsdu

+

∫
Bδ

Re (e−iβJ ′
θ(u)

−2)h2|∂u(e|Γ|/h
2/3

ϕ2)|2dsdu

+

∫
Bδ

Re (ei(α−β)Γ1(s, Jθ(u)))|e|Γ|/h
2/3

ϕ2|2dsdu

+ O(h4/3)∥e|Γ|/h2/3

ϕ2∥∥∇(e|Γ|/h
2/3

ϕ2)∥+ O(δ)h2∥∇(e|Γ|/h
2/3

ϕ2)∥2Bδ

+ O(h
2
3 )∥e|Γ|/h2/3

ϕ2∥2 .

With Lemma 3.2, we get, for some c(α, β) > 0,

Re II ⩾c(α, β)
∫
Bδ

h2|∇(e|Γ|/h
2/3

ϕ2)|2dsdu

+

∫
Bδ

Re (ei(α−β)Γ1(s, Jθ(u)))|e|Γ|/h
2/3

ϕ2|2dsdu

+ O(h4/3)∥e|Γ|/h2/3

ϕ2∥∥∇(e|Γ|/h
2/3

ϕ2)∥+ O(δ)h2∥∇(e|Γ|/h
2/3

ϕ2)∥2Bδ

+ O(h
2
3 )∥e|Γ|/h2/3

ϕ2∥2 ,

and thus, perhaps after changing the value of c(α, β) > 0,

Re II ⩾c(α, β)
∫
Bδ

|h∇(e|Γ|/h
2/3

ϕ2)|2dsdu− Ch
2
3∥e|Γ|/h2/3

ϕ2∥2

+

∫
Bδ

Re (ei(α−β)Γ1(s, Jθ(u)))|e|Γ|/h
2/3

ϕ2|2dsdu .
(3.5)

Moreover, by using a H
1
2 -trace theorem, we get that, for all ϵ ∈ (0, 1), there exists Cϵ

such that

(3.6) Re III ⩾ −Cϵh
2∥e|Γ|/h2/3

ϕ2∥2 − ϵ
∥∥∥h∇(e|Γ|/h2/3

)
ϕ2

∥∥∥2
Bδ

.

Now ,we can come back to (3.2) and (3.3) and we deduce, from (3.4), (3.5), (3.6), and
Re (e−iβλ) ⩽Mh

2
3 , that

c∥
√
x1e

|x|/h2/3

φ1∥2Ω\Tδ
+

∫
Bδ

Re (ei(α−β)Γ1(s, Jθ(u)))|e|Γ|/h
2/3

ϕ2|2dsdu

⩽Mh
2
3

(
∥e|x|/h2/3

φ1∥2Ω\Tδ
+ ∥e|Γ(s,u)|/h2/3

ϕ2∥2Tδ

)
.

To conclude, we now split the integral into two parts according to the decomposition

Bδ = {(s, u) ∈ Bδ : u+ s2 ⩽ Rh
2
3} ∪Bfar

δ .
14



where
Bfar

δ {(s, u) ∈ Bδ : u+ s2 > Rh
2
3} .

The rest of the proof follows from the usual manipulations à la Agmon. Indeed, thanks
to Lemma 3.4, there exists CM such that

(cRh
2
3 − CMh

2
3 )
(
∥e|x|/h2/3

φ1∥(Ω\Tδ)×Bfar
δ

+ ∥e|Γ(s,u)|/h
2
3 ϕ2∥2(Ω\Tδ)×Bfar

δ

)
⩽ C̃h

2
3∥φ∥2 ,

where we used that the exponential is bounded on {(s, u) ∈ Bδ : u + s2 ⩽ Rh
2
3}. The

estimate (3.1) follows by choosing R large enough. Then, the estimate of the gradient
follows by gathering (3.2), (3.3), (3.4), (3.5), (3.6) and by using (3.1).

□

4. Spectral analysis

The aim of this section is to prove the following three propositions, which imply The-
orem 1.1 (since Mh,α is isospectral to Lh,α, see Lemma 2.8).

Proposition 4.1 (Rough localization of the spectrum). Let α ∈ [0, π
2
) and consider

M > 0. There exist C, h0 > 0 such that, for all h ∈ (0, h0),

(4.1) sp(Lh,α) ∩ {z ∈ C : Re (z) < Mh
2
3}

⊂
{
z ∈ C : Re z ⩾ z1h

2
3 cos (2α/3)− Ch

4
3 ),

0 ⩽ Im z ⩽ (sinα)max{x1 : x ∈ Ω
}
.

Proposition 4.2 (Refined localization of the spectrum). Consider α ∈
[
0, 3π

5

)
and R > 0

with R ̸∈ (2N− 1)
√

κ0

2
. Then there exist h0 > 0 and N ∈ N such that, for all h ∈ (0, h0),

(4.2) sp(Mh,α) ∩D(z1e
2iα
3 h

2
3 , Rh) ⊂

N⋃
n=1

D(µn(h, α), h
3
2
−2η) ,

with

(4.3) µn(h, α) = h
2
3 e2iα/3z1 + (2n− 1)heiα/2

√
κ0
2
.

Moreover, for all n ∈ {1, . . . , N}, the Riesz projector

Πn,h :=
1

2iπ

∫
Cn,h

(z − Mh,α)
−1dz , where Cn,h = ∂D(µn(h, α), h

3
2
−2η) ,

is of rank at most one.

Proposition 4.3 (Existence of the spectrum). Consider α ∈
[
0, 3π

5

)
. There exists h0 > 0

such that, for all h ∈ (0, h0), the rank of Πn,h is exactly one.

Proposition 4.1 is proved in Section 4.1. Propositions 4.2 and 4.3 are proved in Sec-
tion 4.5. Proposition 4.2 is a consequence of the analysis in Sections 4.2 and 4.3 where,
by inserting an appropriate quasimode in the Riesz projector, we can prove that Πn,h is
not zero.
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4.1. Rough localization of the spectrum. In this section, we prove Proposition 4.1.
Let us first note that, in a first naive approach, when α ∈ [0, π

2
),

Re ⟨Lh,αψ, ψ⟩ ⩾ 0 , Im ⟨Lh,αψ, ψ⟩ = sinα

∫
Ω

x1|ψ|2dx .

This gives the estimate on the imaginary part of the spectrum, and it remains to refine
the estimate on the real part. For this, we consider a smooth cutoff function χh in the
form

χh(s, u) = χ(h−
1
3
+ηs, h−

2
3
+ηu) ,

where η > 0 and we let

(4.4) ϕcut
2 = χhϕ2 .

Consider now an eigenfunction φ of Mh,α associated with an eigenvalue λ such that
Reλ ⩽Mh

2
3 . From (2.4), we get

Reλ∥φ∥2 = ReLh,α,θ(φ, φ)

⩾
∫
Bδ

(
Re (m−2

θ )|h∂sϕ2|2 +Re ([J ′
θ]
−2)|h∂uϕ2|2

+Re
(
eiαΓ1(s, Jθ(u))|ϕ2|2

) )
dsdu− Ch2∥ϕ2∥2 ,

where we used the trace theorem and Proposition 3.5 to control the boundary term.
Then, with a Taylor expansion in the expressions (2.3) of mθ and (2.2) of J ′

θ and with
Proposition 3.5, we get

Reλ∥φ∥2 = ReLh,α,θ(φ, φ)

⩾
∫
Bδ

|h∂sϕcut
2 |2 + cos

(
2α

3

)(
|h∂uϕcut

2 |2 + u|ϕcut
2 |2

)
dsdu− Ch

4
3∥ϕ2∥2 .

From the min-max theorem applied to the real Airy operator, we deduce that

Reλ∥φ∥2 ⩾ z1h
2
3 cos

(
2α

3

)
∥ϕcut

2 ∥2 − Ch
4
3∥ϕ2∥2 .

By using again Proposition 3.5, we infer that

Reλ ⩾ z1h
2
3 cos

(
2α

3

)
− Ch

4
3 .

This proves Proposition 4.1.

Remark 4.4. Let us mention what happens in the case α ∈ (π
2
, 3π

5
). In that case we do

not even a priori have Re ⟨Mh,αψ, ψ⟩ ⩾ 0 because of the electric potential. Choosing β
such that (α, β) ∈ T where T is defined in Lemma 3.3, we can still use the localization
properties proved in Section 3. In particular, working with e−iβMh,α instead of Mh,α and
using Proposition 3.5, as well as Taylor expansions of mθ and of J ′

θ, we get that, for any
eigenvalue λ of Lh,α, we have

Re e−iβλ ⩾ z1h
2
3 cos

(
2α

3
− β

)
− Ch

4
3 .
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4.2. Resolvent estimates. To prepare the proof of Proposition 4.2, let us describe the
spectrum and resolvent of our model operator, acting in L2(R+ × R),

(4.5) Nh,α = e
2iα
3 (h2D2

u + u) + h2D2
s + eiα

κ0s
2

2
,

where D = −i∂. As we will see below, the following description is rather easy to establish
since h2D2

u + u is selfadjoint so that we can use an orthogonal spectral decomposition
to reduce our resovent estimates to those of the complex harmonic oscillator, which is
well-known.

Proposition 4.5. Let R > 0 with R ̸∈ (2N− 1)
√

κ0

2
. There exist C, h0 > 0 and N ∈ N

such that the following holds. The spectrum of Nh,α in D(z1e
2iα
3 h

2
3 , Rh) is made of N

eigenvalues of algebraic multiplicity one, which are the (µn(h, α))1⩽n⩽N as given in (4.3).
Moreover, for all z ∈ D(z1e

2iα
3 h

2
3 , Rh) such that z /∈ {µn(h, α) , n ∈ {1, . . . , N}}, we have

∥(z − Nh,α)
−1∥ ⩽ Ch−

2
3 +

C

dist(z, sp(Nh,α))
.

Proof. Note that Nh,α is the sum of two decoupled operators, an Airy operator and a
harmonic oscillator. It has compact resolvent and its spectrum and eigenfunctions are
completely known. Consider

(4.6) Ψm,n,h(s, u) = h−
1
3
− 1

4Ai(h−
2
3u− zm)fn(h

− 1
2 eiα/2

√
κ0
2
s) ,

where Ai is the usual Airy function (and zm its m-th positive zero) and fn the n-th
normalized Hermite function. We have

Nh,αΨm,n,h =

(
zmh

2
3 e

2iα
3 + (2n− 1)h

√
κ0
2

)
Ψm,n,h .

Moreover, there are no other eigenvalues and they are all of multiplicity one. Indeed, by
analytic dilation, we see that Nh,α is isospectral to the normal operator

e
2iα
3 (h2D2

u + u) + e
iα
2

(
h2D2

s +
k0s

2

2

)
.

Let us now turn to the estimate of the resolvent in the disk D(z1e
2iα
3 h

2
3 , Rh). Consider

z = z1e
2iα
3 h

2
3 + ζh , ζ ∈ D(0, R) ,

with ζ avoiding the numbers e
iα
2 (2n− 1)

√
k0
2
. We have

Nh,α − z = e
2iα
3 (h2D2

u + u− z1h
2
3 ) + h2D2

s + eiα
k0s

2

2
− ζh ,

and also

e−
iα
2 (Nh,α − z) = e

iα
6 (h2D2

u + u− z1h
2
3 ) + e−

iα
2

(
h2D2

s + eiα
k0s

2

2
− ζh

)
.

Let us denote gh the (explicit) positive normalized groundstate of h2D2
u + u and consider

the orthogonal projection

Phψ(s, u) = ⟨gh, ψ(s, ·)⟩L2(R+)gh(u) .
17



We have

Re ⟨e−
iα
2 (Nh,α − z)(Id−Ph)ψ, ψ⟩ ⩾

(
h

2
3 cos(α/6)(z2 − z1)−Rh

)
∥(Id−Ph)ψ∥2

⩾ ch
2
3∥(Id−Ph)ψ∥2 ,

(4.7)

which implies that the restriction of Nh,α−z to Ker(Ph) is injective and therefore bijective
since Nh,α is Fredholm of index 0. Moreover, we have the orthogonal decomposition

e−
iα
2 (Nh,α − z) = e−

iα
2 (Nh,α − z)(Id−Ph) + e−

iα
2

(
h2D2

s + eiα
κ0s

2

2
− ζh

)
Ph .

From (4.7), the fact that ζ avoids the numbers e
iα
2 (2n−1)

√
k0
2
, we get that e−

iα
2 (Nh,α−z)

is bijective and that its inverse is given by(
e−

iα
2 (Nh,α − z)

)−1
=e

iα
2

(
(Nh,α − z)

∣∣
Ker(Ph)

)−1
(Id−Ph)

+ e
iα
2

(
h2D2

s + eiα
k0s

2

2
− ζh

)−1
Ph .

Let us notice that there exists C > 0 such that for all ζ ∈ D(0, R) avoiding the numbers

e
iα
2 (2n− 1)

√
k0
2
, we have

(4.8)

∥∥∥∥∥
(
h2D2

s + eiα
k0s

2

2
− ζh

)−1
∥∥∥∥∥ ⩽

C

dist(sp(h2D2
s + eiα k0s2

2
), ζh)

.

Indeed, by rescaling, (4.8) is equivalent to∥∥∥∥∥
(
D2

s + eiα
k0s

2

2
− ζ

)−1
∥∥∥∥∥ ⩽

C

dist(sp(D2
s + eiα k0s2

2
), ζ)

,

and this last estimate can be checked by using a decomposition induced by the Riesz
projections and by recalling that the eigenvalues of the complex harmonic oscillator have
algebraic multiplicity one.

Thus, from the above orthogonal decomposition, we deduce that

∥[e−
iα
2 (Nh,α − z)]−1∥ ⩽ (ch

2
3 )−1 +

C

dist(sp(h2D2
s + eiα k0s2

2
), ζh)

.

This concludes the proof. □

4.3. Quasimodes and localization estimates. If φ = (φ1, ϕ2) is a normalized eigen-
function of Mh,α associated with λ ∈ D(z1e

2iα
3 h

2
3 , Rh), we have in particular

(4.9) Mh,αϕ2 = λϕ2 ,

with Mh,α denoting the formal operator

(4.10) Mh,α = hDs(m
−2
θ )hDs + hDu(J

′
θ)

−2hDu + eiαΓ1(s, Jθ(u)) .

This section is devoted to the proof of the following proposition. We recall that the
model operator Nh,α is defined in (4.5) and that ϕcut

2 is defined as a truncation of ϕ2 in
(4.4).

Proposition 4.6. We have

(Nh,α − λ)ϕcut
2 = O(h

3
2
−3η)∥ϕcut

2 ∥ .
18



This proposition essentially says that ϕcut
2 is a good quasimode for our model operator

Nh,α. The proof will be done in several steps including elliptic estimates and a refined
localization in s.

4.3.1. Preliminary estimates. Recall that χh(s, u) = χ(h−
1
3
+ηs, h−

2
3
+ηu) with χ a smooth

cutoff function and η fixed and small, and that ϕcut
2 = χhϕ2.

Lemma 4.7. We have
Mh,αϕ

cut
2 = λϕcut

2 + rh ,

with
rh = [Mh,α, χh]ϕ2 ,

where the commutator is given by

(4.11) [Mh,α, χh]ϕ =
(
hDs(m

−2
θ (hDsχh))

)
ϕ+ 2m−2

θ (hDsχh)(hDsϕ)

+
(
hDu((J

′
θ)

−2(hDuχh))
)
ϕ+ 2(J ′

θ)
−2(hDuχh)(hDuϕ) .

Moreover,
∥rh∥ = O(h∞)∥ϕcut

2 ∥ .

Proof. The expression (4.11) follows from a straightforward computation. The estimate
∥rh∥ = O(h∞) is a consequence of Proposition 3.5 and support considerations. □

Remark 4.8. With a straightforward computation, we can check that, for all k, ℓ ∈ N,
∥Dk

sD
ℓ
urh∥ = O(h∞).

Lemma 4.9. We have

∥hDsϕ
cut
2 ∥2 + ∥hDuϕ

cut
2 ∥2 ⩽ Ch

2
3∥ϕcut

2 ∥2 .

Proof. Due to the Dirichlet boundary condition of ϕ2 on the external part of ∂Bδ and the
cutoff χh, the function ϕcut

2 satisfies the Dirichlet condition on ∂Bδ.
Let us now choose β such that (α, β) ∈ T as defined in Lemma 3.3. With an integration

by parts using the expression of e−iβMh,α, we get that, for some c > 0,

Re
(
e−iβ⟨Mh,αϕ

cut
2 , ϕcut

2 ⟩
)
⩾ c(∥hDsϕ

cut
2 ∥2 + ∥hDuϕ

cut
2 ∥2) .

Then, by Lemma 4.7, we have that∣∣Re (e−iβ⟨Mh,αϕ
cut
2 , ϕcut

2 ⟩
)∣∣ ⩽ Ch

2
3∥ϕcut

2 ∥2 .
The conclusion follows. □

For further use, we check now that we even have a control of higher order derivatives.

Lemma 4.10. We have

∥(hDs)
2ϕcut

2 ∥2 + ∥(hDu)
2ϕcut

2 ∥2 ⩽ Ch
4
3∥ϕcut

2 ∥2 .

Proof. By Lemma 4.7, we have

⟨hDs(Mh,αϕ
cut
2 ), hDsϕ

cut
2 ⟩ = λ∥hDsϕ

cut
2 ∥2 + ⟨rh, (hDs)

2ϕcut
2 ⟩ .

Thus, after computing a commutator, we get

⟨Mh,α(hDsϕ
cut
2 ), hDsϕ

cut
2 ⟩

= λ∥hDsϕ
cut
2 ∥2 + ⟨rh, (hDs)

2ϕcut
2 ⟩+ hO(∥ϕcut

2 ∥∥hDsϕ
cut
2 ∥) + h2O(∥hDsϕ

cut
2 ∥2)

+ hO(∥(hDs)
2ϕcut

2 ∥∥hDsϕ
cut
2 ∥) .
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Then, we use Lemma 4.9 and we proceed as in its the proof to get

∥(hDs)
2ϕcut

2 ∥2 + ∥(hDu)(hDsϕ
cut
2 )∥2 ⩽ Ch

4
3∥ϕcut

2 ∥2 + Ch
4
3∥(hDs)

2ϕcut
2 ∥2 .

We proceed in the same way to get the control of (hDu)
2ϕcut

2 . The conclusion follows. □

Let us consider the following intermediate operator,

Nh,α = e
2iα
3 (h2D2

u + u) + h2D2
s + eiαγ1(s) ,

which differs from Nh,α in (4.5) only through its potential part.

Proposition 4.11. We have

Nh,αϕ
cut
2 = λϕcut

2 +Rh ,

with

Rh = rh + ue2iα/3(n1(s)− 1)ϕcut
2 − (hDsm

−2
θ )hDsϕ

cut
2 + (1−m−2

θ )(hDs)
2ϕcut

2

and
∥Rh∥ = O(h

4
3
−η)∥ϕcut

2 ∥ .

Proof. It is sufficient to use Lemma 4.7 and the explicit expression of Mh,α. The estimate
of Rh follows from support considerations and Lemma 4.10 (note also that n1(s) − 1 =
O(s2)). □

4.3.2. Refined localization in s. Thanks to the Agmon estimates in Proposition 3.5, we
have proved so far a localization of order h

1
3 in the variable s. We improve this in the

following proposition.

Proposition 4.12. Consider χ0 ∈ C ∞
0 (R) equal to 1 in a neighborhood of 0 and η > 0.

Then,

(4.12) ϕcut
2 = χ0(h

− 1
2
+ηs)ϕcut

2 + O(h∞) ,

where the remainder is estimated in H1-norm.
Moreover, for all (α1, α2, α3) ∈ N3,

(4.13) ∥sα1(hDs)
α2(hDu)

α3ϕcut
2 ∥ ⩽ Ch

α3
3
+

α1+α2
2 ∥ϕcut

2 ∥ .

Proof. Let us consider χfar,h(s) = χfar(h
− 1

2
+ηs), where χfar is supported away from 0 and

equal to 1 away form a compact set. Then, we use Proposition 4.11 to get that

(4.14) ⟨(Nh,α − λ)(χfar,hϕ
cut
2 ), χfar,hϕ

cut
2 ⟩ = ⟨χfar,hRh, χfar,hϕ

cut
2 ⟩

+ ⟨[Nh,α, χfar,h]ϕ
cut
2 , χfar,hϕ

cut
2 ⟩ .

Notice that −α/2 + 2α/3 = α/6 and that, for all Ψ ∈ H1
0 (R+),

(4.15) cos(α/6)⟨(h2D2
u + u− z1h

2
3 )Ψ,Ψ⟩ ⩾ 0 .

This, combined with the fact that γ1(s) is bounded from below by h1−2η on the support
of χfar,h, implies that, for some c > 0,

Re ⟨(e−iα/2
(
(Nh,α − λ)(χfar,hϕ

cut
2 ), χfar,hϕ

cut
2

)
⟩

⩾ ch1−2η∥χfar,hϕ
cut
2 ∥2 + c∥hDs(χfar,hϕ

cut
2 )∥2 .
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From the support properties of ϕcut
2 (see before Lemma 4.7) and Proposition 4.11, we

have ∣∣⟨χfar,hRh, χfar,hϕ
cut
2 ⟩
∣∣ ⩽O(h∞)∥ϕcut

2 ∥2 + Ch
4
3
−2η∥χfar,hϕ

cut
2 ∥2

+ Ch∥hDs(χfar,hϕ
cut
2 )∥∥χfar,hϕ

cut
2 ∥

+ |⟨(1−m−2
θ )χfar,h(hDs)

2ϕcut
2 , χfar,hϕ

cut
2 ⟩| ,

where we used that u(n1(s)− 1) = O(us2).
Using a commutator in the last term of the previous expression, we also have

|⟨(1−m−2
θ )χfar,h(hDs)

2ϕcut
2 , χfar,hϕ

cut
2 ⟩| ⩽ Ch

2
3
−η∥(hDs)(χfar,hϕ

cut
2 )∥2

+ Ch
4
3
−3η∥χ

far,h
ϕcut
2 ∥2 + Ch∥hDs(χfar,hϕ

cut
2 )∥∥χfar,hϕ

cut
2 ∥+ O(h∞)∥ϕcut

2 ∥2 ,

where χ
far

has the same properties as χfar and is such that χ
far
χfar = χfar.

In a similar way, we get that

⟨[Nh,α, χfar,h]ϕ
cut
2 , χfar,hϕ

cut
2 ⟩| ⩽ Ch

4
3
−2η∥χ

far,h
ϕcut
2 ∥2

+ Ch∥hDs(χfar,hϕ
cut
2 )∥∥χfar,hϕ

cut
2 ∥+ O(h∞)∥ϕcut

2 ∥2 .
It follows that

c

2
∥hDs(χfar,hϕ

cut
2 )∥2 + ch1−2η∥χfar,hϕ

cut
2 ∥2 ⩽ Ch

4
3
−3η∥χ

far,h
ϕcut
2 ∥2 + O(h∞)∥ϕcut

2 ∥2 .

By choosing η small enough, and by using an induction argument, we get that, for all
N ∈ N,

χfar,hϕ
cut
2 = O(hN)∥ϕcut

2 ∥ ,
in H1-norm with respect to s. Coming back to (4.14), we also get the control of hDu.
This gives (4.12).

Let us now turn to (4.13), which are better estimates than those in Lemmas 4.9 and
4.10. We again use Proposition 4.11 and see that

Re e−iα/2⟨(Nh,α − λ)ϕcut
2 , ϕcut

2 ⟩ ⩽ |⟨Rh, ϕ
cut
2 ⟩| .

By using (4.15), we get that

∥sϕcut
2 ∥2 + ∥hDsϕ

cut
2 ∥2 ⩽ Ch∥ϕcut

2 ∥2 + Ch
2
3
−η∥(hDs)ϕ

cut
2 ∥2 + Ch∥(hDs)ϕ

cut
2 ∥∥ϕcut

2 ∥ ,
and the estimate for |(α1, α2, α3)| = 1 follows from the Young inequality. Let us now deal
with |(α1, α2, α3)| = 2. We have

(4.16) Re e−iα/2⟨(hDs)(Nh,α − λ)ϕcut
2 , hDsϕ

cut
2 ⟩ ⩽ |⟨Rh, (hDs)

2ϕcut
2 ⟩| .

Thus,

c∥shDsϕ
cut
2 ∥2 + ∥(hDs)

2ϕcut
2 ∥2 ⩽ Ch∥hDsϕ

cut
2 ∥2 + Ch∥sϕcut

2 ∥∥hDsϕ
cut
2 ∥

+ |⟨Rh, (hDs)
2ϕcut

2 ⟩| .
By using the Young inequality and Proposition 4.11 to deal with the last term, we get

∥shDsϕ
cut
2 ∥2 + ∥(hDs)

2ϕcut
2 ∥2 ⩽ Ch2∥ϕcut

2 ∥2 .
Coming back to (4.16), we also get

∥hDu(hDsϕ
cut
2 )∥2 ⩽ Ch

2
3∥hDsϕ

cut
2 ∥2 + Ch2+

4
3
−η∥ϕcut

2 ∥2 ⩽ Ch
2
3
+1∥ϕcut

2 ∥2 .
To get the control of s2, it is sufficient to notice that

Re e−iα/2⟨s(Nh,α − λ)ϕcut
2 , sϕcut

2 ⟩ ⩽ |⟨Rh, s
2ϕcut

2 ⟩| ,
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and to estimate again a commutator. This concludes the case |(α1, α2, α3)| = 2. The proof
of (4.13) for general (α1, α2, α3) follows then by induction using the same method. □

4.3.3. Proof of Proposition 4.6. We are now in position to complete the proof of Propo-
sition 4.6, namely that ϕcut

2 is indeed a good quasimode for Nh,α. For this, we consider
an operator Ph defined through:

(4.17) Mh,α = Nh,α + Ph .

We check that Ph can be written in the following way:

Ph = hurh,1(s, u)hDs + urh,2(s, u)(hDs)
2 + rh,3(s, u)us

2 + rh,4(s, u)s
3 + rh,5(s, u) ,

where the remainders rh,j all belong to SR2(1) and rh,5 with support avoiding a fixed
neighborhood of (0, 0). We recall that SR2(1) = {a ∈ C ∞(R2) : ∀α ∈ N2 , ∃Cα > 0 :
∀x ∈ R2 : |∂αa(x)| ⩽ Cα}. For the other terms, we use the support property in the
variable u and Proposition 4.12 to get

∥Phϕ
cut
2 ∥ = O(h

3
2
−3η)∥ϕcut

2 ∥ .
The conclusion follows.

4.4. Quasimodes for (Nh,α−λ)2. Since we are in a non-selfadjoint context, the algebraic
and geometric dimension associated with a given eigenvalue λ may differ. For further use,
we now deal with localization estimates similar to the ones in Proposition 4.6, but in the
case of generalized eigenfunctions. For this, let us consider such a λ ∈ D(z1e

2iα
3 h

2
3 , Rh)

associated with φ = (φ1, ϕ2) ∈ ker(Mh,α−λ)2 with ∥φ∥ = 1 and such that φ /∈ ker(Mh,α−
λ) (if it exists). We still denote

ϕcut
2 = χhϕ2 .

The following proposition states that ϕcut
2 is a generalized quasimode of Nh,α. Its proof

is the object of the following two sections.

Proposition 4.13. We have

(Nh,α − λ)2ϕcut
2 = O(h

13
6 )∥ϕcut

2 ∥ .

4.4.1. Localization estimates. The function ϕcut
2 satisfies the same localization estimates

as in the previous section. Let us explain this. We have

(Mh,α − λ)2φ = 0 ,

for φ normalized and (Mh,α−λ)φ = f ̸= 0. We have (Mh,α−λ)f = 0 and thus f satisfies
the estimates of the previous section. For instance, we have

f cut
2 = χ(h−

1
2
+ηs)f cut

2 + O(h∞)∥f∥ ,
where f cut

2 is defined without ambiguity and satifies, from Proposition 4.12,

(4.18) ∥sα1(hDs)
α2(hDu)

α3f cut
2 ∥ ⩽ Ch

α3
3
+

α1+α2
2 ∥f cut

2 ∥
for all (α1, α2, α3) ∈ N3. Coming back to the eigenvalue equation, this implies that

(4.19) (h2D2
u + u− z1h

2
3 )f cut

2 = O(h)∥f cut
2 ∥ .

We can easily adapt the proof of the Agmon estimates given in Proposition 3.5 with the
right-hand side f to get

(4.20)
∫
Ω\Tδ

e2|x|/h
2
3 |φ1|2dx+

∫
Bδ

e2|Γ(s,u)|/h
2
3 |ϕ2|2dsdu ⩽ C∥φ∥2E0

+ Ch−
2
3∥f∥2E0

,
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and

(4.21)
∫
Ω\Tδ

e2|x|/h
2
3 |h∇φ1|2dx+

∫
Bδ

e2|Γ(s,u)|/h
2
3 |h∇s,uϕ2|2dsdu ⩽ Ch

2
3∥φ∥2E0

+ C∥f∥2E0
.

These estimates imply that

(4.22) (Mh,α − λ)ϕcut
2 = f cut

2 + rh ,

where rh has the same expression as in Lemma 4.7 and satisfies

rh = O(h∞)(∥f∥+ ∥φ∥) .
In the following proposition we prove that, in fact, f is small compared to ϕ. This
estimate is reminiscent of the famous Caccioppoli estimates (see the original article [10],
and, for instance, the article [15] or the book [8, Section 5.4.1]), since it allows us to
control the derivatives of ϕ with ϕ.

Proposition 4.14. We have

(4.23) ∥f∥ ⩽ Ch∥φ∥ ⩽ C̃h∥ϕcut
2 ∥ ,

and, for all (α1, α2) ∈ N2,

(4.24) ∥(hDu)
α1(hDs)

α2ϕcut
2 ∥ ⩽ Ch

α1
3 h

α2
2 ∥φ∥ .

Proof. Let us start by noticing that, from (4.22), we have

Re e−iα/2⟨(Mh,α − λ)ϕcut
2 , ϕcut

2 ⟩ ⩽ ∥f cut
2 ∥∥ϕcut

2 ∥+ O(h∞)(∥f∥+ ∥φ∥) ,
and thus, with (4.17) and localization estimates, we get

(4.25) cos
(α
6

)
qAi,h(ϕ

cut
2 ) + c∥hDsϕ

cut
2 ∥2 + c∥sϕcut

2 ∥2 ⩽ Ch∥ϕcut
2 ∥2 + ∥f cut

2 ∥∥ϕcut
2 ∥

+ O(h∞)(∥f∥+ ∥φ∥) ,

where, for all Ψ ∈ B1
0(R+) := {Ψ ∈ H1

0 (R+) :
√
uΨ ∈ L2(R+)},

qAi,h(Ψ) = ∥hDuΨ∥2 +
∫
R+×R

(u− z1h
2
3 )|Ψ|2duds ⩾ 0 .

We will denote the corresponding operator by Ah and we observe that ϕcut
2 and f cut

2

belong to its domain.
At this stage, we still have to control f . By using (4.22), an integration by parts and

(4.18), we have

⟨hDs(Mh,α − λ)ϕcut
2 , hDsϕ

cut
2 ⟩ = ⟨(hDs)

2f cut
2 , ϕcut

2 ⟩+ ⟨rh, (hDs)
2ϕcut

2 ⟩
⩽ Ch∥f cut

2 ∥∥ϕcut
2 ∥+ O(h∞)∥(hDs)

2ϕcut
2 ∥(∥f∥+ ∥φ∥) .

(4.26)

Multiplying by e−iα/2, taking the real part and estimating commutators give

(4.27) ∥(hDs)
2ϕcut

2 ∥2 + qAi,h(hDsϕ
cut
2 )

⩽ Ch∥hDsϕ
cut
2 ∥2 + Ch∥f cut

2 ∥∥ϕcut
2 ∥+ Ch∥(hDs)

2ϕcut
2 ∥∥hDsϕ

cut
2 ∥

+ O(h∞)∥(hDs)
2ϕcut

2 ∥(∥f∥+ ∥φ∥) ,

where we note that hDsϕ
cut
2 is also in B1

0(R+).
Proceeding in the same way, we find

Re
(
e−iα/2⟨(Mh,α − λ)ϕcut

2 ,Ahϕ
cut
2 ⟩
)
⩽ O(h∞)∥Ahϕ

cut
2 ∥(∥f∥+∥φ∥)+C∥Ahf

cut
2 ∥∥ϕcut

2 ∥ ,
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and thus, with (4.19),

Re
(
e−iα/2⟨(Mh,α − λ)ϕcut

2 ,Ahϕ
cut
2 ⟩
)
⩽ O(h∞)∥Ahϕ

cut
2 ∥(∥f∥+∥φ∥)+Ch∥f cut

2 ∥∥ϕcut
2 ∥ .

Therefore, estimating similarly commutators,

qAi,h(hDsϕ
cut
2 ) + ∥Ahϕ

cut
2 ∥2 ⩽ ChqAi,h(ϕ

cut
2 ) + O(h∞)∥Ahϕ

cut
2 ∥(∥f∥+ ∥φ∥)

+Ch∥f cut
2 ∥∥ϕcut

2 ∥+ Ch
4
3
−2η∥hDsϕ

cut
2 ∥2 + Ch∥hDsϕ

cut
2 ∥∥hDu(hDsϕ

cut
2 )∥ .

Note that
∥hDu(hDsϕ

cut
2 )2∥ ⩽ qAi,h(hDsϕ

cut
2 ) + Ch

2
3∥hDsϕ

cut
2 ∥2 ,

so that, using the definition of qAi,h, we get

(4.28) qAi,h(hDsϕ
cut
2 ) + ∥Ahϕ

cut
2 ∥2 ⩽ ChqAi,h(ϕ

cut
2 ) + O(h∞)∥Ahϕ

cut
2 ∥(∥f∥+ ∥φ∥)

+ Ch∥f cut
2 ∥∥ϕcut

2 ∥+ Ch
4
3
−2η∥hDsϕ

cut
2 ∥2 .

Thus, with (4.27), (4.28) and the Young inequality, we get, for some constant c > 0,

c∥Ahϕ
cut
2 ∥2 + c∥(hDs)

2ϕcut
2 ∥2 + qAi,h(hDsϕ

cut
2 )

⩽ Ch2∥ϕcut
2 ∥2 + O(h∞)(∥f∥2 + ∥φ∥2) + Ch∥f cut

2 ∥∥ϕcut
2 ∥ .

Recalling (4.22) to bound the right-hand side, we deduce that

(4.29) c∥Ahϕ
cut
2 ∥2 + c∥(hDs)

2ϕcut
2 ∥2 + qAi,h(hDsϕ

cut
2 ) ⩽ Ch2∥ϕcut

2 ∥2 .

Again with (4.22), this implies that

∥f∥ ⩽ C∥f cut
2 ∥ ⩽ Ch∥ϕcut

2 ∥ ,

which gives (4.23).
With (4.25), (4.27), and (4.29), we get (4.24) for |(α1, α2)| ∈ {0, 1, 2}. The control of

the higher powers can be obtained by induction and similar estimates. □

Proposition 4.15 (Localisation in s). Consider χ0 ∈ C ∞
0 (R) equal to 1 in a neighborhood

of 0 and η > 0. Then, in H1-norm, we have

(4.30) ϕcut
2 = χ0(h

− 1
2
+ηs)ϕcut

2 + O(h∞) .

Moreover, for all (α1, α2, α3) ∈ N3,

(4.31) ∥sα1(hDs)
α2(hDu)

α3ϕcut
2 ∥ ⩽ Ch

α3
3
+

α1+α2
2 ∥ϕcut

2 ∥ .

Proof. The proof is similar to that of Proposition 4.12 since we can write

⟨(Nh,α − λ)(χfar,hϕ
cut
2 ), χfar,hϕ

cut
2 ⟩ = ⟨χfar,hf

cut
2 , χfar,hϕ

cut
2 ⟩

+ ⟨Rh, χfar,hϕ
cut
2 ⟩+ ⟨[Nh,α, χfar,h]ϕ

cut
2 , χfar,hϕ

cut
2 ⟩ .

The only new term satisfies

⟨χfar,hf
cut
2 , χfar,hϕ

cut
2 ⟩ = O(h∞)∥ϕcut

2 ∥2 ,

since we can apply Proposition 4.12 to the eigenfunction f and use (4.23). Following the
same lines as in the proof of Proposition 4.12, we get (4.30).

Let us explain (4.31). Let us consider the case |(α1, α2, α3)| = 1. When α3 = 1 or
α2 = 1, the estimate comes from Proposition 4.14. Then, we recall (4.25) and (4.23) and
we get (4.31) with α = (1, 0, 0). For |(α1, α2, α3)| ⩾ 2, the result follows by induction. □
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4.4.2. Proof of Proposition 4.13. We have

(Mh,α − λ)φ = f , with (Mh,α − λ)f = 0 .

Then, from Proposition 4.14 and (4.22), we get that

(Mh,α − λ)f cut
2 = O(h∞) , (Mh,α − λ)ϕcut

2 = f cut
2 + O(h∞) .

Thus,
(Mh,α − λ)2ϕcut

2 = O(h∞) .

Recalling (4.17) we get

(Nh,α − λ)2ϕcut
2 = −Ph(Nh,α − λ)ϕcut

2 − (Nh,α − λ)Phϕ
cut
2 − P 2

hϕ
cut
2 + O(h∞) .

By means of Proposition 4.15, we deduce Proposition 4.13. Let us explain this. Among
the terms on the right-hand side (coming from the definition of Ph), we have to estimate
the following

∥rh,4s3(Nh,α − λ)ϕcut
2 ∥ ⩽C|λ|∥s3ϕcut

2 ∥+ C∥s3(hDu)
2ϕcut

2 ∥+ C∥s3(hDs)
2ϕcut

2 ∥
+ C∥hs3uhDsϕ

cut
2 ∥+ C∥s3uϕcut

2 ∥+ C∥s5ϕcut
2 ∥

⩽Ch
13
6 .

All the other terms can be analyzed in the same way. It appears that the order of
magnitude h

13
6 is the biggest one among all powers of h appearing in the remainders.

This completes the proof of Proposition 4.13.

4.5. Proof of Propositons 4.2 & 4.3.

4.5.1. Proof of Proposition 4.2. Let us first consider φ = (φ1, ϕ2) an eigenfunction of
Mh,α. From Proposition 4.6, we have

∥(Nh,α − λ)ϕcut
2 ∥ ⩽ C̃h

3
2
−η∥ϕcut

2 ∥ .

Then, we use the resolvent estimate of Proposition 4.5. We write λ = z1e
2iα
3 h

2
3 +ζh, with

ζ ∈ D(0, R). If ζ does not belong to the spectrum of our complex harmonic oscillator,
then, we have

1 ⩽ C̃h
3
2
−η

(
Ch−

2
3 +

C

dist(sp(h2D2
s + eiα k0s2

2
), ζh)

)
.

We deduce that

dist

(
ζ, {(2n− 1)e

iα
2

√
k0
2
, 1 ⩽ n ⩽ N}

)
⩽ Ch

1
2
−η ,

which implies (4.2).
Let us now discuss the rank of the Riesz projector Πn,h. From the estimate (4.2), we can

draw the circle Cn,h with center µn(h, α) and radius h
3
2
−3η in the resolvent set of Mh,α. Let

us assume that the rank of the projector is at least two. There are two possibilities. Either
there are two distinct (possibly not simple) eigenvalues (which coincide with µn(h, α)

modulo O(h
3
2
−η)), or there is an eigenvalue with algebraic multiplicity at least two. The

strategy is to evaluate the Riesz projector on the corresponding (possibly generalized)
eigenfunctions

Π̂n,h =
1

2iπ

∫
Cn,h

(z − Nh,α)
−1dz ,

whose rank is one by Proposition 4.5.
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Consider the first case and ψ and ψ̃ corresponding normalized eigenfunctions. Let us
denote Fh = span(ψ, ψ̃), which is of dimension two. Then, the map Qh : Fh ∋ f 7→ χhf2
is injective. Indeed, from the Agmon estimates satisfied by the eigenfunctions, we see
that

∥χhf2∥ = ∥f∥+ O(h∞)∥f∥ ,
and, in particular, for h small enough,

∥f∥ ⩽ 2∥Qhf∥ .
Moreover, we have, for all f ∈ Fh,

∥(Nα,h − λ)Qhf∥ ⩽ C̃h
3
2
−η∥Qhf∥ , λ = µn(h, α) .

We notice that

Π̂n,hQhf = Qhf +
1

2iπ

∫
Cn,h

(z − λ)−1(z − Nh,α)
−1 (Nh,α − λ)Qhfdz .

Thus,

∥Π̂n,hQhf −Qhf∥ ⩽ Chη∥Qhf∥ ⩽
1

2
∥Qhf∥ .

This shows that rank Π̂n,h = 2, which is a contradiction.
Let us now consider the second case of an eigenvalue with algebraic multiplicity at

least two. This implies the existence of φ = (φ1, ϕ2) ∈ ker(Mh,α − λ)2 such that φ /∈
ker(Mh,α − λ).

Then, we write

Π̂n,hϕ
cut
2 = ϕcut

2 +
1

2iπ

∫
Cn,h

(z − λ)−2(z − Nh,α)
−1(Nh,α − λ)2ϕcut

2 dz .

Combining Propositions 4.13 and 4.5, we get

∥Π̂n,hϕ
cut
2 − ϕcut

2 ∥ = o(1)∥ϕcut
2 ∥ ,

where we used the fact that 13/6 > 2. We conclude that the range of Π̂n,h has dimension
at least two. This is a contradiction with Proposition 4.5.

4.5.2. Proof of Proposition 4.3. Considering the result of Proposition 4.2, it is sufficient
to show that for each fixed n ∈ {1, · · ·N}, the Riesz projector Πn,h is not zero. For this
consider the function

ψh(x) = (0, χ(s, u)Ψ1,n,h(s, u)) ,

where Ψ1,n,h is defined in (4.6) and χ is a smooth function with compact support equal
to 1 near 0 and equal to 0 outside a small neighborhood of (0, 0).

Then, we consider

Πn,hψh =
1

2iπ

∫
Cn,h

(z − Mh,α)
−1ψhdz =

1

2iπ

∫
C̃n,h

(z − Mh,α)
−1ψhdz ,

where C̃n,h is a circle with the same center as Cn,h, but with radius of order ϵh for ϵ small
enough. Given z ∈ C̃n,h, we consider φh,z = (φh,z,1, ϕh,z,2) the unique solution of

(z − Mh,α)φh,z = ψh .

Then, φh,z satisfies the Agmon estimates with a right-hand side (4.20) and (4.21). In
particular, we have, in H1-norm,

(4.32) φh,z,1 = O(h∞)(∥φh,z∥+ ∥ψh∥)
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and, with similar notations as in (4.4),

(4.33) ϕh,z,2 = ϕcut
h,z,2 + O(h∞)(∥φh,z∥+ ∥ψh∥) .

One needs to estimate ∥φh,z∥. To do so, let us consider ϕcut
h,z,2, which satisfies

(Mh,α − z)ϕcut
h,z,2 = −ψcut

h,2 + O(h∞)(∥φh,z∥+ ∥ψh∥) .
As in (the beginning of) the proof of Proposition 4.14, we get the following.

Lemma 4.16. We have

∥hDuϕ
cut
h,z,2∥2 ⩽ Ch

2
3∥ϕcut

h,z,2∥2 + ∥ψh∥∥ϕcut
h,z,2∥+ O(h∞)(∥φh,z∥2 + ∥ψh∥2) ,

and

∥hDsϕ
cut
h,z,2∥2 + ∥sϕcut

h,z,2∥2 ⩽ Ch∥ϕcut
h,z,2∥2 + C∥ψh∥∥ϕcut

h,z,2∥+ O(h∞)(∥φh,z∥2 + ∥ψh∥2) .

Similarly, we get the control of the second order derivative with respect to s.

Lemma 4.17. We have

∥(hDs)
2ϕcut

h,z,2∥ ⩽ Ch∥ϕcut
h,z,2∥+ Ch

1
2∥ψcut

h,2∥
1
2∥ϕcut

h,z,2∥
1
2 + O(h∞)(∥φh,z∥+ ∥ψh∥) .

Proof. Adapting (4.27) with our notations gives

∥(hDs)
2ϕcut

h,z,2∥2 ⩽ Ch∥hDsϕ
cut
h,z,2∥2 + Ch∥ψcut

h,2∥∥ϕcut
h,z,2∥

+ Ch∥(hDs)
2ϕcut

h,z,2∥∥hDsϕ
cut
h,z,2∥+ O(h∞)∥(hDs)

2ϕcut
h,z,2∥(∥ψh∥+ ∥φh,z∥) .

With the Young inequality, this gives

∥(hDs)
2ϕcut

h,z,2∥2 ⩽ Ch2∥ϕcut
h,z,2∥2 + Ch∥ψcut

h,2∥∥ϕcut
h,z,2∥ + O(h∞)(∥ψh∥2 + ∥φh,z∥2) .

The proof is complete. □

We first write
(Nh,α − z)ϕcut

h,z,2 = −ψcut
h,2 +Rh,z ,

with

∥Rh,z∥ ⩽ Ch
2
3
−η∥(hDs)

2ϕcut
h,z,2∥+Ch∥(hDs)ϕ

cut
h,z,2∥+C∥s3ϕcut

h,z,2∥+O(h∞)(∥φh,z∥+∥ψh∥) .
From Lemmas 4.16 and 4.17, we get

∥Rh,z∥ ⩽ Ch
2
3
−2η+ 1

2∥ϕcut
h,z,2∥+ Ch

2
3
−2η∥ψh∥

1
2∥ϕcut

h,z,2∥
1
2 + O(h∞)(∥φh,z∥+ ∥ψh∥) .

By using Proposition 4.5 and the fact that z ∈ C̃n,h, we infer that

∥ϕcut
h,z,2∥ ⩽ Ch−1∥ψh∥+ O(h∞)(∥φh,z∥+ ∥ψh∥) .

With (4.32) and (4.33), this gives

∥φh,z∥ ⩽ Ch−1∥ψh∥ .
Then, we also deduce that∥∥∥∥∥

∫
C̃n,h

(Nh,α − z)−1Rh,zdz

∥∥∥∥∥ = o(1)∥ψh∥ .

This shows that

Πn,hψh =
1

2iπ

∫
Cn,h

(z − Nh,α)
−1ψcut

h,2dz + o(1)∥ψh∥ .

Recalling the resolvent formula

(z − Nh,α)
−1 − (z − µn(h, α))

−1 = (z − Nh,α)
−1(z − µn(h, α))

−1(Nh,α − µn(h, α)) ,
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and that
(Nh,α − µn(h, α))ψh,2 = O(h∞) ,

we get
Πn,hψh = ψh + o(1)∥ψh∥ .

Therefore, Πn,h is not zero for h small enough. Recalling the discussion at the beginning
of this section, this completes the proof of Proposition 4.3.
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