½©»³½¨³¤ |
|
Kummer ÂΤÎÎà¿ô¤Ë¤Ä¤¤¤Æ |
21(3),
|
pp. 216- |
Åì²°¸ÞϺ |
|
t-Gruppensatz ¤ÎÀ®Î©¤Ä͸þ½ç½ø·²¤Ë¤Ä¤¤¤Æ |
1(2),
|
pp. 105- |
ÂΩ¹±Íº |
|
¥¤¥Ç¥¢¥ëÎà·²¤Î³¬¿ôɾ²Á |
22(2),
|
pp. 134- |
°¤Éô±Ñ°ì |
|
ñ½ãLie ´Ä¤è¤ê¹½À®¤µ¤ì¤ëñ½ã·²¤Ë¤Ä¤¤¤Æ |
9(1),
|
pp. 8- |
¿·°æÀµÉ× |
|
¡ÈFermat ¾¦¡É¤Îmod $l$ ¤Î¾ê;¤Ë¤Ä¤¤¤Æ |
5(3),
|
pp. 154- |
¿·°æÀµÉ× |
|
ȽÊ̼°¤Î²¾°ø»Ò¤ò¤â¤Ä4¼¡ÂΤˤĤ¤¤Æ |
29(4),
|
pp. 366- |
¿·°æÀµÉ× |
|
$M_2$ ¤ÈƱ·¿¤Ê$M_{2n}$ ¤ÎÉôʬ·²¡¤$B_2$ ¤ÈƱ·¿¤Ê$M_{2n +1}$ ¤ÎÉôʬ·² |
30(1),
|
pp. 71- |
ÍÇÏ¡¡Å¯ |
|
Âå¿ôÈ¡¿ôÂÎ¤ÎÆóÅùʬÃͤˤè¤ëÀ¸À® |
9(1),
|
pp. 11- |
ÍÇÏ¡¡Å¯ |
|
Quasi.Abelian variety ¤ÎÅùʬÅÀ¤Ë¤Ä¤¤¤Æ |
10(1),
|
pp. 28- |
°ÂÆ£»ÍϺ¡¦Ê¿Ìî¾ÈÈæ¸Å |
|
Wronski ¤Î¸ø¼°¤Î¾ÚÌÀ¤Ë¤Ä¤¤¤Æ |
29(4),
|
pp. 346- |
Èӹ⡡ÌÐ |
|
Weierstrass ÅÀ¤Î°ìÈ̲½¤È°ì¼¡·Ï¤Î»Ø¿ô¸ø¼° |
30(3),
|
pp. 271- |
Èӹ⡡ÌÐ |
|
Plucker ¤Î´Ø·¸¼° |
31(4),
|
pp. 366- |
Èӹ⡡ÌС¦µÈÅÄ·ÉÇ· |
|
뻳-»Ö¼ͽÁÛ¤ÎͳÍè |
46(2),
|
pp. 177- |
ÀаæÃö·§¡¦¿¹ÅÄ¡¡Å° |
|
͸·²¤Î$\Phi_1$-·²¤È$\Phi_2$·²¤Ë¤Ä¤¤¤Æ |
14(3),
|
pp. 169- |
ÀÐÅÄ¡¡¿® |
|
´ñÁÇ¿ô¼¡¤ÎÂå¿ôÂΤÎgenus field ¤Ë¤Ä¤¤¤ÆII |
28(2),
|
pp. 151- |
ÀмÄçÉ× |
|
Schwarzenberger ¤ÎÄêÍý¤Î°ìÈ̲½¤Ë¤Ä¤¤¤Æ |
32(4),
|
pp. 365- |
°Ë´Ø·ó»ÍϺ |
|
Dedekind ¤ÎϤÎÁê¸ßˡ§ |
2(3),
|
pp. 240- |
»ÔÀî¡¡ÍÎ |
|
Gauss ¤ÎϤˤĤ¤¤Æ |
2(3),
|
pp. 238- |
»ÔÀî¡¡ÍÎ |
|
Í¿¤¨¤é¤ì¤¿Í¸ÂAbel ·²¤òIdealklassen gruppe ¤ÎÉôʬ·²¤Ë¤â¤ÄÂå¿ôÂΤι½À® |
3(1),
|
pp. 48- |
°ËÆ£¡¡À¿¡¦ÆâÆ£¡¡¼Â |
|
p ´Ä¤«¤éƳ¤«¤ì¤ë«¤Ë¤Ä¤¤¤Æ |
5(1),
|
pp. 32- |
°ðÍձɼ¡ |
|
·²¤Èprimary ¤Ê«¤Ë¤Ä¤¤¤Æ |
1(2),
|
pp. 93- |
°ðÍձɼ¡ |
|
Âå¿ôÈ¡¿ôÂΤÎÎà¿ô¤Ë¤Ä¤¤¤Æ |
2(4),
|
pp. 325- |
°ðÍձɼ¡ |
|
Einbettungsproblem ¤Ë¤Ä¤¤¤Æ |
3(4),
|
pp. 209- |
°Ë¿á»³ÃεÁ |
|
ÍÍý¿ôÂξå¤Î4 ¸µ¿ô´Ä¤Î´ðÄì¤È¶ËÂçÀ°¿ô´Ä |
24(4),
|
pp. 316- |
´äÅÄ¡¡¹° |
|
Sierpiński ¤Î°ìÄêÍý¤ÎZ[i] ¤Ø¤Î³ÈÄ¥¤Ë¤Ä¤¤¤Æ |
23(2),
|
pp. 149- |
´äÅÄ¡¡¹° |
|
¿½Å2¼¡ÂΤÎÀ°¿ô |
24(4),
|
pp. 312- |
´äÅÄ¡¡¹° |
|
Âå¿ôÂÎk ¤ÎÀ°¿ô´Ä¤ò¤½¤ÎÃæ¤Ë¼Ì¤¹k ¾å¤Î¿¹à¼°¤Ë¤Ä¤¤¤Æ |
24(3),
|
pp. 217- |
´äÅÄ¡¡¹° |
|
Æó¹à·¸¿ô$\begin{pmatrix}a\omega-b\\n\end{pmatrix}$¤Î´ûÌóʬÊì¤Ë¤Ä¤¤¤Æ |
22(3),
|
pp. 218- |
´äÅÄ¡¡¹° |
|
À°¿ôÏÀŪ´Ø¿ô$\sigma\varphi$, $\varphi\sigma$¤Î°ìÀ¼Á |
29(1),
|
pp. 65- |
´äÅÄ¡¡¹° |
|
ÍÍý¿ô¤ÎÀµÂ§Ï¢Ê¬¿ôŸ³«¤ÎŤµ |
29(1),
|
pp. 67- |
´äËÙĹ·Ä¡¦º´Éð°ìϺ |
|
Lie ´Ä¤ÎCartan ʬ²ò¤Ë¤Ä¤¤¤Æ |
2(3),
|
pp. 234- |
´äß··òµÈ¡¦¶Ì²Ï¹±É× |
|
Âå¿ôÈ¡¿ôÂΤμ«¸ÊƱ·¿ÃÖ´¹ |
1(4),
|
pp. 315- |
ÆâÅͽÆó |
|
$[K:K^p]= p$ ¤Ê¤ëÂΤˤĤ¤¤Æ |
24(4),
|
pp. 314- |
ÆâÅͽÆó |
|
Îà¿ô1 ¤Îµõ¥¬¥í¥¢ÂΤˤĤ¤¤Æ |
25(2),
|
pp. 172- |
ÂÀÅÄ´î°ìϺ |
|
2 ¼¡ÂξåÉÔʬ´ô¤ÊGalois ³ÈÂçÂΤˤĤ¤¤Æ |
24(2),
|
pp. 119- |
ÂÀÅÄ´î°ìϺ |
|
$S_n$ ¤ª¤è¤Ó$A_n$-³ÈÂç¤Îp Îà·²¤Ë¤Ä¤¤¤Æ |
28(3),
|
pp. 253- |
ÂçÄ͹áÂå |
|
Àþ·¿Âå¿ô·²¤«¤é¥³¥ó¥Ñ¥¯¥È·²¤ÎÃæ¤Ø¤Î½àƱ·¿¼ÌÁü¤Ë¤Ä¤¤¤Æ |
14(1),
|
pp. 28- |
²¬Ìî¡¡Éð |
|
¶á»÷ʬ¿ô¤ÎʬÊì¤Ëax + b ·¿¤Î¿ô¤¬Ìµ¸Â¤Ë¿¤¯¸½¤ï¤ì¤ë¼Â¿ô¤Ë¤Ä¤¤¤Æ |
35(2),
|
pp. 177- |
¾®ÁÒµ×ͺ |
|
Âå¿ôÊýÄø¼°¤Îº¬¤Î¸Â³¦¤Ë´Ø¤¹¤ë³Ýë¤ÎÌäÂê¤Ë¤Ä¤¤¤Æ |
2(4),
|
pp. 327- |
¾®Ìîµ®À¸¡¦Âô½ÐϹ¾ |
|
36 ¼¡¤ÎBaumert-Hall-Welch ÇÛÎó |
36(2),
|
pp. 172- |
ÊÒ»³¿¿°ì |
|
Algebraic torus ¤Î¶Ì²Ï¿ô¤Ë¤Ä¤¤¤Æ |
37(1),
|
pp. 81- |
²ÏÅķɵÁ |
|
Âå¿ôÂΤÎÈùʬ¤È¶¦íú¹ÀÑ |
2(4),
|
pp. 320- |
ÌÚ²¼²Â¼÷ |
|
¼«Í³·²$B_1, B_2,\cdots, B_n$¤Î¼«Í³ÀÑB¤Ç$B_iB_k (i\not=k)$ ¤Î¸µÁǴ֤θò´¹»Ò¤Îºî¤ëÉôʬ·²¤Î´ðËÜ´Ø·¸¤Ë¤Ä¤¤¤Æ |
1(2),
|
pp. 103- |
ÌÚ¸¶¾Ï°ì |
|
Rank 5 °Ê¾å¤ÎÂʱ߶ÊÀþ¤Ë¤Ä¤¤¤Æ |
39(4),
|
pp. 358- |
À¶ÅÄÀµÉס¦Ìî¼ÏÂÀµ |
|
͸¥¢¡¼¥Ù¥ë·²¤Ë¤ª¤±¤ëÊýÄø¼°¤Ë¤Ä¤¤¤Æ |
33(1),
|
pp. 81- |
¹ñµÈ½¨É× |
|
ÂʱßÈ¡¿ôÂξå¤ÎÉÔʬ´ô³ÈÂç¤Ë¤Ä¤¤¤Æ |
4(3),
|
pp. 154- |
·ªÅÄ¡¡Ì |
|
¹ÔÎóA ¤Ë´Ø¤¹¤ë$\lim_{m\rightarrow +\infty}A^m$ ¤Ë¤Ä¤¤¤Æ |
1(2),
|
pp. 107- |
¹õÅÄÀ®¿® |
|
Minkowski ¤ÎÄêÍý¤Ë¤Ä¤¤¤Æ |
14(3),
|
pp. 171- |
¸Þ´ØÁ±»ÍϺ |
|
Âξå¤Î̵¸ÂÊÑ¿ô¤Î¿¹à¼°´Ä¤Ë¤Ä¤¤¤Æ¤ÎÃí°Õ |
28(3),
|
pp. 259- |
¸åÆ£¼éË® |
|
¹ÔÎó¤Îreplica |
1(3),
|
pp. 203- |
¾®ÎÓ¿·¼ù |
|
$Q(\sqrt[l]{m})$ ¤ÎÀ°¿ôÄì¤Ë¤Ä¤¤¤Æ |
24(1),
|
pp. 54- |
¾®ÎÓ¼£ |
|
ÍÍýŪ¤Ç¤Ê¤¤Hilbert µé¿ô¤ò¤â¤Ä¼¡¿ô´Ä |
32(3),
|
pp. 274- |
¾®¾¾·¼°ì |
|
Âå¿ôÂΤÎzeta ´Ø¿ô¤ÈÀäÂÐ¥¬¥í¥¢·² |
27(4),
|
pp. 365- |
¶áÆ£¡¡Éð |
|
Gauss ¤Î¿ôÂΤÎAbel ³ÈÂç¤Ë¤Ä¤¤¤Æ |
15(2),
|
pp. 110- |
ºØÆ£¡¡Íµ |
|
Eichler ¤ÎÀ׸ø¼°¤Ë¤Ä¤¤¤Æ |
24(3),
|
pp. 227- |
ºä°æÃ鼡 |
|
Á곤¯¼«Á³¿ôÎó¤Î°ìÀ¼Á¤Ë¤Ä¤¤¤Æ |
2(3),
|
pp. 241- |
º´Æ£ÂçȬϺ |
|
»Ø¿ô±é»»¤ò²Ä´¹¤Ë¤¹¤ë¡¤2 ¤Ä¤Î¼ÂÂå¿ôŪ¿ô¤ÎÆÃĹ¤Å¤± |
24(3),
|
pp. 223- |
¿ù±º¡¡À¿¡¦¿¹Ëܼ£¼ù |
|
Adequate $\sigma$-field ¤Ë´Ø¤¹¤ë°ø»Òʬ²òÄêÍý |
21(4),
|
pp. 286- |
ÎëÌÚÄÌÉ× |
|
͸·²¤Î«½àƱ·¿Âбþ¤Ë¤Ä¤¤¤Æ |
2(1),
|
pp. 44- |
¶ù¹½¨¹¯ |
|
Semi.reductive Âå¿ô·²¤Ë¤Ä¤¤¤Æ¤ÎÃí°Õ |
20(3),
|
pp. 166- |
J.P.Serre |
|
Serre ¤ÎͽÁۤˤĤ¤¤Æ(ÅÏÊշɰìµ) |
28(3),
|
pp. 260- |
¹â¶¶Ëʸ |
|
Global ÂΤμ«¸ÊƱ·Á·²¤Ë¤Ä¤¤¤Æ |
32(2),
|
pp. 159- |
¹â¶¶ËÓÃË |
|
·²¤Î¼«Í³ÀÑʬ²ò¤È¤½¤ÎÉôʬ·²¤Ë¤Ä¤¤¤Æ |
1(2),
|
pp. 104- |
ÃÝÆâʸɧ |
|
͸ÂTree ¤Ë¤«¤ó¤¹¤ë°ìÃí°Õ |
39(4),
|
pp. 357- |
ÃÝÆâ¸÷¹° |
|
Artin-Schreier-Witt ÍýÏÀ¤Îdeformation |
39(4),
|
pp. 354- |
ÃÝÆâ¡¡Íª |
|
¹ÔÎó¼°¤Èͳ¦Ìµ¸Â matrix |
3(2),
|
pp. 88- |
Éð·¨Îɰì |
|
¹çƱ¼°¾ò·ï¤Ë¤è¤ëÁÇ¿ô¤ÎÁÇideal ʬ²ò |
1(4),
|
pp. 314- |
ÅÄÃæ¡¡¿Ê |
|
p .¿ÊÀ°¿ô´Ä¾å¤Îtorsion ¤Î¤Ê¤¤²Ä´¹·²¤Ë¤Ä¤¤¤Æ |
14(1),
|
pp. 33- |
ëËÜ¿¿Æó |
|
»»½Ñ´ö²¿Ê¿¶Ñ¤ËÉտ魯¤ë±é»»¤Ë¤Ä¤¤¤Æ |
49(3),
|
pp. 300- |
¶Ì²Ï¹±É× |
|
Galois ÂΤÎÀµµ¬Äì¤Î°ìÄêÍý |
2(4),
|
pp. 326- |
¶Ì²Ï¹±É× |
|
°¿¤ë¼ï¤Î2 ¼¡¹çƱ¼°¤Î²ò¤Î¿ô¤Ë¤Ä¤¤¤Æ |
5(3),
|
pp. 149- |
¶Ì²Ï¹±É× |
|
4 ¼¡¸µÄ¾¸ò·²¤Ë¤Ä¤¤¤Æ |
7(1),
|
pp. 24- |
ÄÍËÜ¡¡Î´ |
|
Automorphic form ¤Î¶õ´Ö¤Î¼¡¸µ¤Ë¤Ä¤¤¤Æ |
13(3),
|
pp. 154- |
ÄÍËÜ¡¡Î´ |
|
Àµµ¬¤Ê¶Ë¾®Äì¤Î¸ºß¤Ë¤Ä¤¤¤Æ |
11(1),
|
pp. 13- |
ÄÍËÜ¡¡Î´ |
|
Âå¿ô·²¤ª¤è¤Ó2 ¼¡·Á¼°¤Ë´Ø¤¹¤ëÆó»°¤ÎÃí°Õ |
12(4),
|
pp. 226- |
¹±Àî¡¡¼Â |
|
R(i) ¤ª¤è¤ÓR(¦Ñ) ¤ÎϢʬ¿ô¤È¤½¤Î¶á»÷ÅÙ |
2(4),
|
pp. 322- |
¹±Àî¡¡¼Â |
|
T (i) Ϣʬ¿ô¤ò·èÄꤹ¤ë¾ò·ï |
3(3),
|
pp. 147- |
¹±Àî¡¡¼Â |
|
T (i) Ϣʬ¿ô¤¬½ã½Û´Ä¤Ê¤¿¤á¤Î¾ò·ïµ |
5(1),
|
pp. 28- |
¹±Àî¡¡¼Â |
|
Gauss ÂΤˤª¤±¤ëÊ¿Êý¾ê;¤ÎÁê¸ßˡ§¤Î½éÅùŪ¾ÚÌÀ |
7(1),
|
pp. 23- |
ÄÚ°æ¾ÈÃË |
|
Metabelian group ¤Ë¤Ä¤¤¤Æ |
5(2),
|
pp. 83- |
»û°æÉ§°ì |
|
¥â¥¸¥å¥é¾ò·ï¤ÈʬÇÛ¾ò·ï¤Ë¤Ä¤¤¤Æ |
5(4),
|
pp. 224- |
±ó»³¡¡·¼ |
|
³ÈÄ¥¤µ¤ì¤¿°ø»Ò¤ª¤è¤Ó°ø»ÒÎà¤Ë¤Ä¤¤¤Æ |
1(2),
|
pp. 106- |
ËÅĸÞϲ¡¦ÉþÉô¡¡¾¼ |
|
ñ½ã´Ä¤Î¾èË¡·²¤Ë¤Ä¤¤¤Æ |
6(1),
|
pp. 17- |
Ãæ°æ´î¿® |
|
»Ø¿ôϤÎɾ²Á¤Ë¤ª¤±¤ëI. M. Vinogradov ¤ÎÊýË¡¤Ë¤Ä¤¤¤Æ |
30(4),
|
pp. 357- |
ÃæÂô±Ñ¾¼ |
|
͸ÂÂΤΰìÀ¼Á |
21(3),
|
pp. 218- |
ÃæÂô±Ñ¾¼ |
|
¡ÆÍ¸ÂÂΤΰìÀ¼Á¡Ç¤Ë¤Ä¤¤¤Æ¤ÎÄɵ |
21(2),
|
pp. 90- |
±ÊÅÄ²íµ¹ |
|
ÉêÃʹĤˤĤ¤¤Æ |
4(3),
|
pp. 156- |
±ÊÅÄ²íµ¹ |
|
°¿¤ë¼ï¤Î´Ä¤Î¶ÒÎíÀ¤Ë¤Ä¤¤¤Æ |
4(4),
|
pp. 230- |
±ÊÅÄ²íµ¹ |
|
SL(n : K) ¤Ë¤Ä¤¤¤Æ |
13(2),
|
pp. 108- |
±ÊÅÄ²íµ¹ |
|
$x_1^2 + x_2^2 + \cdots+ x_n^2 = a$ ¤Î͸ÂÂΤˤª¤±¤ë²ò¤Î¿ô¤Ë¤Ä¤¤¤Æ |
14(2),
|
pp. 98- |
±ÊÅÄ²íµ¹ |
|
Îí°ø»Ò¤Ë¤Ä¤¤¤Æ¤Î°ìÃí°Õ |
21(2),
|
pp. 131- |
±ÊÅÄ²íµ¹ |
|
¶ËÂ缫ͳÉôʬ²Ã·²¤Î³¬¿ô¤Ë¤Ä¤¤¤Æ |
21(2),
|
pp. 130- |
±ÊÅÄ²íµ¹ |
|
ÁÇ¥¤¥Ç¥¢¥ë¤Î¸ºß¤Ë¤Ä¤¤¤Æ¤Î°ìÌäÂê |
27(4),
|
pp. 368- |
±ÊÅÄ²íµ¹ |
|
Fibonacci ¿ôÎó¤Î°ìÈ̲½ |
46(1),
|
pp. 69- |
±ÊÅÄ²íµ¹ |
|
Fibonacci ¿ôÎó¤Î°ìÈ̲½(II) |
46(4),
|
pp. 358- |
±ÊÅÄ²íµ¹ |
|
n ¸Ä¤º¤Ä2 ÁȤοô¤Îº¹¤Ë¤Ä¤¤¤Æ¤Î¤¢¤ëÌäÂê |
49(2),
|
pp. 214- |
ÃæÂ¼´îÍýͺ |
|
´ñ¿ô°Ì¤Î͸·²¤Ë¤Ä¤¤¤Æ |
9(1),
|
pp. 11- |
ÃæÌîÌÔÉ× |
|
¼Í±ÆÀ¤ò²ÃÌ£¤·¤¿´Ä¤Î¹½Â¤¤Ë¤Ä¤¤¤Æ |
10(3),
|
pp. 163- |
ÃæÂ¼Å¯ÃË |
|
͸ÂÂξå¤Î²Ä´¹·Á¼°·²¤ÎʬÎà¤Ë¤Ä¤¤¤Æ |
43(2),
|
pp. 175- |
ÃæÂ¼ÎÉϺ |
|
ÂΤÎÀµµ¬³ÈÂç¤ÈÀþ·¿Ìµ´ØÏ¢À¤Ë¤Ä¤¤¤Æ |
28(3),
|
pp. 258- |
ÃæÂ¼Ë§É§ |
|
±ß½çÎó¤Ë¤Ä¤¤¤Æ |
4(1),
|
pp. 25- |
Ãæ»³¡¡Àµ¡¦Åì²°¸ÞϺ |
|
´ûÌó´Ä¤Ë¤Ä¤¤¤Æ |
1(2),
|
pp. 102- |
À®ÅÄÀµÍº |
|
´°È÷¶É½ê´Ä¤Î¹½Â¤¤Ë¤Ä¤¤¤Æ |
7(3),
|
pp. 150- |
À®ÅÄÀµÍº |
|
ÀµÂ§¶É½ê´Ä¤Ë¤ª¤±¤ëÁǸµÊ¬²ò¤Î°ì°ÕÀ¤Ë¤Ä¤¤¤Æ |
11(2),
|
pp. 94- |
¶¶Ëܽ㼡 |
|
½ç½ø½¸¹ç¤ÎľÀÑʬ²ò |
2(2),
|
pp. 157- |
¶¶Ëܽ㼡 |
|
·²¤Î¸øÍý¤Ë¤Ä¤¤¤Æ |
2(2),
|
pp. 158- |
¶¶Ëܽ㼡 |
|
«¤Îideal ¤Ë¤Ä¤¤¤Æ |
2(3),
|
pp. 231- |
¶¶Ëܽ㼡 |
|
½ç½ø½¸¹ç¤ÎÀÚÃǤˤĤ¤¤Æ |
2(3),
|
pp. 232- |
¶¶Ëܽ㼡 |
|
Birkhoff ÃøLattice theory ¤ÎÃæ¤Î»Í¤Ä¤ÎÌäÂê¤Ë¤Ä¤¤¤Æ |
3(1),
|
pp. 49- |
ÉþÉô¡¡¾¼ |
|
ÆâÉôƱ·¿¤Ë¤è¤Ã¤ÆÉÔÊѤÊÉôʬ´Ä¤Ë¤Ä¤¤¤Æ |
3(3),
|
pp. 150- |
ÉþÉô¡¡¾¼ |
|
ñ½ã´Ä¤Î¾èË¡·²¤È3 ¼¡¸µÄ¾¸ò·²¤Ë¤Ä¤¤¤Æ |
4(2),
|
pp. 85- |
ÉþÉô¡¡¾¼ |
|
͸ÂÂΤβĴ¹À¤Î°ì¾ÚÌÀ |
4(3),
|
pp. 155- |
ÉþÉô¡¡¾¼ |
|
ÌäÂê6.1.13 ¤Î²ò |
8(4),
|
pp. 207- |
ÉþÉô¡¡¾¼ |
|
Λ-injectivity¡ÊÌäÂê6.3.19 ¡Ë¤Ë¤Ä¤¤¤Æ |
8(4),
|
pp. 208- |
ÁáÀ¢ |
|
ÍÍý¿ôÂξå¤Î¤¢¤ë¼ï¤Î²Ä²ò¤Ê³ÈÂçÂΤˤĤ¤¤Æ |
20(2),
|
pp. 97- |
ÎÓ¡¡¸÷Íø |
|
¿ôÏÀŪ´Ø¿ô¤Î¤Ä¤¯¤ëÂΤˤĤ¤¤Æ |
32(1),
|
pp. 69- |
ÎÓ¡¡¸÷Íø |
|
¿ôÏÀŪ´Ø¿ô¤Èº¹Ê¬Ë¡¤Ë¤Ä¤¤¤Æ |
34(2),
|
pp. 182- |
ÅÚÊý¹°ÌÀ |
|
Wythoff ¤ÎÆó»³Êø¤·¤Ë¤Ä¤¤¤Æ |
11(4),
|
pp. 220- |
°ì¾¾¡¡¿® |
|
¹ÔÎ󼰤ΰì¤Ä¤ÎÆÃĹ¤Å¤± |
15(4),
|
pp. 216- |
¹¿¹¾¡µ×¡¦¶ù¹½¨¹¯ |
|
Âå¿ô·²¤Îthick ¤ÊÉôʬ½¸¹ç¤ÇÀ¸À®¤µ¤ì¤ëÉôʬ·²¤Ë¤Ä¤¤¤Æ |
17(2),
|
pp. 98- |
Ê¡ÅÄ¡¡Î´ |
|
±ßñ¿ô¤Î¥Î¥ë¥à¤Ë´Ø¤¹¤ëÃí°Õ |
48(2),
|
pp. 201- |
Æ£¸¶ÀµÉ§ |
|
Âå¿ôÊýÄø¼°¤ÎHasse Principle ¤Ë¤Ä¤¤¤Æ |
23(4),
|
pp. 293- |
Æ£ºê¸»ÆóϺ |
|
ÉÔʬ´ô¤ÊGalois ³ÈÂç¤ÎÎã¤Ë¤Ä¤¤¤Æ |
9(2),
|
pp. 97- |
Æ£ºê¸»ÆóϺ |
|
Éé¤ÎȽÊ̼°¤ò¤â¤Ä3 ¼¡ÂΤδðËÜñ¿ô¤Ë¤Ä¤¤¤Æ |
26(1),
|
pp. 60- |
Þ¼Ìî¡¡¾» |
|
Countable Chain Condition ¤ÎVariations ¤Ë´Ø¤¹¤ë¥ê¥Þ¡¼¥¯ |
43(2),
|
pp. 174- |
¸Å²È¡¡¼é |
|
²Ä´¹´Ä¤Îhigher derivation ¤Ë¤Ä¤¤¤Æ¤ÎÃí°Õ |
28(3),
|
pp. 249- |
ËÜÅÄ¶ÕºÈ |
|
͸ÂAbel ·²¤ÎľÀÑʬ²ò¤Ë¤Ä¤¤¤Æ |
4(2),
|
pp. 84- |
ËÜÅÄ¶ÕºÈ |
|
͸·²¤Ë¤ª¤±¤ë¸ò´¹»Ò¤Ë¤Ä¤¤¤Æ |
4(4),
|
pp. 231- |
ÁýÅľ¡É§ |
|
Galois.algebra ¤Îʬ²ò¤Ë¤Ä¤¤¤Æ |
5(3),
|
pp. 151- |
¾¾²¬Ã鹬 |
|
Complete intersection ¤ÎÆÃħ¤Å¤±¤Ë¤Ä¤¤¤Æ |
21(3),
|
pp. 217- |
¾¾²¬Ã鹬 |
|
Almost complete intersection ¤ÎÀµ½à²Ã·²¤Îreflexivity |
31(3),
|
pp. 261- |
¾¾ºäÏÂÉ× |
|
Abelian variety ¤Ë´Ø¤¹¤ëÃí°ÕÆó»° |
3(3),
|
pp. 152- |
¾¾²¼°ËÀª¾¾ |
|
ʬÇÛ«¤¿¤ë¤¿¤á¤Î¾ò·ï¤Ë¤Ä¤¤¤Æ |
4(4),
|
pp. 232- |
¾¾ÅÄδµ± |
|
L. Fuchs¡¤Abelian Group ¤ÎProblem 36 |
21(2),
|
pp. 130- |
¾¾ÅÄδµ± |
|
½àÁÇ¥¤¥Ç¥¢¥ë¤ÎÀ¼Á¤Ë¤Ä¤¤¤Æ¤Î2¡¤3 ¤ÎÃí°Õ |
25(2),
|
pp. 175- |
¾¾ÅÄδµ± |
|
Kennedy ͽÁۤˤĤ¤¤Æ |
33(3),
|
pp. 274- |
¾¾ÅÄδµ± |
|
¤¹¤Ù¤Æ¤Î¾ê;À°°è¤¬Krull ´Ä¤Ç¤¢¤ë¤è¤¦¤Ê´Ä |
34(1),
|
pp. 86- |
¾¾ÅÄδµ± |
|
Huckaba-Papick ÌäÂê¤Ë¤Ä¤¤¤Æ |
35(3),
|
pp. 263- |
¾¾Â¼±ÑÇ· |
|
L. Hörmander ¤ÎÂå¿ôŪÊäÂê¤Ë¤Ä¤¤¤Æ |
13(3),
|
pp. 159- |
Æ»±º¡¡Àµ |
|
²Ä´¹¤ÊȾ½ç½ø·²¤Ë¤Ä¤¤¤Æ |
4(2),
|
pp. 88- |
µÜÅÄÉðɧ |
|
M-Sequences ¤Ë´Ø¤¹¤ëÃí°Õ |
15(4),
|
pp. 215- |
µÜÅÄÉðɧ |
|
ɸ¿ô$p\not=0$ ¤ÎÏ¢·ëÂå¿ô·²¤Î»Ø¿ô͸¤ÊÉôʬ·²¤Ë¤Ä¤¤¤Æ |
13(3),
|
pp. 157- |
µÜËÜʿľ |
|
C ´Äµ |
11(4),
|
pp. 218- |
¼°æÀµÊ¸ |
|
Frobenius ¤ÎͽÁۤˤĤ¤¤Æ |
35(1),
|
pp. 82- |
¼ÅÄ·ûÂÀϺ |
|
Arithmetical ¤Ê«·²¤Î«ideal ¤Ë¤Ä¤¤¤Æ |
29(1),
|
pp. 75- |
¿¹¡¡¸÷Ìï |
|
Lie ´Ä¤Î3 ¼¡¸µ¥³¥Û¥â¥í¥¸¡¼·²¤Ë¤Ä¤¤¤Æ |
5(2),
|
pp. 85- |
ÌøÂôľ¼ù |
|
$L(1,\chi) > 0$ ¤Ç¤¢¤ë¤³¤È¤Î´Êñ¤Ê¾ÚÌÀ |
50(3),
|
pp. 314- |
Ìø¸¶¹°»Ö |
|
Algebraic scheme ¤ÎËä¹þ¤ß¤Ë¤Ä¤¤¤Æ |
20(1),
|
pp. 36- |
»³¸ý´´»Ò |
|
Âʱ߶ÊÀþ¤Î½àƱ·¿´Ä¤Ë¤Ä¤¤¤Æ |
14(1),
|
pp. 30- |
»³¸ý͵¹¬ |
|
¤¢¤ë¼Í±ÆÂ¿ÍÍÂΤÎÄêµÁÊýÄø¼°¤Ë¤Ä¤¤¤Æ |
26(2),
|
pp. 149- |
»³ºê¡¡µ× |
|
p¿Ê¿ôÂΤˤª¤±¤ë3-cohomology group ¤Ë¤Ä¤¤¤Æ |
4(1),
|
pp. 24- |
»³Ëܹ¬°ì |
|
Latin ¶ë·Á¤ÎÁ²¶á¿ô¤Èsymbolic method |
2(2),
|
pp. 159- |
»³Ëܹ¬°ì |
|
¤¤¤ï¤æ¤ë·²Latin square ¤Ë¤Ä¤¤¤Æ |
6(3),
|
pp. 162- |
»³Ëܹ¬°ì |
|
·Á¼°Åª»Ø¿ôÈ¡¿ô, ÂпôÈ¡¿ô¤ÈStirling ¤Î¿ô |
3(2),
|
pp. 89- |
»³Ëܹ¬°ì |
|
ÌäÂê5 ¡¦3 ¡¦4 ¤Ë¤Ä¤¤¤Æ |
6(1),
|
pp. 18- |
»³Ëܽ㶳 |
|
¤¢¤ë¼ï¤Î¹ÔÎó¤Î¸ÇÍÃͤˤĤ¤¤Æ |
11(1),
|
pp. 14- |
µÈ¸¶µ×É× |
|
Hyperelliptic threefold ¤Ë¤Ä¤¤¤Æ |
28(4),
|
pp. 359- |
µÈ¸¶µ×É× |
|
Ê¿ÌÌÍÍý¶ÊÀþ¤Î°ìÌäÂê |
31(3),
|
pp. 256- |
µÈ¸¶µ×É× |
|
Plucker ¤Î´Ø·¸¼°¤Î±þÍÑ |
32(4),
|
pp. 367- |
µÈ¸¶µ×É× |
|
ñÀíÅÀÍÍý¶ÊÀþ |
40(3),
|
pp. 269- |
ÏÂÅĽ¨ÃË |
|
ÁÇ¿ô¤òɽ¤ï¤¹Â¿¹à¼°¤Ë¤Ä¤¤¤Æ |
27(2),
|
pp. 160- |
ÏÂÅĽ¨ÃË |
|
2 ¼¡Âξå2 ¼¡³ÈÂç¤ÎÀ°¿ôÄì |
28(3),
|
pp. 257- |
ÀÄÌÚ¡¡À¶ |
|
Morse ¤ÎTypenzahl ¤Ë¤Ä¤¤¤Æ |
1(2),
|
pp. 116- |
°ËÆ£Éð¹¡¦ÃæÀîµ×ͺ¡¦¹âÌÚμ°ì |
|
¤¢¤ëÅùĹ¤Ï¤á¤³¤ß¤Ë¤Ä¤¤¤Æ |
26(2),
|
pp. 156- |
»åÀĸ |
|
Cheng-Toponogov ľ·ÂÄêÍý¤Î±þÍÑ |
35(3),
|
pp. 265- |
×½±Ê¾»µÈ |
|
Euclid ´ö²¿³Ø¤Î¹½À®¤Ë´Ø¤¹¤ë1 ¤Ä¤ÎÌäÂê |
25(1),
|
pp. 58- |
´äÅĻ깯 |
|
n ¼¡¸µÃ±ÂΤδö²¿³Ø |
2(3),
|
pp. 248- |
´äÅĻ깯 |
|
n ¼¡¸µÃ±ÂΤδö²¿³ØII |
5(3),
|
pp. 156- |
´äËܽ¨¹Ô |
|
°¿¤ë¼ï¤ÎÂоΤÊRiemann ¶õ´Ö¤Ë¤Ä¤¤¤Æ |
1(2),
|
pp. 111- |
´äËܽ¨¹Ô |
|
¿½ÅÀÑʬ¤Î´ö²¿³ØÅªÍýÏÀ |
1(2),
|
pp. 112- |
Âçµ×ÊÝë©ÆóϺ |
|
Cartan ¤Î°ÕÌ£¤Ë¤ª¤±¤ëMinkowski ¶õ´ÖÆâ¤ËCartan ͶÊÌ̤òÁÞÆþ¤·¤¦¤ë¤¿¤á¤Î¾ò·ï |
3(2),
|
pp. 97- |
ÂçÀ®ÀáÉ× |
|
Àµn ³Ñ·Á($n\equiv 0$ mod 6) ¤Îlattice constant ¤Ë¤Ä¤¤¤Æ |
14(4),
|
pp. 236- |
²¬Â¼Á±ÂÀϺ |
|
Quasi non euclidean space ¤Ë¤ª¤±¤ëds ¤Ë¤Ä¤¤¤Æ |
4(1),
|
pp. 28- |
²Ï¸ý¾¦¼¡¡¦·ËÅÄ˧»Þ |
|
2 ¼¡¸µÌÌÀѤ˽àµò¤¹¤ën ¼¡¸µ¶õ´Ö¤Ë¤ª¤±¤ë°¿¤ë¼ï¤Îtensor ¤ÎÊÑʬ³ØÅª¸«ÃϤˤè¤ë´ö²¿³ØÅª°ÕÌ£ |
1(4),
|
pp. 317- |
ÌÚ¸ÍËÓɧ |
|
¼Í±Æ´ö²¿³Ø¤Î´ðÁäˤĤ¤¤Æ |
3(4),
|
pp. 214- |
·ªÅÄ¡¡Ì |
|
°¿¤ë¼ï¤Î±¿Æ°¤Ë¤Ä¤¤¤Æ |
2(2),
|
pp. 164- |
·ªÅÄ¡¡Ì |
|
Klein ¶õ´Ö¤Î±¿Æ°I |
3(3),
|
pp. 158- |
·ªÅÄ¡¡Ì |
|
Klein ¶õ´Ö¤Î±¿Æ°II |
4(1),
|
pp. 29- |
·ªÅÄ¡¡Ì |
|
Guldin-Pappus ¤ÎÄêÍý¤Î³ÈÄ¥ |
5(2),
|
pp. 87- |
¾®Àô»ÍϺ |
|
Indefinite metric ¶õ´Ö¤Ë¤ª¤±¤ëPfaff ¼°¶¦ÊÑÈùʬ¤Îrotation ¤ÈRicci ¤Îrotation ¤È¤Î´Ø·¸¤Ë¤Ä¤¤¤Æ |
3(2),
|
pp. 94- |
¶áÆ£¾àÂÀϺ¡¦·ªÅÄ¡¡Ì |
|
n ¼¡¸µÃ±ÂΤÎn-1 ¼¡¸µÊÕñÂΤˤĤ¤¤Æ |
1(2),
|
pp. 114- |
º´¡¹ÌÚ½ÅÉ× |
|
Holonomy ·²¤Ë´Ø¤¹¤ë°ìÆó¤ÎÃí°Õ |
1(2),
|
pp. 110- |
ÇòÀî¡¡´² |
|
ÄêÉé¶ÊΨ¥ê¡¼¥Þ¥ó¶õ´Ö¾å¤Îgeodesic flow ¤Î¥¨¥ó¥È¥í¥Ô¡¼ |
24(3),
|
pp. 210- |
³°²¬·ÄÇ·½õ |
|
Cartan ¶õ´Ö³ÈÄ¥¤Ë´Ø¤¹¤ë°ìÌäÂê |
2(1),
|
pp. 47- |
³°²¬·ÄÇ·½õ |
|
Extensor ¤è¤êƳ¤«¤ì¤ëintrinsic ¤Êderivative ¤Ë¤Ä¤¤¤Æ |
2(4),
|
pp. 330- |
³°²¬·ÄÇ·½õ |
|
¹â¼¡¶ÊÌÌÁǶõ´Ö¤Ë¤ª¤±¤ë2 ¼¡Èùʬ·Á¼°¤ÎÉÔÊѼ°¤Ë¤Ä¤¤¤Æ |
3(2),
|
pp. 92- |
³°²¬·ÄÇ·½õ |
|
3 ¼¡ÊÐÈùʬÊýÄø¼°·Ï¤Îintrinsic ¤ÊÍýÏÀ¤Ë¤Ä¤¤¤Æ |
3(4),
|
pp. 212- |
¹âÌî°ìÉ× |
|
K .spreads ¤Î¶õ´Ö¤Î̵¸Â¾®ÊÑ·Á |
1(3),
|
pp. 210- |
¹âÌî°ìÉ× |
|
Riemann ¶õ´Ö¤ÎͶÊÌ̾å¤Î¶ÊÀþ¤ËÉí¿ï¤¹¤ëÎ̤ˤĤ¤¤Æ |
1(4),
|
pp. 316- |
¹âÌî°ìÉ× |
|
Spherical curves in Riemannian spaces |
2(2),
|
pp. 162- |
Åļ¡¡¾Í |
|
ÊÄ¿³Ñ·Á¤Ë´Ø¤¹¤ëJordan ¤ÎÄêÍý¤ÎHilbert ¤Î½ç½ø¤Î¸øÍý¤Ë¤è¤ë¾ÚÌÀ |
4(2),
|
pp. 90- |
ÅÄÃæ½ã°ì |
|
Cocycle ¤Î¾¦¤ËÂбþ¤¹¤ëinvariant subspace |
28(3),
|
pp. 252- |
ÅÄȪÉÔÆóÉ× |
|
±¿Æ°ÇÞ¼ÁÃæ¤ÎÅÁÇÅÊý¼°¤Ë´Ø¤¹¤ë¶¦í÷×Î̤ÎRiemann ´ö²¿³Ø¤Î±þÍÑ |
2(4),
|
pp. 328- |
ÅÄÃæ¡¡¿Ê |
|
¼Í±ÆÅªÁ´¶ÊΨ¤Ë´Ø¤¹¤ëextremale ¤Ë¤Ä¤¤¤Æ |
5(2),
|
pp. 89- |
ÄÍËÜÍÛÂÀϺ |
|
Àµ¶ÊΨRiemann ¶õ´Ö¤Î¤¢¤ëÂç°èŪÀ¼Á¤Ë¤Ä¤¤¤Æ |
15(2),
|
pp. 97- |
Åû¸ýÀµ»Ò¡¦Æ£°æÀ¡»Ò |
|
¸ÅŵÈùʬ´ö²¿³Ø¤Ë¤ª¤±¤ë¤¢¤ë¼ï¤Îvector ¤Ë¤Ä¤¤¤Æ |
2(1),
|
pp. 51- |
»ûËÜÀ¯¼¡ |
|
³ÈÄ¥¤µ¤ì¤¿Ä¾¶ËÅÀ¤Ë¤Ä¤¤¤Æ |
4(1),
|
pp. 31- |
īĹ¹¯Ïº |
|
Laguerre ´ö²¿³Ø¤Î³ÈÄ¥ |
1(3),
|
pp. 212- |
īĹ¹¯Ïº |
|
Riemann ¶õ´Ö¤Ë¤ª¤±¤ëÆó³¬Àþ·¿ÈùʬÊýÄø¼°¤Ë¤Ä¤¤¤Æ |
2(3),
|
pp. 246- |
īĹ¹¯Ïº |
|
Riemann ¶õ´Ö¤ÎBetti number ¤Ë¤Ä¤¤¤Æ(II) |
2(4),
|
pp. 332- |
īĹ¹¯Ïº |
|
Green ¤ÎÄêÍý¤Î±þÍÑ(I) |
3(1),
|
pp. 36- |
īĹ¹¯Ïº |
|
¶ÊΨ¤ÈBetti ¿ô |
3(3),
|
pp. 161- |
īĹ¹¯Ïº |
|
Green ¤ÎÄêÍý¤Î±þÍÑ(II) |
3(4),
|
pp. 213- |
īĹ¹¯Ïº |
|
Riemann ¶õ´Ö¤ÎBetti ¿ô¤Îɾ²Á |
4(2),
|
pp. 89- |
īĹ¹¯Ïº |
|
Riemann ¶õ´Ö¤ÎBetti ¿ô¤Î¾å¸Â |
4(3),
|
pp. 157- |
īĹ¹¯Ïº |
|
Riemann ¶õ´Ö¤ÎBetti ¿ô¤Ë´Ø¤¹¤ë½ôÄêÍý |
4(4),
|
pp. 233- |
īĹ¹¯Ïº |
|
Betti ¿ô¤Î¾å¸Â¤Ë´Ø¤¹¤ë°ìÄêÍý |
5(3),
|
pp. 159- |
īĹ¹¯Ïº |
|
Homogeneous Riemann ¶õ´Ö¤Î°ì³ÈÄ¥ |
8(2),
|
pp. 100- |
īĹ¹¯Ïº |
|
Äê¾ïή¤ËÂФ¹¤ëºÇ®¶ÊÀþ |
26(1),
|
pp. 40- |
ĹÊ÷¿·°ì |
|
Hadamard ¿ÍÍÂξå¤Î¬Ãϵå¤ÎÂÎÀѤȶÊΨ |
36(2),
|
pp. 174- |
À¾²¬µÁÉ× |
|
Adams ±ß¤Ë¤Ä¤¤¤Æ |
1(2),
|
pp. 115- |
À¾²¬µÁÉ× |
|
Lemoine ¿â»°³Ñ·Á¤Ë¤Ä¤¤¤Æ |
1(3),
|
pp. 209- |
À¾²¬µÁÉ× |
|
Jordan ¤ÎÆâÀÜÀµÂ¿³Ñ·Á¶Ë¸ÂË¡¤Ë¤ª¤±¤ëÊÌË¡¤Ë¤Ä¤¤¤Æ |
2(4),
|
pp. 333- |
¸¶ÉÙ·ÄÂÀϺ |
|
¶õ´Ö·Á¤Î¼Â¸½¤Ë¤Ä¤¤¤Æ |
2(3),
|
pp. 242- |
Ê¿ËÜ¿¿Æó |
|
¡Æ´ö²¿³Ø½øÀâ¡Ç¤Ë¤Ä¤¤¤Æ¤Î2 ¤Ä¤ÎÃí°Õ |
25(1),
|
pp. 57- |
Ê¿Ìî¾®ÂÀϺ |
|
°¿¤ë¼ï¤ÎÅÀÎó¤Ë¤Ä¤¤¤Æ |
6(4),
|
pp. 219- |
Ê¿Ìî¾®ÂÀϺ |
|
¼ã´³ÁȤÎcenter circles ¤ª¤è¤Ó¤½¤Î´Ø·¸ |
8(4),
|
pp. 210- |
Ê¿Ìî¾®ÂÀϺ |
|
°¿¤ë¼ï¤ÎÅÀÎó¤Ë¤Ä¤¤¤Æ(³) |
9(3),
|
pp. 150- |
Ê¿Ìî¾®ÂÀϺ |
|
Kantor ¤ÎÎà»÷ÄêÍý¤È°ì¤Ä¤Îcenter circle |
9(3),
|
pp. 150- |
ÔϹ¾À¿É× |
|
»°ÇÞ²ðÊÑ¿ô¤ò»ý¤Ã¤¿ÊÑ´¹·²¤Îisomorphie ¤Ë¤Ä¤¤¤Æ |
1(3),
|
pp. 211- |
ÔϹ¾À¿É× |
|
·²¶õ´Ö¤Èholonomy ·²¤È¤Î´Ø·¸ |
3(1),
|
pp. 35- |
¾¾ÅÄÇîÃË |
|
¾ýÌî-Ìî¿å¤ÎÄêÍý¤Î1 Ãí°Õ |
36(2),
|
pp. 178- |
¾¾ÅĽÅÀ¸ |
|
;ÀܥХó¥É¥ë¤¬weakly ample ¤Ê¥±¡¼¥é¡¼Â¿ÍÍÂΤÎÉáÊ×Èïʤ¤Ë¤Ä¤¤¤Æ |
35(3),
|
pp. 264- |
¾¾ËÜ¡¡À¿ |
|
$n+2$ ¼¡¸µEuclid ¶õ´Ö¤În¼¡¸µParalle variety |
3(1),
|
pp. 37- |
¾¾ËÜ¡¡À¿ |
|
T¡¥Y¡¥Thomas »á¤Îclass 1 ¤ÎRiemann ¶õ´Ö¤ÎÍýÏÀ¤Ø¤ÎÊä |
3(3),
|
pp. 155- |
¾¾ËÜ¡¡À¿ |
|
¶¦·ÁŪ¤Ëʿó¤ÊRiemann ¶õ´Ö¤Îclass ¿ô¤Ë¤Ä¤¤¤Æ |
2(3),
|
pp. 247- |
¾¾ËܲÆÍº |
|
»°³Ñ·Á¤Ë´ØÏ¢¤·¤¿ÌäÂêµ |
2(4),
|
pp. 334- |
¾¾ËܲÆÍº |
|
3 ³Ñ·Á¤Ë´ØÏ¢¤·¤¿ÌäÂêII |
3(3),
|
pp. 160- |
¾¾ËܲÆÍº |
|
3 ³Ñ·Á¤Ë´ØÏ¢¤·¤¿ÌäÂêIII |
3(4),
|
pp. 218- |
¼¼ç¹±Ïº |
|
Hermite ¶õ´Ö¤Ë¤ª¤±¤ëÀþ·¿Àܳ¤Ë¤Ä¤¤¤Æ |
1(2),
|
pp. 113- |
¿¹¡¡Çî |
|
¶Ë¾®¶ÊÌ̤ΰÂÄêÀ¤Ë¤Ä¤¤¤Æ |
32(2),
|
pp. 156- |
ÌÓÍø½¸Íº |
|
¶ËÀþ·²¤Ë°Í¤ì¤ëɽÌ̤μͱÆÅªÅ¸³«ÊÑ·Á¤Ë¤Ä¤¤¤Æ |
1(3),
|
pp. 207- |
ÌðÌî·òÂÀϺ |
|
̵¸Â¾®ÊÑ·Á¤ÎÍýÏÀ¤Ë¤Ä¤¤¤Æ |
1(2),
|
pp. 108- |
Í´¾èË·¿ðËþ |
|
Ê¿Ì̾å¤Î°¿¤ë±¿Æ°¤Ë¤Ä¤¤¤Æ |
2(2),
|
pp. 164- |
Àô²°¼þ°ì |
|
°ÌÁêŪ°ÂÄêÈùʬ²ÄǽƱÊѼÌÁü¤Ë¤Ä¤¤¤Æ |
32(4),
|
pp. 369- |
ÂΩÀµµ× |
|
Chern ÆÃÀÎà¤Ë¤Ä¤¤¤Æ¤Î°ìÃí°Õ |
11(4),
|
pp. 225- |
ÂΩÀµµ× |
|
°¿¤ë¼ï¤Î16 ¼¡¸µÂ¿ÍÍÂΤγµÊ£Áǹ½Â¤ |
15(3),
|
pp. 167- |
¸üÃÏÀµÉ§ |
|
ÌäÂê6.2.16 ¤Î²ò¡Êµ÷Î¥¶õ´Ö¤Î¾ì¹ç¡Ë |
8(3),
|
pp. 152- |
¸üÃÏÀµÉ§ |
|
Ϣ³¤Ê¼ÂÈ¡¿ô¤¬¤¹¤Ù¤Æ°ìÍÍϢ³¤Ç¤¢¤ë¶õ´Ö¡Ê°ìÈ̤ξì¹ç¡Ë |
8(4),
|
pp. 211- |
°ÂÆ£¡¡Ë |
|
Dold ¤Î¿ÍÍÂΤÎËä¤á¹þ¤ß¤Ë´Ø¤¹¤ë°ì·ë²Ì |
16(3),
|
pp. 151- |
°ÂÆ£¡¡Ë |
|
ºï½üÀѤ¬µåÌ̤ȥۥâ¥È¥Ô¡¼Æ±ÃͤÊ¿ÍÍÂÎ |
21(4),
|
pp. 289- |
ÀÐÅÏ¡¡µ£ |
|
Stone-Čech compactification ¤Ë´Ø¤¹¤ëÁÐÂÐÀ¤Ë¤Ä¤¤¤Æ |
11(4),
|
pp. 226- |
ÀÐËܹÀ¹¯ |
|
n ¼¡¸µÊÄ¿ÍÍÂΤÎ$(n+1)$ ¼¡¸µÃ±Ï¢·ëÊÄ¿ÍÍÂΤؤÎËä¤á¤³¤ß¤Ë¤Ä¤¤¤Æ |
18(1),
|
pp. 43- |
ÀÐËܹÀ¹¯ |
|
¥Õ¥¡¥¤¥Ð¡¼¶õ´Ö¤Î¥¹¥Ú¥¯¥È¥ë·ÏÎó¤Ë´Ø¤¹¤ëSerre ¤Î´ðËÜÄêÍý¤Ë¤Ä¤¤¤Æ |
16(4),
|
pp. 225- |
°ËÆ£À¶»° |
|
Ϣ³ȡ¿ô¤¬°ìÍÍϢ³¤È¤Ê¤ë¶õ´Ö¤Ë¤Ä¤¤¤Æ |
7(1),
|
pp. 26- |
´ä·¡Ä¹·Ä |
|
¿¹ËÜ»á¤ÎÏÀʸ¤Ë¤Ä¤¤¤Æ |
4(2),
|
pp. 99- |
´ä¼¡¡Îþ |
|
µåÌ̾å¤Î°¿¤ë°ÌÁê¼ÌÁü¤Ë¤Ä¤¤¤Æ |
2(1),
|
pp. 54- |
¾å¸¶¡¡Çî¡¦Ãæ²¬¡¡Ì |
|
Whitney-Postnikov ¤Îextension theorem ¤Ë¤Ä¤¤¤Æ |
3(4),
|
pp. 221- |
ÂçÄÐÉÙÇ·½õ |
|
µ÷Î¥¶õ´Ö¤Ë¤ª¤±¤ëpath ¤Ë¤Ä¤¤¤Æ |
1(2),
|
pp. 92- |
²ÏÅķɵÁ¡¦ÇòÀС¡µ£ |
|
Èùʬ¼°¤Ècochain ¤È¤Î´Ø·¸¤Ë¤Ä¤¤¤Æ |
2(4),
|
pp. 342- |
¸Å´Ø·ò°ì |
|
ÆóÎΰè¤Ë¶¦Ä̤ʤ붳¦ |
1(2),
|
pp. 91- |
¾®µÜ¹î¹° |
|
$Z_2$ ¿ÍÍÂξå¤ÎȿƱÊÑ¥Ù¥¯¥È¥ë¾ì¤Î¸ºß¤Ë¤Ä¤¤¤Æ |
32(3),
|
pp. 272- |
ºûÈøÌ÷Ì顦ĹÀп¿À¡ |
|
»Í¸µ¿ô¼Í±Æ¶õ´Ö¤Î¼«¸Ê¼ÌÁü |
24(3),
|
pp. 221- |
±ö˰Ãé°ì |
|
Quasifibration ¤Îμ-prolongation ¤Ë¤Ä¤¤¤Æ |
23(2),
|
pp. 147- |
ÀÅ´ÖÎɼ¡ |
|
Stiefel ¤Î½¸¹çÂΤÎBetti ·²¤Ë¤Ä¤¤¤Æ |
2(2),
|
pp. 169- |
ÀÅ´ÖÎɼ¡ |
|
°¿¤ë¼ï¤Îfibre bundle ¤Îtopological invariant ¤Ë¤Ä¤¤¤Æ |
2(2),
|
pp. 168- |
ÇòÀС¡µ£ |
|
¿ÌÌÂΤÎhomotopy groups ¤Îgenerators ¤Ë¤Ä¤¤¤Æ |
4(4),
|
pp. 236- |
ÀÖ¡¡ÀÝÌé |
|
Gauss-Bonnet ¤ÎÄêÍý¤Ë¤Ä¤¤¤Æ |
5(2),
|
pp. 92- |
À¥»³»ÎϺ |
|
Ê£ÂΡ¤Â¿ÌÌÂΤηë¤ÈË䢼¡¸µ¤Ë¤Ä¤¤¤Æ¤Î°ìÃí°Õ |
34(3),
|
pp. 273- |
¹â¶¶ÅµÂç |
|
S(X) ¤«¤é$\overline{Q}(X)$ ¤Ø¤Îchain equivalent ¤«¤Äproduct preserving ¤Êmapping ¤Ë¤Ä¤¤¤Æ |
8(1),
|
pp. 37- |
¶ÌÌîµ×¹° |
|
¥Ñ¥é¥³¥ó¥Ñ¥¯¥È¶õ´Ö¤Ë¤Ä¤¤¤Æ |
11(4),
|
pp. 222- |
±Ê¸«·¼±þ |
|
°ìÍͰÌÁê¶õ´Ö¤Î¹çƱÊÑ´¹¤Î¤Ê¤¹·²¤Î°ÌÁê²½¤Ë¤Ä¤¤¤Æ |
5(1),
|
pp. 34- |
±Ê¸«·¼±þ |
|
¶õ´Ö¤Îparacompactness ¤Ë¤Ä¤¤¤Æ |
6(1),
|
pp. 20- |
±Ê¸«·¼±þ |
|
Baire È¡¿ô¤Ë¤Ä¤¤¤Æ |
6(2),
|
pp. 94- |
±Ê¸«·¼±þ |
|
Paracompact $T_2$ space ¤Î¶É½êŪÀ¼Á¤Ë¤Ä¤¤¤Æ |
6(3),
|
pp. 166- |
±Ê¸«·¼±þ |
|
D. Montgomery ¤ÎÄêÍý¤Ë¤Ä¤¤¤Æ |
7(1),
|
pp. 29- |
Ãæ²¬¡¡Ì |
|
Hurewicz ¤ÎÄêÍý¤Î³ÈÄ¥¤È¤½¤Î±þÍѤˤĤ¤¤Æ |
5(3),
|
pp. 160- |
ÃæÂ¼ÆÀÇ· |
|
Abe Group ¤Î³ÈÄ¥¤Ë¤Ä¤¤¤Æ |
5(3),
|
pp. 164- |
ÃæÌîÌÐÃË |
|
Ê£ÁÇľÀþ¥Ð¥ó¥É¥ë¤ÎÊÑ·Á¤Ë´Ø¤¹¤ë°ìÃí°Õ |
16(2),
|
pp. 102- |
ĹÅĽá°ì |
|
°ÌÁê´°È÷¤Ë¤Ä¤¤¤Æ |
2(1),
|
pp. 53- |
ÇÈÊÕůϯ |
|
ͶÊÌ̤Υ³¥Û¥â¥í¥¸¡¼·²¤Ë¤Ä¤¤¤Æ¤ÎÃí°Õ |
17(1),
|
pp. 30- |
Ìî¸ý¡¡¹ |
|
Absolute neighborhood retract ¤Ë¤Ä¤¤¤Æ |
4(1),
|
pp. 35- |
Ìî¸ý¡¡¹ |
|
Poincare manifold ¤Î°ì¤Ä¤ÎÀ¼Á |
4(2),
|
pp. 93- |
ÌîÁһ̵ª |
|
¶Ò¶õ´Ö¤ÎSuslin ¿ô |
29(4),
|
pp. 363- |
¶¶Ëܹ°»Ö |
|
. °ÌÁê¤È¤½¤Î±þÍÑ |
26(3),
|
pp. 248- |
¶¶Ëܹ°»Ö |
|
ÅÀ½¸¹ç¤ÎÎà»÷¤Ë¤Ä¤¤¤Æ |
5(2),
|
pp. 100- |
ÎÓ¡¡±É°ì |
|
°¿¤ë¼ï¤Î¶õ´Ö¤Î³ÈÄ¥¤Ë¤Ä¤¤¤Æ |
6(2),
|
pp. 97- |
ÎÓ¡¡±É°ì |
|
¶Å½¸ÅÀ¤Î½¸¹ç¤Ë¤è¤ë°ÌÁê |
9(3),
|
pp. 149- |
ÎÓ¡¡±É°ì |
|
¶É½êŪ¤ËÁ¤Ȥʤé¤Ê¤¤ÅÀ¤Î½¸¹ç |
11(2),
|
pp. 99- |
ÎÓ¡¡±É°ì |
|
λ °ÌÁê¤Ë¤Ä¤¤¤Æ |
14(3),
|
pp. 167- |
ÎÓ¡¡±É°ì |
|
Proximity ¶õ´Ö¤Ë¤Ä¤¤¤Æ |
25(1),
|
pp. 52- |
ÎÓ¡¡Îɾ¼ |
|
Countably paracompact ¤Ê°ÌÁê¶õ´Ö¤Ë¤Ä¤¤¤Æ |
11(1),
|
pp. 21- |
ÎÓ¡¡Îɾ¼ |
|
²Ä»»Åªmetacompact ¤Ç¤Ê¤¤ÀµÂ§¶õ´Ö |
18(4),
|
pp. 234- |
ÎÓ¡¡Îɾ¼ |
|
²Äʬµ÷Î¥¶õ´Ö¤Î¼¡¸µ¤Î¸øÍýŪÆÃħ¤Å¤± |
44(2),
|
pp. 181- |
¸ÅÃÓ»þÆü»ù |
|
Anosov ÈùʬƱÁê¼ÌÁü¤ÈAxiom A ¤Î´Ø·¸¤Ë¤Ä¤¤¤Æ |
29(3),
|
pp. 228- |
ËÒÅÄÍø»Ò |
|
;¼¡¸µ1 ¤ÎÍÕÁع½Â¤¤Î¸ºß¤Ë¤Ä¤¤¤Æ |
27(2),
|
pp. 163- |
¾¾²¬»ËÏ |
|
Bundle-like ·×Î̤ò¤â¤ÄÍÕÁع½Â¤¤Ë¤Ä¤¤¤Æ |
29(1),
|
pp. 72- |
¸æ±àÀ¸Á±¾° |
|
Factor ¤ÎľÀѤˤĤ¤¤Æ |
8(1),
|
pp. 32- |
¿ÑÀ¸²íÆ» |
|
Duality ¤ÈÈó²Ä¬½¸¹ç¤ª¤è¤ÓBaire ¤ÎÀ¼Á¤òͤ·¤Ê¤¤½¸¹ç¤Î¸ºß |
11(1),
|
pp. 18- |
¿ÑÀ¸²íÆ» |
|
°ÌÁê¶õ´Ö¤Ë¤ª¤±¤ëÆó»°¤Î¼ÂÎã |
11(1),
|
pp. 17- |
»°ÎØÂóÉ× |
|
¶õ´Ö¤Î°ÌÁêÇ»ÅÙ¤¬¤½¤Îk ÀèÆ³¤Ë·Ñ¾µ¤µ¤ì¤Ê¤¤Îã |
29(3),
|
pp. 228- |
»°ÎØÂóÉ× |
|
ÊļÌÁü¤Ë¤è¤ëÃͰè¤Îʬ²ò¤Ë¤Ä¤¤¤Æ |
30(1),
|
pp. 68- |
¿¹Åĵª°ì |
|
¼¡¸µÏÀ¤Î²ÃË¡ÄêÍý¤Ë¤Ä¤¤¤Æ |
1(3),
|
pp. 197- |
¿¹ËÜÌÀɧ |
|
µåÌ̤ÎÂç±ß¤òÂç±ß¤Ë¤¦¤Ä¤¹homeomorphism ¤Ë¤Ä¤¤¤Æ |
4(2),
|
pp. 98- |
»³¥Î²¼¾ïÍ¿ |
|
$A^*(Z_2,Z_2)$ ¤Ë´Ø¤¹¤ë°¿¤ëexact sequence ¤Ë¤Ä¤¤¤Æ |
8(1),
|
pp. 33- |
»³¥Î²¼¾ïÍ¿ |
|
Homogeneous space ¤Î¼¡¸µ¤Ë¤Ä¤¤¤Æ |
6(2),
|
pp. 91- |
ÊÆÅÄ¿®É× |
|
ÌäÂê5¡¦4¡¦10--±ßÅû¤Î³ÈÄ¥¤Ë¤è¤ë¶õ´Ö¤Îʬ³ä¤ÎÌäÂê--¤Ë¤Ä¤¤¤Æ |
6(3),
|
pp. 168- |
ÊÆÅÄ¿®É× |
|
Ϣ³¼ÌÁü¤Î°ì¤Ä¤Î°ÌÁêÉÔÊÑÎ̤ˤĤ¤¤Æ |
3(3),
|
pp. 163- |
°ÂÇÜ¡¡ÀÆ |
|
´Ä¾õÎΰè¤ÎÅù³Ñ¼ÌÁü¤Ë¤Ä¤¤¤Æ |
8(1),
|
pp. 25- |
µï¶ðÏÂͺ |
|
K-QC ¼ÌÁü¤Ë¤ª¤±¤ëSchwarz ¤Îlemma ¤Ë¤Ä¤¤¤Æ |
11(1),
|
pp. 15- |
µï¶ðÏÂͺ |
|
¶õ´ÖK-µ¼Åù³Ñ¼ÌÁü¤Ë¤ª¤±¤ëSchwarz ¤Îlemma ¤Ë¤Ä¤¤¤Æ |
16(2),
|
pp. 104- |
ÀÐÀîÀº°ì |
|
³ÈÄ¥¤µ¤ì¤¿Titchmarsh ¤ÎÄêÍý¤Î¾ÚÌÀ¤Ë¤Ä¤¤¤Æ |
21(2),
|
pp. 131- |
°æ¾åÀµÍº |
|
On defining properties of harmonic functions |
1(4),
|
pp. 302- |
°æ¾åÀµÍº |
|
On functional determination of the stability of Dirichlet's problem |
2(1),
|
pp. 39- |
°æ¾åÀµÍº |
|
ÀÑʬÊýÄø¼°¤Ë¤è¤ë¶³¦ÃÍÌäÂê¤Î²òË¡¤Ë¤Ä¤¤¤Æ |
6(3),
|
pp. 161- |
ÃöÌî»êŬ |
|
Ã༡ÂåÆþ¤Ë¤è¤ëÊ£ÁÇ¿ôÎó |
2(4),
|
pp. 313- |
µûÊÖ¡¡Àµ¡¦µµÃ«½Ó»Ê |
|
°ìÈ̤Îpotential ÏÀ¤Ë¤ª¤±¤ëEvans ¤ÎÄêÍý¤Ë¤Ä¤¤¤Æ |
1(1),
|
pp. 30- |
ÇßÂôÉÒÉ× |
|
p ÍÕÀ±·¿¼Ì¾Ý¤Ë¤Ä¤¤¤Æ |
4(1),
|
pp. 22- |
ÇßÂôÉÒÉ× |
|
È¡¿ô¤Î¿ÍÕÀ¤Ë¤Ä¤¤¤Æ |
4(2),
|
pp. 82- |
ÇßÂôÉÒÉ× |
|
°ìÊý¸þ¤Ëp ¼¡À±·¿¤Ê¤ëÈ¡¿ô |
4(3),
|
pp. 153- |
ÇßÂôÉÒÉ× |
|
Ê¿¶ÑÃͤÎÄêÍý¤Î³ÈÄ¥¤Ë¤Ä¤¤¤Æ |
4(4),
|
pp. 226- |
µÚÀî¹ÂÀϺ |
|
µ¼Åù³Ñ¼ÌÁü¤ÎÆó»°¤ÎÀ¼Á |
9(1),
|
pp. 13- |
µÚÀî¹ÂÀϺ |
|
Åù³ÑŽÉդˤè¤Ã¤Æºî¤é¤ì¤¿Riemann Ì̤η¿ÌäÂê¤Ë¤Ä¤¤¤Æ |
12(3),
|
pp. 160- |
ÂçÄŲ쿮 |
|
Poisson ÀÑʬ¤Ë´Ø¤¹¤ë°ìÄêÍý |
1(1),
|
pp. 31- |
ÂçÄŲ쿮 |
|
Jordan Îΰè¤Ë¤ª¤±¤ë½¸ÀÑÃͽ¸¹ç |
2(2),
|
pp. 141- |
¾®Àî¾±ÂÀϺ¡¦ºä¸ýÚÞ°ì |
|
ñ°Ì±ßÆâÀµÂ§È¡¿ô¤Î·¸¿ô¤Ë¤Ä¤¤¤Æ |
5(1),
|
pp. 26- |
¾®Âô¡¡Ëþ |
|
Finitely mean valent function ¤Î°¿¤ëÀ¼Á¤Ë¤Ä¤¤¤Æ |
2(3),
|
pp. 223- |
ÈøºêÈËͺ¡¦µÈÅÄÆÁÇ·½õ |
|
¿ÍÕÈ¡¿ô¤ÎÆó»°¤ÎÀ¼Á¤Ë¤Ä¤¤¤Æ |
2(3),
|
pp. 213- |
ÈøºêÈËͺ¡¦µÈÅÄÆÁÇ·½õ |
|
ÌÌÀÑÄêÍý¤Î³ÈÄ¥¤Ë¤Ä¤¤¤Æ |
2(2),
|
pp. 140- |
ÈøºêÈËͺ |
|
È¡¿ô¤Î¿ÍÕÀ¤Ë¤Ä¤¤¤Æ |
1(2),
|
pp. 132- |
ÈøÌî¡¡¸ù |
|
ÍÍý·¿È¡¿ô¤ÎÊ¿¶ÑËç¿ô¤Ë¤Ä¤¤¤Æ |
2(3),
|
pp. 222- |
ÈøÌî¡¡¸ù |
|
ÍÍý·¿Â¿ÍÕÈ¡¿ô¤ÎÌÌÀÑÄêÍý |
3(1),
|
pp. 29- |
ÈøÏ½ŵÁ |
|
Fractional derivative ¤ÎĶ´ö²¿µé¿ô¤Ø¤Î±þÍÑ |
38(4),
|
pp. 360- |
ÈøÏ½ŵÁ |
|
²òÀÏ´Ø¿ô¤ÎÀ±·¿¾ò·ï¤Ë¤Ä¤¤¤Æ |
46(2),
|
pp. 180- |
³ÀÅĹâÉ× |
|
Àµ·¿Ä¶È¡¿ô¤Ë´Ø¤¹¤ë°ìÃí°Õ |
6(4),
|
pp. 218- |
²ÃÆ£¿òͺ |
|
Riemann Ì̤ÎWeierstrass ɸ½à·Á¤È¤½¤Î±þÍÑ |
32(1),
|
pp. 73- |
´î¿ÄÌÉð |
|
¿ÊÑ¿ôÈ¡¿ôÏÀ¤è¤ê¸«¤¿Riemann Ì̤ΰì¤Ä¤ÎÌäÂê |
23(3),
|
pp. 219- |
¸ùÎ϶âÆóϺ |
|
Potential ÏÀ¤Î³ÈÄ¥ |
1(3),
|
pp. 192- |
µ×ÊÝÃéͺ |
|
Ê¿¹ÔÙ£Àþ¼ÌÁüÈ¡¿ô¤Î±þÍÑ |
5(4),
|
pp. 221- |
·ªÅÄ¡¡Ì |
|
¿ÊÑ¿ôÊ£ÁÇ´Ø¿ô¤ÎMartinelli-Bochner ¤ÎÀÑʬ¸ø¼°¤Ë¤Ä¤¤¤Æ |
16(3),
|
pp. 150- |
¾®ÎÓ¾º¼£¡¦¿áÅÄ¿®Ç· |
|
$H_1$ ¶ËÃͤˤĤ¤¤Æ |
26(4),
|
pp. 347- |
¾®ËÙ¡¡·û |
|
¿ÍÕÈ¡¿ôÏÀ¤Ë¤ª¤±¤ëÉÔÅù¼° |
1(2),
|
pp. 133- |
¾®¾¾Í¦ºî |
|
Æó½ÅÏ¢·ëÎΰè¤ÎÅù³Ñ¼ÌÁü |
1(2),
|
pp. 130- |
ºä¸ýÚÞ°ì |
|
°ìÊý¸þ¤Ëp ¼¡À±·¿¤Ê¤ëÈ¡¿ô |
5(3),
|
pp. 148- |
ºä¸ýÚÞ°ì |
|
ÀµÂ§È¡¿ô¤Î·¸¿ô¤Ë¤Ä¤¤¤Æ |
6(2),
|
pp. 83- |
ºä¸ýÚÞ°ì |
|
ÆÌ·¿´Ø¿ô¤Î°ìÀ¼Á¤ÈñÍÕ¾ò·ï¤Ø¤Î±þÍÑ |
23(4),
|
pp. 296- |
¼ò°æ±É°ì |
|
²òÀÏÈ¡¿ô¤Î¿ÍÕÀ¤Ë¤Ä¤¤¤Æ |
2(2),
|
pp. 146- |
º´Æ£±ÉµÁ |
|
ͳ¦È¡¿ô¤ÎÆó¤Ä¤ÎÄêÍý |
7(2),
|
pp. 99- |
º´Æ£ÂçȬϺ |
|
À°¿ôÃÍÀ°È¡¿ô¤Ë¤Ä¤¤¤Æ¤ÎÆó¤Ä¤ÎÈ¿Îã¤ÈÃí°Õ |
14(2),
|
pp. 95- |
º´Æ£ÂçȬϺ |
|
ÁýÂç¤Î¤Ï¤ä¤¤À°È¡¿ô¤ÎÁýÂçÅ٤ˤĤ¤¤Æ |
15(2),
|
pp. 101- |
º´Æ£ÆÁ°Õ |
|
Abel ¤ÎÉÔÅù¼°¤Î³ÈÄ¥¤Î±þÍÑ |
1(3),
|
pp. 193- |
¿áÅÄ¿®Ç·¡¦²ÃÆ£¿òͺ |
|
Harmonic length ¤Ë¤Ä¤¤¤Æ |
23(1),
|
pp. 47- |
¹â¶¶¿Ê°ì |
|
ͳ¦¤Ê²òÀÏŪÊÑ´¹¤Ë¤Ä¤¤¤Æ |
6(4),
|
pp. 217- |
ÅļÆóϺ |
|
Prufer ¤ÎÎã¤Ë¤Ä¤¤¤Æ |
19(3),
|
pp. 173- |
±ÊÅİìϺ |
|
ÀµÂ§È¡¿ô¤Ë¤Ä¤¤¤Æ |
4(2),
|
pp. 81- |
Ãæ°æ»°Î± |
|
ÍÍý·¿È¡¿ôÂÎ¤ÎÆ±·¿ÄêÍý |
27(4),
|
pp. 371- |
ÃæÅ羡Ìé |
|
Lindelöf ¤Î¸¶Íý¤Ë¤è¤ëÆó»°¤ÎÄêÍý¤Ë¤Ä¤¤¤Æ |
3(3),
|
pp. 144- |
̾ÁÒ¾»Ê¿ |
|
Faber ¤Î¿¹à¼° |
2(2),
|
pp. 148- |
¿ÜÆá¡¡æâ |
|
¤¢¤ëDirichlet ´Ä¤Ëľ¸ò¤¹¤ë´°Á´ÆÃ°Û¬Å٤ˤĤ¤¤Æ |
34(4),
|
pp. 371- |
ÆéÅç°ìϺ |
|
ñ°Ì±ßÆâͳ¦ÀµÂ§È¡¿ô¤ÎÎíÅÀ¤È³ÑÈù·¸¿ô¤Ë¤Ä¤¤¤Æ |
1(4),
|
pp. 307- |
ÆéÅç°ìϺ |
|
³ÑÈù·¸¿ô¤Ë¤Ä¤¤¤Æ(I) |
2(3),
|
pp. 217- |
ÆéÅç°ìϺ |
|
³ÑÈù·¸¿ô¤Ë¤Ä¤¤¤Æ(II) |
4(4),
|
pp. 228- |
ÆéÅç°ìϺ |
|
Ahlfors ¤ÎÄêÍý¤Ë¤Ä¤¤¤Æ¤Î°ìÃí°Õ |
5(1),
|
pp. 25- |
ÆéÅç°ìϺ |
|
³ÑÈù·¸¿ô¤Ë¤Ä¤¤¤Æ(III) |
8(3),
|
pp. 149- |
ÆóµÜ¿®¹¬ |
|
Ê¿¹ÕʬÉۤθºß¤Ë¤Ä¤¤¤Æ |
2(2),
|
pp. 149- |
ÆóµÜ¿®¹¬ |
|
¼ÁÎÌʬÉÛ¤Îla convergence fine ¤Ë¤Ä¤¤¤Æ |
4(3),
|
pp. 151- |
ÆóµÜ¿®¹¬ |
|
Âпô¥Ý¥Æ¥ó¥·¥ã¥ë¤Ë¤ª¤±¤ëºÇÂçÃͤÎÄêÍý |
5(4),
|
pp. 220- |
ÆóµÜ¿®¹¬ |
|
Ê£ÁÇÂоγ˥ݥƥ󥷥ã¥ë¤Ë¤Ä¤¤¤Æ |
20(2),
|
pp. 96- |
ÆóµÜ½Õ¼ù |
|
¥ä¥³¥Ó¥¢¥ó¤òÎí¤È¤¹¤ë2 ¤Ä¤ÎÊ£ÁÇ¿ôÃÍ´Ø¿ô¤Î´Ø¿ôÏÀŪÀ¼Á¤Ë¤Ä¤¤¤Æ |
38(4),
|
pp. 362- |
ÉÛÀî¡¡¸î |
|
¤¢¤ëñÍÕ´Ø¿ô¤ÎÀ±·¿¸Â³¦¤Ë¤Ä¤¤¤Æ |
31(3),
|
pp. 255- |
ÉÛÀî¡¡¸î |
|
ñÍդǤ¢¤ë¤¿¤á¤Î°ì¤Ä¤Î½½Ê¬¾ò·ï¤Ë¤Ä¤¤¤Æ |
46(1),
|
pp. 68- |
ÉÛÀî¡¡¸î¡¦ÈøÏ½ŵÁ¡¦ºØÆ£¡¡ÀÆ |
|
¤¢¤ë²òÀÏ´Ø¿ô¤ÎÊгѤ˴ؤ¹¤ëÀ¼Á¤Ë¤Ä¤¤¤Æ |
44(3),
|
pp. 265- |
ǽÂå¡¡À¶ |
|
°ìÈ̤ʸºßÎΰè¤òͤ¹¤ë²òÀÏÈ¡¿ô¤ÎÆÃ°ÛÅÀ¤Ë¤Ä¤¤¤Æ |
1(1),
|
pp. 29- |
ǽÂå¡¡À¶ |
|
²òÀÏÈ¡¿ô¤ÎĶ±ÛÆÃ°ÛÅÀ¤Ë¤Ä¤¤¤Æ |
2(2),
|
pp. 142- |
ǽÂå¡¡À¶ |
|
²òÀÏÈ¡¿ô¤ÎÆÃ°ÛÅÀ¤Ë´Ø¤¹¤ëÆó»°¤ÎÌäÂê |
2(3),
|
pp. 209- |
ǽÂå¡¡À¶ |
|
²òÀÏÈ¡¿ô¤Î½¸Àѽ¸¹ç¤Ë´Ø¤¹¤ë°ìÄêÍý |
2(3),
|
pp. 211- |
½ÕÌÚ¡¡Çî |
|
Nevanlinna-Polya ¤ÎÄêÍý¤Î1 Ãí°Õ |
35(1),
|
pp. 84- |
°ì¾¾¡¡¿® |
|
²¬¤ÎÀܳÄêÍý¤Ë¤Ä¤¤¤Æ |
1(4),
|
pp. 304- |
°ì¾¾¡¡¿® |
|
Cauchy-Weil ¤ÎÀÑʬɽ¼¨¤Ë´Ø¤¹¤ëÃí°Õ |
2(3),
|
pp. 220- |
°ì¾¾¡¡¿® |
|
ÀµÂ§Îΰè¤Î¾ò·ï¤Ë¤Ä¤¤¤Æ |
3(3),
|
pp. 145- |
°ì¾¾¡¡¿® |
|
µå¤ÎNeumann È¡¿ô |
6(2),
|
pp. 84- |
°ì¾¾¡¡¿® |
|
ÀµÂ§Îΰè¤Î¤¿¤á¤Î°ì¾ò·ï |
7(2),
|
pp. 99- |
°ì¾¾¡¡¿® |
|
¿ʣÁÇÊÑ¿ô¤ÎÀµÂ§È¡¿ô¤ÎÄêµÁ¤Ë¤Ä¤¤¤Æ |
8(1),
|
pp. 25- |
°ì¾¾¡¡¿® |
|
²òÀÏÈ¡¿ô²ê¤Î´ûÌóÀ¤Ë¤Ä¤¤¤Æ |
13(3),
|
pp. 161- |
Ê¡°æÀ¿°ì¡¦ÈøÏ½ŵÁ¡¦ºä¸ýÚÞ°ì |
|
ÀµÂ§¤Ê´ñ´Ø¿ô¤¬°ìÊý¸þÆÌ·¿¤È¤Ê¤ë¤¿¤á¤Î¾ò·ï |
45(2),
|
pp. 179- |
Æ£²Èζͺ |
|
Extremal length ¤ÎÆó»°¤Î±þÍÑ |
11(2),
|
pp. 96- |
À±¡¡À¿°ì |
|
Quaternion function ¤Ë¤ª¤±¤ë¶Òµé¿ô¤Ë¤Ä¤¤¤Æ |
3(1),
|
pp. 30- |
µÜÅè¸øÉ× |
|
Ëä¤á¹þ¤ß¤Îequivalence ¤Ë¤Ä¤¤¤Æ |
30(4),
|
pp. 355- |
Ìø¸¶ÆóϺ |
|
ñ°Ì±ßÆâÍÍý·¿È¡¿ô¤Î¶³¦¤Ç¤Îµóư¤Ë¤Ä¤¤¤Æ |
21(2),
|
pp. 131- |
»³¸ý¹ñÉ× |
|
ñÍÕÈ¡¿ô¤Î·¸¿ô¤Ë¤Ä¤¤¤Æ |
2(2),
|
pp. 144- |
»³¸ý¹ñÉ× |
|
ñÍÕÈ¡¿ô¤Ë´Ø¤¹¤ëLevin »á¤ÎÄêÍý¤Ë¤Ä¤¤¤Æ |
2(3),
|
pp. 215- |
»³¸ý¹ñÉ× |
|
p ½ÅÂоÎñÍÕÈ¡¿ô¤Î·¸¿ô¤Ë¤Ä¤¤¤Æ |
3(2),
|
pp. 82- |
»³¸ý¹ñÉ× |
|
ñÍÕÈ¡¿ô¤ÎÉôʬϤˤĤ¤¤Æ |
3(4),
|
pp. 207- |
»³¸ý¹ñÉ× |
|
Goluzin ¤ÎÏĶÊÄêÍý¤Ë¤è¤ë±þÍÑ |
5(2),
|
pp. 82- |
»³¸ý¹ñÉ× |
|
ñÍդǤ¢¤ë¿¹à¼°¤Î°ìÀ¼Á¤Ë¤Ä¤¤¤Æ |
11(2),
|
pp. 98- |
»³ÅÄ¡¡ÍÛ |
|
Schiffer ¤ÎÊäÂê¤Ë¤Ä¤¤¤Æ |
29(4),
|
pp. 364- |
µÈÅıѿ® |
|
Julia boundary path ¤Î¸ºß¤Ë¤Ä¤¤¤Æ |
26(1),
|
pp. 45- |
µÈÅÄÆÁÇ·½õ |
|
¿ÍÕÈ¡¿ôÏÀ¤Ë¤ª¤±¤ë°ì¤Ä¤Î¾ï¿ô |
2(4),
|
pp. 312- |
µÈÅÄÆÁÇ·½õ |
|
µ¼ÀµÂ§È¡¿ô¤ÎÃÍʬÉۤˤĤ¤¤Æ |
3(2),
|
pp. 84- |
ÅÏÊÕ¡¡¼£ |
|
Ä´ÏÂÈùʬ¤Îµóư¶õ´Ö¤Î¸ºß¤Ë¤Ä¤¤¤Æ |
30(1),
|
pp. 68- |
ÅÏÊÕ¡¡¼£ |
|
³«Riemann Ì̾å¤ÎAbel Èùʬ¤Î¶õ´Ö¤Î³Ë·¿À |
31(4),
|
pp. 368- |
ÈӾ¡¡ÉÒ |
|
Àþ·¿Â«¶õ´Ö¤Ë¤ª¤±¤ëStieltjes ÀÑʬ |
2(4),
|
pp. 337- |
Àа桡Àµ |
|
Àþ·¿ÈÆÈ¡¿ô¤Î(MA).¾ò·ïI |
8(3),
|
pp. 153- |
Àа桡Àµ |
|
Àþ·¿ÈÆÈ¡¿ô¤Î(MA).¾ò·ïII |
8(4),
|
pp. 213- |
°ËÆ£À¶»° |
|
Hellinger-Hahn ¤ÎÄêÍý¤Ë¤Ä¤¤¤Æ |
5(2),
|
pp. 90- |
°ËÆ£À¶»° |
|
¥³¥ó¥Ñ¥¯¥È·²¤ª¤è¤Ó²Ä´¹·²¤Î´ûÌó¥æ¥Ë¥¿¥êɽ¸½¤Ë¤Ä¤¤¤Æ |
5(4),
|
pp. 226- |
°æ¾åºî¼£ |
|
¼«¸Ê¶¦ÌòºîÍÑÁǤÎspectrum ¤Èresolvent set ¤È¤Ë¤Ä¤¤¤Æ |
3(4),
|
pp. 220- |
°æ¾åδ°ì |
|
2 ³¬¾ïÈùʬ±é»»»Ò¤ÎϢ³¥¹¥Ú¥¯¥È¥ë¤Ë¤Ä¤¤¤Æ |
6(1),
|
pp. 23- |
´ä¼¡¡Îþ |
|
$C^\infty$ µéÈ¡¿ô¤Îextension |
5(2),
|
pp. 91- |
´äËÙ¿®»Ò |
|
Ã¸ÃæÁÐÂÐÄêÍý¤ÎÊ̾ÚÌÀ |
10(1),
|
pp. 34- |
´äß··òµÈ |
|
͸·²¤Ècompact ·² |
1(2),
|
pp. 94- |
¾åÃæÀã»Ò |
|
Boole Âå¿ô¤Ë¤ª¤±¤ë$\vee$ »»Ë¡¤Î·ë¹çˡ§¤Ë¤Ä¤¤¤Æ |
1(3),
|
pp. 198- |
ÂçÄí¹¬Íº |
|
ÈóÉéÈÆÈ¡¿ô¤ÎÀÑʬɽ¸½¤Ë¤Ä¤¤¤Æ |
16(2),
|
pp. 99- |
¾®³Þ¸¶Æ£¼¡Ïº |
|
Ê£ÁÇB «¤Ë¤Ä¤¤¤Æ |
1(2),
|
pp. 80- |
¾®Ìî¡¡¹§ |
|
ÈóArchimedes Ū¤ÊÉêÃÍÂΤξå¤Î¥Î¥ë¥à¶õ´Ö¤Ë¤ª¤±¤ëlinear functional ¤Î³ÈÄ¥ÄêÍý |
4(3),
|
pp. 159- |
¾®Ìîµ®À¸ |
|
Spacial isomorphism ¤Ë¤Ä¤¤¤Æ(I) |
6(1),
|
pp. 21- |
¾®Ìîµ®À¸ |
|
Spacial isomorphism ¤Ë¤Ä¤¤¤Æ(II) |
6(2),
|
pp. 98- |
¾®Ìîµ®À¸ |
|
Spacial isomorphism ¤Ë¤Ä¤¤¤Æ(III) |
6(3),
|
pp. 164- |
¾®Ìîµ®À¸ |
|
$AW^*$ Âå¿ô¤Ë¤ª¤±¤ë¶É½êŪ¹Í»¡ |
6(4),
|
pp. 219- |
¾®Ìîµ®À¸ |
|
°¿¤ë¼ï¤Î¼ýṲ́ÎÂå¿ôÀ¤Ë¤Ä¤¤¤Æ |
7(3),
|
pp. 154- |
¾®Ìîµ®À¸ |
|
¥Î¥ë¥à´Ä¤Î´ðËÜÄêÍý¤Î½éÅùŪ¾ÚÌÀ |
9(4),
|
pp. 236- |
²ÏÅķɵÁ |
|
Ãê¾Ý¼ÂHilbert ¶õ´Ö¤Ø¤Î½ç½ø¤ÎƳÆþ¤Ë¤Ä¤¤¤Æ |
1(2),
|
pp. 101- |
²ÏÅķɵÁ |
|
Lie ´Ä¤Îcohomology ÏÀ |
1(4),
|
pp. 323- |
²ÏÅķɵÁ |
|
°ÌÁê·²¤Î·²´Ä¤Ë¤Ä¤¤¤Æ |
1(4),
|
pp. 323- |
²ÏÅķɵÁ |
|
ľÀѬÅ٤˴ؤ¹¤ë°ìÌäÂê¤Ë¤Ä¤¤¤Æ |
1(4),
|
pp. 325- |
²ÏÅķɵÁ |
|
̵¸ÂÀѶõ´Ö¾å¤Î¬Å٤ˤĤ¤¤Æ |
1(4),
|
pp. 326- |
¶Í¼¿®Íº |
|
ÁÇÂξå¤Î°¿¤ëÂΤθµÁǤòÊÑ¿ô¤È¤¹¤ëÈùʬÀÑʬI |
5(2),
|
pp. 97- |
ÁÒÀ¾ÀµÉð |
|
Lie ·²¤Î´ðÁäˤĤ¤¤Æ |
1(4),
|
pp. 330- |
¹õÅÄÊ¿¼£ |
|
¼ÂÊÑ¿ôÈ¡¿ô¤ÎÀþ·Á´Ä« |
2(1),
|
pp. 58- |
¸åÆ£¼éË® |
|
ξ¦ÉÔÊѬÅ٤ˤĤ¤¤Æ |
1(2),
|
pp. 95- |
ºØÆ£Äå»ÍϺ |
|
¼Í±ÆºîÍÑÁǤˤè¤ëvon Neumann Âå¿ô¤ÎÀ¸À® |
19(3),
|
pp. 172- |
ã·Æ£Íø×½ |
|
Torus ¾å¤Îmeasure preserving ¤Êή¤ì¤Ë¤Ä¤¤¤Æ |
1(4),
|
pp. 329- |
º´µ×´Öµá°ì |
|
ĶÁжʷ¿ºîÍÑÁǤδðËܲò¤Ë¤Ä¤¤¤Æ |
12(2),
|
pp. 107- |
¼ÆÅÄÉÒÃË |
|
¶õ´ÖE ¤ÎÉôʬ¶õ´Ö¤Ë¤Ä¤¤¤Æ |
8(2),
|
pp. 96- |
½ÂëÂÙδ¡¦´äËÙĹ·Ä |
|
´°Á´Àµµ¬Ä¾¸ò·Ï¤Ë¤Ä¤¤¤Æ |
8(1),
|
pp. 30- |
ÀÖ¡¡ÀÝÌé |
|
Ÿ³«²Äǽ¤ÊÈ¡¿ô |
4(2),
|
pp. 94- |
ÃÝÇ·Æâ¡¡æû |
|
Hilbert algebra ¤Î¹½Â¤¤Ë¤Ä¤¤¤Æ |
2(3),
|
pp. 252- |
äÇϿɧ |
|
°ÌÁê·²¤ÎͶƳɽ¸½¤Ë´Ø¤¹¤ëÃí°Õ |
12(2),
|
pp. 105- |
äÇϿɧ |
|
°ÌÁê·²¤Îµ¢Ç¼Åª¶Ë¸Â¤Î·²°ÌÁê |
50(4),
|
pp. 428- |
Ã¸ÃæÃéϺ |
|
Weil ¤ÎÊä½õÄêÍý¤Ë¤Ä¤¤¤Æ |
1(2),
|
pp. 90- |
ÄÔ¡¡²Å¤ |
|
$W^*$ Âå¿ô¤ÈÃê¾Ý(L)-¶õ´Ö |
7(3),
|
pp. 152- |
ÄÔ¡¡Àµ¼¡ |
|
Hilbert ¶õ´ÖÏÀ¤Ë¤ª¤±¤ëunitary operator ¤ª¤è¤Óself-adjoint operator ¤ÎÀÑʬɽ¼¨ |
1(1),
|
pp. 42- |
ÄÔ¡¡Àµ¼¡ |
|
Àµ¤ÎÄêÉä¹æÈ¡¿ô¤Ë¤Ä¤¤¤Æ |
2(1),
|
pp. 55- |
ÃæÌ¸ÞϺ |
|
Hilbert ¶õ´ÖÏÀ¤Ë´Ø¤·¤ÆI Bochner ¤ÎÄêÍý¤ÈStone ¤ÎÄêÍý |
1(1),
|
pp. 38- |
ÃæÌ¸ÞϺ |
|
Hilbert ¶õ´ÖÏÀ¤Ë´Ø¤·¤ÆII ͳ¦¤ÊHermite ±é»»»Ò¤Îspectrum ʬ²ò |
1(1),
|
pp. 39- |
ÃæÌ¸ÞϺ |
|
Hilbert ¶õ´ÖÏÀ¤Ë´Ø¤·¤ÆIII Àµµ¬±é»»»Ò¤Îspectrum ʬ²ò |
1(2),
|
pp. 97- |
À¾ÂôÀ¶»Ò |
|
C(X ) ¤Îclosed subalgebra U ¤Îanti-symmetric decomposition ¤Ë¤Ä¤¤¤Æ |
20(3),
|
pp. 167- |
²Ö°æ¼·Ïº |
|
Banach ¶õ´Ö¤Ë´Ø¤¹¤ë°ì¤Ä¤ÎÃí°Õ |
3(1),
|
pp. 39- |
²Ö°æ¼·Ïº |
|
Àþ¾õ°ÌÁê¶õ´Ö¤Ë¤ª¤±¤ëÀþ·¿ºîÍÑÁÇ |
1(3),
|
pp. 199- |
Ê¡¸¶Ëþ½§Íº |
|
´°Á´Ï¢Â³¼ÌÁü¤Î³ÈÄ¥ÄêÍý |
17(1),
|
pp. 32- |
·¡Åľù¼£ |
|
Ϣ³Àþ·¿Â«¤Ë¤ª¤±¤ëStieltjes ÀÑʬ¤Ë¤Ä¤¤¤Æ |
2(1),
|
pp. 60- |
Á°Åļþ°ìϺ |
|
¸¶»ÒŪ«¤Î͸¥⥸¥å¥é¡¼À¤Ë¤Ä¤¤¤Æ |
31(3),
|
pp. 252- |
¾¾²¼¿¿°ì |
|
Boole ´Ä¾å¤Î°ÌÁêºîÍÑÁÇ |
1(2),
|
pp. 96- |
¾¾²¼¿¿°ì |
|
°ÌÁê·²¤Î°¿¤ëɽ¸½¤Ë¤Ä¤¤¤Æ |
3(1),
|
pp. 40- |
¿¹Ëܸ÷À¸ |
|
¼ÂȾñ½ã·²¤Îunitary ɽ¸½¤Î¹½À®¤Ë¤Ä¤¤¤Æ |
18(1),
|
pp. 40- |
»³¼¼Äê¹Ô |
|
Beurling-Livingston ¤Îduality mapping ¤Ë¤Ä¤¤¤Æ |
15(2),
|
pp. 107- |
»³¼¼Äê¹Ô |
|
ÉÔÆ°ÅÀÄêÍý¤Ë¤Ä¤¤¤Æ |
15(2),
|
pp. 105- |
»³ÊÕ±Ñɧ |
|
Lie group ¤Îarcwise connected subgroup ¤Ë¤Ä¤¤¤Æ |
2(4),
|
pp. 335- |
»³ÊÕ±Ñɧ |
|
Mostow ¤ÎÌäÂê¤Ë¤Ä¤¤¤Æ |
3(3),
|
pp. 163- |
µÈÅĹ̺î |
|
Unitary equivalence ¤Ë¤Ä¤¤¤Æ |
1(2),
|
pp. 88- |
µÈÅĹ̺î |
|
Àþ·¿ºîÍÑÁǤκî¤ë1-parameter ½à·² |
1(3),
|
pp. 201- |
µÈÅĹ̺î |
|
3 ¼¡¸µµåÌ̾å¤ÎBrown ±¿Æ° |
1(4),
|
pp. 327- |
µÈÅĹ̺î |
|
Compact Riemann ¶õ´Ö¤Î¾å¤Ç¤ÎFokker-Planck ÊÐÈùʬÊýÄø¼°¤ÎÀÑʬ |
2(2),
|
pp. 166- |
µÈÅĹ̺î |
|
Homogeneous space ¤Î¾å¤ÎBrown ±¿Æ°¤ÎÄêµÁ |
4(1),
|
pp. 32- |
µÈÅĹ̺î |
|
Titchmarsh-Kodaira ¤Î¸ÇÍÈ¡¿ô¤Ë¤è¤ëŸ³«ÄêÍý¤Î¾ÚÌÀ¤Ë¤Ä¤¤¤Æ |
5(4),
|
pp. 228- |
µÈÅÄÀá»° |
|
²óµ¢ÅªÀþ·¿°ÌÁê¶õ´Ö¤Ë¤ª¤±¤ë¼Í±ÆºîÍÑÁÇ·ÏÎó¤Î¶Ë¸Â¤Ë¤Ä¤¤¤Æ |
10(1),
|
pp. 32- |
ÅÏÊÕ¡¡¼£ |
|
¼Â»ØÉ¸¤ò»ý¤Ä¥Æ¡¼¥¿¡¼¾ï¿ô¤Î¾ÃÌǤ˴ؤ¹¤ë°ìÃí°Õ |
39(2),
|
pp. 179- |