‘㐔Šw•ª‰È‰ï‚É‚¨‚¯‚é‰ß‹Ž‚Ì“Á•Êu‰‰

•ª‰È‰ïƒz[ƒ€ƒy[ƒWƒgƒbƒv‚Ö

@@@@
“Á•Êu‰‰‚̍u‰‰ŽÒ‚ƍu‰‰‘è–¼‚̃ŠƒXƒg

2018 ”NH‹G‘‡•ª‰È‰ï ‰ªŽR‘åŠw‚ɂāi9/24--9/27j
óŽÅ@Gl(Ã‰ª‘嗝) 2 Œ—˜_“I”í•¢—˜_‚Æ“±—ˆ“¯’l
ŽRú±‹`“¿(ˆ¤•Q‘嗝) Schur ‘½dƒ[[ƒ^ŠÖ”‚ɂ‚¢‚Ä
ŽRè—²—Y(“Œ–k‘嗝) ƒ‚ƒWƒ…ƒ‰ƒX•t‚«ƒ‚ƒ`[ƒt‚ƍ¬‡ Hodge \‘¢
ˆ¢•”‘ñ˜Y(‹ã‘åI M I) ’´•½–Ê”z’u‚̑ΐ”“IƒxƒNƒgƒ‹ê‚Æ‚»‚ÌŽ©—R«
2018 ”Nt‹G”N‰ï “Œ‹ž‘åŠw‚ɂāi3/18--3/21j
²“¡Žü—F(’†‘嗝H) (‘æ‚Q‚P‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) ”˜_“IƒXƒL[ƒ€‚ɑ΂·‚éV‚µ‚¢ƒRƒzƒ‚ƒƒW[—˜_‚Æ‚»‚̉ž—p
“à“¡@‘(“ŒH‘嗝H) (‘æ‚Q‚P‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) —ÊŽqƒAƒtƒBƒ“‘㐔‚Ì•\Œ»˜_
“ú”äF”V(ã‘åî•ñ) (‘æ‚Q‚P‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) ’P€Ž®ƒCƒfƒAƒ‹‚Æ“ñ€Ž®ƒCƒfƒAƒ‹
´…Œ’ˆê(ŽÅ‰YH‘åƒVƒXƒeƒ€—H) ”ñ”¼’Pƒ‚ȃ‚ƒWƒ…ƒ‰[ƒeƒ“ƒ\ƒ‹Œ—‚ÉŠÖ‚·‚éÅ‹ß‚Ì“WŠJ
2017 ”NH‹G‘‡•ª‰È‰ï ŽRŒ`‘åŠw‚ɂāi9/11--9/14j
‹àŽq@Œ³(’}”g‘吔—•¨Ž¿) ®”‹y‚я¬”‚Ì digit “WŠJ‚É‚¨‚¯‚éˆê—l•ª•z˜_‚̍ŋ߂̓WŠJ
‘ºˆä@‘(ã‘åî•ñ) ‘½—l‘Ì‚Ì’P‘Ì•ªŠ„‚ÌŽ‚‘g‡‚¹˜_“IE‘㐔“I‘Ώ̐«
¬Ž›—ȉî(‹ž‘嗝) Quantized Coulomb branches of Jordan quiver gauge theories and cyclotomic rational Cherednik algebras
¼’J–ÎŽ÷(²¢•ÛH‚ê) Euler-Bernoulli ‚Ì’e«‹Èü (elastica) ‚Æ‚»‚̈ê”ʉ»: ‘ȉ~ŠÖ”‚Ì–G‰è‚©‚çƒA[ƒxƒ‹ŠÖ”˜_‚̍č\’z‚Ö
2017 ”Nt‹G”N‰ï Žñ“s‘åŠw“Œ‹ž‚ɂāi3/24--3/27j
‹àŽq¹M(‹ã‘吔—) (‘æ‚Q‚O‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) ‘½dƒ[[ƒ^’l‚ɂ‚¢‚Ä
‹´–{Œõ–õ(‰ªŽR‘厩‘R) (‘æ‚Q‚O‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) ‰ÂŠ·ŠÂ˜_‚Æ•s•ÏŽ®˜_
Œj@—˜s(–@­‘嗝H) (‘æ‚Q‚O‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) ³•W”‚̑㐔Šô‰½
S. Carnahan (’}”g‘吔—•¨Ž¿) Recent advances in Moonshine
2016 ”NH‹G‘‡•ª‰È‰ï ŠÖ¼‘åŠw‚ɂāi9/15--9/18j
“à“¡@‘(“ŒH‘嗝H) ƒAƒtƒBƒ“—ÊŽqŒQã‚ÌextremalƒEƒGƒCƒg‰ÁŒQ‚ÌDemazure•”•ª‰ÁŒQ‚ÌŽw•WŒöŽ®‚Æ, ”ñ‘ΏÌMacdonald‘½€Ž®‚Ì“ÁŽê‰»
–Ø‘º‰Ã”V(_ŒË‘嗝) Quantum unipotent subgroups and dual canonical bases
ŽR“à‘ì–ç(“Œ–k‘嗝) GSp4 ‚ÉŠÖ‚·‚éƒZ[ƒ‹—\‘z‚Əd‚³ŠÒŒ³’藝
Ö“¡@‹B(“Œ‘吔—) l i‘w‚Ì“Á«ƒTƒCƒNƒ‹
2016 ”Nt‹G”N‰ï ’}”g‘åŠw‚ɂāi3/16--3/19j
‘ –ì˜a•F(–¾‘嗝H) (‘æ‚P‚X‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) ‹ÇŠŠÂã‚ÌŒð“_—˜_‚ÆCohen-Macaulay‰ÁŒQ‚ւ̉ž—p
âV“¡­•F(_ŒË‘嗝) (‘æ‚P‚X‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) Ú‘±‚̃‚ƒWƒ…ƒ‰ƒC‹óŠÔ‚ƃpƒ“ƒ‹ƒ”ƒFŒ^•û’öŽ®
Œj“c‰p“T(Žº—–H‘åH) (‘æ‚P‚X‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) •ÛŒ^Œ`Ž®‚ÌŽüŠú‚ƍ‡“¯‚¨‚æ‚Ñ‚»‚ê‚ÉŠÖ˜A‚·‚é˜b‘è
Pierre Baumann(CNRS,ƒXƒgƒ‰ƒXƒu[ƒ‹‘å) Paths, polytopes and loops in representation theory
2015 ”NH‹G‘‡•ª‰È‰ï ‹ž“sŽY‹Æ‘åŠw‚ɂāi9/13--9/16j
“y‰ªr‰î(“Œ‘吔—) KOR —\‘z‚̍L‚ª‚è
”n@º•½(“ŒH‘嗝H) ’¼ŒðŒ^ƒ‚ƒWƒ…ƒ‰[‘½—l‘̂̏¬•½ŽŸŒ³
‘吙‰pŽj(ŠÖ¼Šw‰@‘嗝H) ƒg[ƒŠƒbƒNƒCƒfƒAƒ‹‚̃OƒŒƒuƒi[Šî’ê‚Æ‚»‚̏”•ª–ì‚ւ̉ž—p
ŽOŒ´•üŽ÷(“Œ‘吔—EŒc‘嗝H) p i˜A‘±ŠÖ”ŠÂ‚Ì‚È‚·Banach ‘㐔‚ÌBerkovich ƒXƒyƒNƒgƒ‹‚Ì “Á’¥•t‚¯
2015 ”Nt‹G”N‰ï –¾Ž¡‘åŠw‚ɂāi3/21--3/24j
A“cˆêÎ(ã‘嗝) ⷂ̊֌WŽ®‚̃‚ƒWƒ…ƒ‰ƒC
‹{’n~ˆê(“Œ‹žŠw‘勳ˆç) N½•¡‘̂̃zƒ‚ƒgƒs[Œ—,“±—ˆŒ—‚̍\‘¢‚ɂ‚¢‚Ä
‰Á“¡@Žü(‹ž‘嗝) (‘æ‚P‚W‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰)—ÊŽqŒQ‚âƒwƒbƒPŠÂ‚©‚琶‚¶‚éƒAƒtƒBƒ“Å‚ƒEƒFƒCƒgŒ—‚Æ‚»‚̉ž—p‚ɂ‚¢‚Ä
ŽR–¼@r‰î(‹ã‘吔—) GL(6)‚ÌŽOdŒð‘ãÏLŠÖ”
2014 ”NH‹G‘‡•ª‰È‰ï L“‡‘åŠw‚ɂāi9/25--9/28j
Œ©³G•F(“Œ‹ž“d‹@‘åî•ñ) ƒ[[ƒ^ŠÖ”‚Ì••Õ«‚ÌŠT—v
”öŠp³l(ãŽs‘嗝) Žl–Ê‘Ì•û’öŽ®‚Æ—ÊŽqŒQ
Œ¹@‘׍K(ã•{‘嗝) Derived bi-duality and DG-completion
Šâ¬@—E(“Œ–k‘嗝) “±—ˆ’W’†‘o‘ΐ«‚ɂ‚¢‚Ä
2014 ”Nt‹G”N‰ï ŠwK‰@‘åŠw‚ɂāi3/15--3/18j
ˆÀ“cŒ’•F(ã‘嗝) –쐶 McKay ‘Ήž‚Ì“W–]
’r“cŠx(‰ªŽR—‘嗝) ŒÃ“TŒ^Šø‘½—l‘Ì‚Ì K —˜_
ŒÃ¯‰p˜ai–¼‘命Œ³”—j (‘æ‚P‚V‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) ƒAƒ\ƒVƒG[ƒ^[‚Æ‚»‚ÌŽü•Ó
‹g–ì—Y“ñ(‰ªŽR‘嗝) (‘æ‚P‚V‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) Cohen-Macaulay modules over Cohen-Macaulay rings
2013 ”NH‹G‘‡•ª‰È‰ï ˆ¤•Q‘åŠw‚ɂāi9/24--9/27j
Y. Flicker (Ohio State Univ., Ariel Univ.) Counting local systems via automorphic forms
‚–؏r•ã(“Œ‘吔—) F“ÁˆÙ“_‚Ƌɏ¬ƒ‚ƒfƒ‹—˜_‚ÉŒ»‚ê‚é“ÁˆÙ“_
‹{–{‰ë•F(’}”g‘吔—•¨Ž¿) ’¸“_ì—p‘f‘㐔‚ÉŠÖ‚·‚é‹O“¹—\‘z‚ɂ‚¢‚Ä
•ŸŠÔŒc–¾(‚’m‘嗝) €•Î‹É‘½—l‘Ì‚Ì•s•Ï—Ê‚É‚æ‚鐏”º‘©‚Ì‘åˆæØ’f‚ÌŽŸŒ³‚ɂ‚¢‚Ă̍lŽ@
2013 ”Nt‹G”N‰ï ‹ž“s‘åŠw‚ɂāi3/20--3/23j
‘ì‹M”V(‹à‘ò‘厩‘R) 3ŽŸŒ³‘㐔‘½—l‘Ì‚Ì‘o—L—ŽË‚ɂ‚¢‚Ä
Ž›ˆä’¼Ž÷(²‰ê‘啶‰»‹³ˆç) Licci edge ideal‚Ì•ª—ނɂ‚¢‚Ä
rì’mK(‹ž‘吔—Œ¤) (‘æ‚P‚U‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) W‘㐔‚Ì•\Œ»˜_
Žs–ì“ÄŽj(‹ž‘嗝) (‘æ‚P‚U‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) •ÛŒ^•\Œ»‚ÆŽüŠú
2012 ”NH‹G‘‡•ª‰È‰ï ‹ãB‘åŠw‚ɂāi9/18--9/21j
ŽOŽ}—mˆê(‹ž‘嗝) ”ñ‰ÂŠ·Lubin-Tate—˜_‚̈ê”ʉ»‚ÉŒü‚¯‚Ä
‹{’n•º‰q(ãŽs‘嗝) ˆê”ʐüŒ`ŒQ‚̃‚ƒWƒ…ƒ‰[•\Œ»‚ÌŒ—‚Ì”äŠr
žÜ‹Æ‘P”Í(“Œ‘吔—) ‘ΐ”“I‘½d•W€•\Œ»‚ƃAƒoƒ“ƒ_ƒ“ƒX
•“c–Î(Žñ“s‘å“Œ‹ž—H) ‘½€Ž®ŠÂ‚̖쐶Ž©ŒÈ“¯Œ^
2012 ”Nt‹G”N‰ï “Œ‹ž—‰È‘åŠw‚ɂāi3/26--3/29j
‰Á“¡Žü(‹ž‘嗝) ƒRƒXƒgƒJŒn‚Æ•\Œ»˜_
ˆ¢•”Œ’(ŒF–{‘厩‘R) ˆê”ʃe[ƒ^ŠÖ”‚Ì‹óŠÔ‚Ì strange duality Œ»Û‚ɂ‚¢‚Ä
‹à“º½”V(–¼‘命Œ³”—) (‘æ‚P‚T‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) K3‹È–Ê‚ÌŠô‰½‚Æ Leech ŠiŽq
ˆÉŽR’m‹`(ã‘嗝) (‘æ‚P‚T‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) ƒW[ƒQƒ‹•ÛŒ^Œ`Ž®‚̑Ήž—\‘z‚ÆŽŸŒ³ŒöŽ®‚ð‚ß‚®‚Á‚Ä
Œã“¡Žl˜Y(–¾‘嗝H) (‘æ‚P‚T‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) ”bŒn‚̃zƒ‚ƒƒW[
ˆ¢•”’ms (“Œ‘åIPMU) ”˜_“ID‰ÁŒQ‚Æ‚»‚̉ž—p‚ɂ‚¢‚Ä
2011 ”NH‹G‘‡•ª‰È‰ï MB‘åŠw‚ɂāi9/28--10/1j
“‡‘q—SŽ÷ (ˆ¤’m‹³ˆç‘å) ’†S“d‰×24‚̐³‘¥’¸“_ì—p‘f‘㐔‚Ì•ª—Þ‚ÖŒü‚¯‚Ä
¬“c•¶m (ŽRŒ`E嗁E —LŒÀŒQ‚̃o[ƒ“ƒTƒCƒhŠÂ‚ƃ}ƒbƒL[CƒOƒŠ[ƒ“C’OŒ´ŠÖŽè
ÎˆäŽu•ÛŽq(“Œ‘吔—) (‘æ‚P‚S‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) Geometry of arc spaces and algebraic geometry
‘º“c—批 (–¾Ž¡Šw‰@‘åŒo) (Z/pZ)*‚â(Z/pqZ)*‚ł̏è—]Žw”Eè—]ˆÊ”‚Ì•ª•z‚ɂ‚¢‚Ä
2010 ”NH‹G‘‡•ª‰È‰ï –¼ŒÃ‰®‘åŠw‚ɂāi9/22--9/25j
‚‹´—ºiMB‘嗝j Cohen-Macaulay ‹ÇŠŠÂã‚Ì•ª‰ð•”•ªŒ—‚Ì•ª—Þ
“‡“cˆÉ’m˜NiL“‡‘嗝j ’´“ÁˆÙ‘㐔‘½—l‘̂ɂ‚¢‚Ä
ŽRè—²—Y i“Œ–k‘嗝j ‹ÇŠ‘̏ã‚ÌŠJ‘½—l‘Ì‚Ì0-ƒTƒCƒNƒ‹‚ƃuƒ‰ƒEƒA[ŒQ
‘å–ì‘א¶i‹ß‹E‘嗝Hj ‘½dƒ[[ƒ^’l‚ÌŠÔ‚Ì—lX‚ÈŠÖŒWŽ®
2010 ”Nt‹G”N‰ï Œcœä‹`m‘åŠw‚ɂāi3/24--3/27j
–Ñ—˜o (Ã‰ª‘嗝) Classification problems in non commutative algebraic geometry and representation theory
“s’z’¨•v (“Œ–k‘嗝) (‘æ‚P‚R‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) ƒŠƒWƒbƒhEƒRƒzƒ‚ƒƒW[˜_‚̍ŋ߂̐i“W
Ž›”öG–¾ (–k‘嗝) (‘æ‚P‚R‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) ’´•½–Ê”z’u‚̐”Šw
ŽR“à”Ž (ˆ¤’m‹³ˆç‘勳ˆç) ŽUÝŒ^—LŒÀ’PƒŒQ‚Æ’¸“_ì—p‘f‘㐔
2009 ”NH‹G‘‡•ª‰È‰ï ‘åã‘åŠw‚ɂāi9/24--9/27j
•½‰êˆèi‹ž‘嗝j SL(N) ‚ÌL-indistinguishability: ‹ÇŠƒ‰ƒ“ƒOƒ‰ƒ“ƒY‘Ήž‚ƃGƒ“ƒhƒXƒR[ƒs[
’©‘q­“Ti–k‘嗝j K_2 ‚Ì Tate —\‘z‚Æ p iƒŒƒMƒ…ƒŒ[ƒ^[
T. Geisser iUSC/“Œ‘åj Algebraic cycles and singular homology of varieties
²Š_‘å•ãi’}”g‘吔Šwj —ÊŽqƒAƒtƒBƒ“ŠÂ‚̃Œƒxƒ‹Eƒ[ƒŠî–{•\Œ»‚Æ‚»‚̃eƒ“ƒ\ƒ‹Ï‚̃pƒX–ÍŒ^
2009 ”Nt‹G”N‰ï “Œ‹ž‘åŠw‚ɂāi3/26--3/29j
²“¡Žü—Fi–¼‘命Œ³”—j ŽZp“IƒXƒL[ƒ€‚Ì p i“IƒRƒzƒ‚ƒƒW[‚ƃTƒCƒNƒ‹ŽÊ‘œ
—é–ؐ³ri“Œ‘吔—j ƒAƒCƒ[ƒ“ƒVƒ…ƒ^ƒCƒ“‹‰”‚Æ‚ ‚éŽí‚̃[[E^ŠÖ”‚̃Š[ƒ}ƒ“—\‘z
¬–Ø‘]Œ[Ž¦iŒc‘åŒoÏj (‘æ‚P‚Q‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰)
Connecting certain rigid birational non-homeomorphic Calabi-Yau 3-folds via Hilbert scheme
á]–¾•Fi“Œ–k‘嗝j (‘æ‚P‚Q‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) ŠT‹ÏŽ¿ƒxƒNƒgƒ‹‹óŠÔ‚Ɛ®”˜_
2008 ”NH‹G‘‡•ª‰È‰ï “Œ‹žH‹Æ‘åŠw‚ɂāi9/24--9/27j
“¡–ìCi–¼‘命Œ³”—j ‹É¬ƒ‚ƒfƒ‹—˜_‚ƏÁ–Œ藝
rì’mKi“ޗǏ—‘嗝j W‘㐔‚Ì•\Œ»˜_‚ɂ‚¢‚Ä
â“àŒ’ˆêiŒc‘嗝Hj ‘ȉ~ƒ|ƒŠƒƒOCEisenstein —Þ‚ÆpiLŠÖ”
—Ž‡—iã‘嗝j ŠâàV—˜_‚̈ê”ʉ»‚ɂ‚¢‚Ä
2008 ”Nt‹G”N‰ï ‹ß‹E‘åŠw‚ɂāi3/23--3/26j
Œj“c‰p“TiŽº—–H‘åHj Siegel •ÛŒ^Œ`Ž®‚ÌŽüŠú‚ƍ‡“¯‚¨‚æ‚Ñ‚»‚ê‚ÉŠÖ˜A‚·‚é˜b‘è
’Jèr”ViãŽs‘嗝j (‘æ‚P‚P‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) ƒŠ[‘㐔‚Æ—ÊŽqŒQ‚ÌŠô‰½Šw“I•\Œ»˜_
•À‰Í—Ç“Tiã‘嗝j (‘æ‚P‚P‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) ‚ׂ«—ë‹O“¹‚Æ‘o—L—Šô‰½
ˆÉŽRCi–¼‘命Œ³”—j (‘æ‚P‚P‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) Auslander-Reiten —˜_‚̍‚ŽŸŒ³‰»‚ÉŒü‚¯‚Ä
2007 ”NH‹G‘‡•ª‰È‰ï “Œ–k‘åŠw‚ɂāi9/21--9/24j
A. Premetiƒ}ƒ“ƒ`ƒFƒXƒ^[‘åj Modular representations and finite W-algebras
L. IllusieiƒpƒŠ“ì‘åj Old and new in Letale cohomology, after O. Gabber
P. TerwilligeriWisconsin ‘åj Tridiagonal pairs in combinatorics, special functions, and Lie theory
’Ѻ”Ž•¶iŽñ“s‘å“Œ‹ž—Hj ‚¢‚ë‚¢‚ë‚È‘½dƒ[[ƒ^ŠÖ”‚Ì‚Ý‚½‚·ŠÖŒWŽ®‚ɂ‚¢‚Ä
2007 ”Nt‹G”N‰ï é‹Ê‘åŠw‚ɂāi3/27--3/30j
ŠŒ´Œ’i‰¡•l‘‘åHj ƒgƒƒsƒJƒ‹Šô‰½‚Ƒ㐔Šô‰½
“s’z³’jiã’q‘嗝Hj ‘Ώ̋óŠÔã‚Ì•ÛŒ^ƒOƒŠ[ƒ“ŠÖ”‚Æ•ÛŒ^”MŠj
‹g‰ªN‘¾i_ŒË‘åj (‘æ‚P‚O‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) ‘㐔‹È–ʏã‚̃xƒNƒgƒ‹‘©‚̃‚ƒWƒ…ƒ‰ƒC‹óŠÔ
â“à‰pˆêi‹ãB‘åŠwj (‘æ‚P‚O‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) ƒˆ”Šw‚Æ‚µ‚Ä‚Ì‘g‚ݍ‡‚킹˜_
2006 ”NH‹G‘‡•ª‰È‰ï ‘åãŽs—§‘åŠw‚ɂāi9/19--9/22j
Œ÷“’¼Žqi“Œ‹ž—‘嗝j —LŒÀŒQ‚̃‚ƒWƒ…ƒ‰[•\Œ»‚É‚¨‚¯‚éƒuƒ‹ƒG—\‘z
óŽÅGliãŽs‘嗝j Cyclic quiver ‚Æ Dynkin graph ‚©‚ç’­‚ß‚½‘½Œ³ŠÂ‚Ì•\Œ»˜_‚É‚¨‚¯‚é2‚‚̗¬‚ê(“±—ˆ“¯’l‚ƃz[ƒ‹‘㐔j
ì–k^”Vi‹ž‘吔—Œ¤j ‚ŽŸŒ³‹É¬ƒ‚ƒfƒ‹—˜_‚Ì”­“W
’·‰ª¸—Ei‹ß‹E‘嗝Hj On mod p Siegel modular forms
2006 ”Nt‹G”N‰ï ’†‰›‘åŠw‚É‚Ä(3/26--3/29)
’†‘ºK’ji–¾‘嗝Hj ‚QŽŸŒ³³‘¥‹ÇŠŠÂ‚É‚¨‚¯‚éƒCƒfƒAƒ‹‚̃AƒWƒ‡ƒCƒ“ƒg
‰Ô‘º¹Ž÷i“Œ–k‘åj (‘æ‚X‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) ¬‡ƒ‚ƒ`[ƒt‚Ì—˜_‚Ɖž—p
‹g“cŒh”Vi‹ž“s‘åŠw—j (‘æ‚X‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) â‘Î CM ŽüŠú‚ɂ‚¢‚Ä
ŒÜ–¡–õiã’q‘嗝Hj The Markov traces and Lusztig's Fourier transforms
2005 ”NH‹G‘‡•ª‰È‰ï ‰ªŽR‘åŠw‚É‚Ä(9/19--9/22)
Žs–ì“ÄŽui‘åãŽs‘åj •ÛŒ^Œ`Ž®‚ÌŽüŠú‚Æ L ŠÖ”‚Ì“ÁŽê’l
àV•Ó³li––勳ˆç‘åj —LŒÀŒQ‚Ì•”•ªŒQ•¡‘́F•\Œ»‚ƃzƒ‚‚ƃs[•ÏŒ`
‹g“cŒ’ˆêi–¼‘命Œ³”—j Multiplicity ‚Æ tight closure
ˆîê“¹–¾i‹ã‘吔—j –L•x—ñ‚Ì’è‚ß‚éˆÀ’萫‚ɂ‚¢‚Ä
2005 ”Nt‹G”N‰ï “ú–{‘åŠw‚É‚Ä(3/27--3/30)
E. Letellieriã’q‘嗝Hj Fourier transforms of invariant functions on finite reductive Lie algebras
–öì_“ñiã‘嗝j ‘g‡‚¹˜_“I‰ÂŠ·‘㐔‚É‚ ‚ç‚í‚ê‚é Koszul ‘o‘ΐ«
¼–{k“ñi–¼‘命Œ³”—j (‘æ8‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) ‘½dƒ[[ƒ^ŠÖ”‚̉ðÍ“I—˜_‚ƁE»‚̉ž—p
’†‘ºˆèi–k‘嗝j (‘æ8‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) ƒ}ƒbƒJƒC‘Ήž
2004 ”NH‹G‘‡•ª‰È‰ï –kŠC“¹‘åŠw‚É‚Ä(9/19 -- 9/22)
‘O–ìrºi‹ž‘嗝j ƒVƒ…[ƒxƒ‹ƒgEƒJƒŠƒLƒ…ƒ‰ƒX‚ƃƒCƒ‹ŒQã‚̃Q[ƒW—˜_
’Jèr”Vi‘åãŽs‘嗝j ”ñ‰ÂŠ·Šô‰½‚Æ—ÊŽqŒQ
XŽR’m‘¥iã’q‘嗝Hj ”ñ³‘¥ƒW[ƒQƒ‹•ÛŒ^Œ`Ž®‚Ì L ŠÖ”‚ɂ‚¢‚Ä
Œ´L¶i“Œ–k‘嗝j –§’…•Â•ï‚̈ê”ʉ»‚Æ F-“ÁˆÙ“_[‚»‚̉ž—p‚Æ–â‘è“_
2004 ”Nt‹G”N‰ï ’}”g‘åŠw‚É‚Ä(3/28--3/31)
‰ªè—´‘¾˜Yi“¯ŽuŽÐ‘åHj ˜A‘±‹Èü‚ÌŠô‰½‚Æ•s’è•û’öŽ®‚̉ð‚̌”
Îˆä—ºi‹ž‘åHj Mckay ‘Ήž‚Æ“±—ˆŒ—
Ž›ž[—FGi“Œ‘吔—j (‘æ‚V‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) ŽüŠúÏ•ª‚Æ‘½dƒ[[ƒ^’l
ˆÉ“¡’B˜Yi‹à‘ò‘嗝j Representations of Terwilliger algebras
2003 ”NH‹G‘‡•ª‰È‰ï ç—t‘åŠw‚É‚Ä(9/24 -- 9/27)
‰¥—Ñ(Weng Lin)i‹ã‘吔—j Non-abelian zeta functions
“s’z’¨•viL“‡‘嗝j ƒŠƒWƒbƒhEƒRƒzƒ‚ƒƒW[C ³•W”‚Ì h—Ç‚¢hp iƒRƒzƒ‚ƒƒW[˜_
â“à‰xŽqi‹ã‘吔—j ƒXƒsƒ“–ÍŒ^[‘㐔“I‘g‡‚¹˜_‚Ƃ̐ړ_
‰Á“¡•¶Œ³i‹ž‘嗝j Rigid Šô‰½‚ƈêˆÓ‰»
2003 ”Nt‹G”N‰ï “Œ‹ž‘åŠw‚É‚Ä(3/23--3/26)
“n•ÓŒhˆêi“ú‘啶—j (‘æ‚U‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) •W” p ‚©‚猩‚½u“ÁˆÙ“_˜_v
‰Ô‘º¹Ž÷i‹ã‘吔—j ƒ‚ƒ`[ƒt‘wi’ꑽ—l‘̂̏ã‚̃‚ƒ`[ƒtj‚Ì—˜_
Žsì®Žui²‰ê‘嗝Hj Teichmueller modular forms
“à“¡‘i’}”g‘吔Šwj Twining character formulae for reductive groups
2002 ”NH‹G‘‡•ª‰È‰ï “‡ª‘åŠw‚É‚Ä(9/25 -- 9/28)
”~“c‹œi‹ž‘嗝j ”ñ‰ÂŠ·¬•ª‚̍s—ñ”Ÿ”[‚»‚ÌŒã‚Ì Capelli Œ^P“™Ž®
¬–Ø‘]Œ[Ž¦i“Œ‘吔—j Arithmetic aspects of Fourier-Mukai partners of K3 surfaces
M. Kunebusch(Regensburg‘åA’†‰›‘åj Generic splitting of quadratic forms
ì“c_ˆêiŠâŽè‘勳ˆçj Waring –â‘è‚Æ‚»‚ÌŽü•Ó‚É‚¨‚¯‚éÅ‹ß‚̐i“W‚ɂ‚¢‚Ä
2002 ”Nt‹G”N‰ï –¾Ž¡‘åŠw‚É‚Ä(3/28--3/31)
ŒIŒ´«li“s—§‘嗝j (‘æ‚T‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) ŠâàV—˜_‚Ì”­“W‚ɂ‚¢‚Ä
–]ŒŽVˆêi‹ž‘吔—Œ¤jAnabelioid ‚ÌŠô‰½Šw
ˆÉŽRCi‹ž‘嗝j ®ŠÂ‚Ì•\Œ»˜_ -- Solomon zeta ŠÖ”‚ւ̉ž—p --
ŽR‰º”Ži–k‘嗝jHarish-Chandra ‰ÁŒQ‚Æ“™•û•\Œ»
2001 ”NH‹G‘‡•ª‰È‰ï ‹ãB‘åŠw‚É‚Ä(10/3--10/6)
ŒÃàV¹Hi‘åãŽs‘嗝j•ÛŒ^Œ`Ž®‚ÌŽüŠú‚Æ•ÛŒ^ L ŠÖ”
’r“c•Ûi‹ž‘嗝j (‘æ‚S‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) Construction of Siegel cusp forms
’†ŽR¸i‹ž‘吔—Œ¤j‘ȉ~ƒtƒ@ƒCƒo[‹óŠÔ‚̑ΐ”“I•ÏŠ·
2001 ”Nt‹G”N‰ï Œc‰ž‘åŠw‚É‚Ä(3/26--3/29)
‹àŽq¹Mi‹ã‘吔—j ‘½dƒ[[ƒ^’l‚ɂ‚¢‚Ä
‘‰ª²i’}”g‘吔Šwj ƒzƒbƒvEƒKƒƒA‚Ì–Ê”’‚³
¯Žir–¾i“Œ‹ž—‰È‘åj (‘æ‚S‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) •¡‘f‹¾‰fŒQ‚É•‚µ‚½ Green ŠÖ”‚ɂ‚¢‚Ä
”ÑŠñM•ÛiŽRŒû‘勳ˆçj ŒQ‚Ì p-‰Â‰ð«‚ƈê”Ê‘f”ƒOƒ‰ƒt
2000 ”NH‹G‘‡•ª‰È‰ï ‹ž‘呍‡lŠÔŠw•”‚É‚Ä(9/24--9/27)
ŒIŒ´«li“s—§‘嗝j ‘ȉ~‹Èü‚ÌŠâ‘ò—˜_‚ÆŠâ‘ò•s•Ï—Ê
S. Boecherer(Mannheim) Critical values of triple L-functions and some applications
@­ºOi‹ã‘吔—j Ž©ŒÈ‘o‘Ε„†‚Ì mass formula ‚̈ê”ʉ»
’|ƒ–Œ´—TŒ³iŽº—–H‘åjCç‹g—Ç’¼‹IiŽº—–H‘åj —LŒÀŒQ‚Æ•êŠÖ”
2000 ”Nt‹G”N‰ï ‘ˆî“c‘åŠw‚ɂāi3/27--3/30)
Œ´“ckˆê˜YiƒIƒnƒCƒIB—§‘åj (‘æ‚R‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) —LŒÀŒQ˜_‚̐¬‰Ê‚Ɖۑè
H. P. Schlickewei(Marburg) Recent results in Diophantine approximation
Matti Jutila(Turku ‘åj Spectral methods in analytic number theory
E. Getzler(RIMSENorth Westerm Univ.) The Virasoro conjecture and Frobenius Manifolds
1999 ”NH‹G‘‡•ª‰È‰ï L“‡‘åŠw‚É‚Ä(9/27--9/30)
HŽR–ÎŽ÷iVŠƒ‘嗝j ”Œnƒtƒ‰ƒNƒ^ƒ‹ƒ^ƒCƒ‹‚̈ʑŠ“I\‘¢‚ɂ‚¢‚Ä
“¡Œ´ˆêGi–¼‘命Œ³”—j (‘æ‚Q‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) ”ñ‰ÂŠ·—ޑ̘_‚ÌŒ»Ý
‘«—˜³i“Œ–kŠw‰@‘åHj ‘㐔‹Èü‚Ì‘Þ‰»‘°‚ÌŠô‰½
‹gr‘i‘åã‹³ˆç‘勳ˆçj —LŒÀ’PƒŒQ‚̍ªŠî•”•ªŒQ‚Æ‚»‚ÌŠô‰½
1999 ”Nt‹G”N‰ï ŠwK‰@‘åŠw‚É‚Ä(3/25--3/28)
¼–{k“ñi–¼‘命Œ³”—j ƒ[[ƒ^ŠÖ”‚Ì’l•ª•z˜_
‹à“º½”Vi–¼‘命Œ³”—j Niemeir lattices, Mathieu groups and finite groups of automorphisms of K3 surfaces
‹{–{‰ë•Fi’}”g‘吔Šwj (‘æ‚Q‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) ƒR[ƒh‚Æ’¸“_ì—p‘f‘㐔‚̍\¬
1998 ”NH‹G‘‡•ª‰È‰ï ‘åã‘åŠw‚É‚Ä(9/30--10/3)
H. Lange(Erlangen-Nuernberg) Complex Tori
G. Michler(Essen) A uniform construction method for all sporadic simple groups
”~‘º_i–¼‘命Œ³”—j (‘æ‚P‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) ƒpƒ“ƒ‹ƒ”ƒF•û’öŽ®‚Æ”÷•ªƒKƒƒA—˜_
Ö“¡‹Bi“Œ‘吔—j (‘æ‚P‰ñ‘㐔ŠwÜŽóÜ“Á•Êu‰‰) ”˜_Šô‰½Šw‚É‚¨‚¯‚éƒKƒƒA•\Œ»
¼“cN“ñiç—t‘厩‘Rj‹ÇŠŠÂ‚Ì filtration ‚É•‚·‚é ŽŸ”•t‚«ŠÂ‚ɂ‚¢‚Ä
1998 ”Nt‹G”N‰ï –¼é‘åŠw—HŠw•”‚É‚Ä(3/26--3/29)
¼‰ª‹v”üŽqiŒc‘åŒoÏj Mahler ŠÖ”‚¨‚æ‚Ñ’´‰z”˜_‚É‚¨‚¯‚éÅ‹ßĚ‹‰Ê
G. Malle(Heidelberg) Complex reflection groups, braid groups, and cyclotomic Hecke algebras
‹´–{Œõ°i–¼‘命Œ³”—j ŠÈ–ñŒQ‚Ì—Ç‚¢ì—p‚Ì•s•ÏŽ®ŠÂ‚Ì F ³‘¥«
Ž›”öG–¾i–k‘嗝j ’´Šô‰½ŠÖ”‚Ì‘g‡‚¹“I‘¤–Ê
1997 ”NH‹G‘‡•ª‰È‰ï “Œ‹ž‘åŠw‚ɂāi9/30--10/3)
‰F–쏟”Ž —LŒÀŒQ‚Ì•\Œ»˜_‚É‚¨‚¯‚é–â‘èC—\‘zC‚à‚µ‚­‚́EEE
Œj“c‰p“TiŽº—–H‘åHj ƒW[ƒQƒ‹EƒAƒCƒ[ƒ“ƒVƒ…ƒ^ƒCƒ“‹‰”‚̃t[ƒŠƒGŒW”‚¨‚æ‚Ñ‚»‚ê‚ÉŠÖ˜A‚·‚é˜b‘è
Žu•á~i“Œ–k‘嗝j ‘㐔‘½—l‘̂̃NƒŠƒXƒ^ƒ‹Šî–{ŒQ‚ɂ‚¢‚Ä
O. A. Laudal(Oslo) Moduli theory and non-commutative geometry
1997 ”Nt‹G”N‰ï MB‘åŠw‚É‚Ä(4/1--4/4)
‰z’Jd•viç—t‘嗝j —LŒÀŒQ‚̃‚ƒWƒ…ƒ‰[•\Œ»‚ÌŒ»ó
L’†—R”üŽqiMB‘嗝j Spherical functions of hermitian forms
¬ŠÖ“¹•viŽRŒ`‘嗝j •„†—˜_A‚»‚̌ŗL‚Ì–â‘肨‚æ‚Ñ‘¼‚Ì•ª–ì‚ÆŠÖ˜A‚µ‚½ 2, 3 ‚Ì–â‘è
‹g‰ªN‘¾iL‘嗝j Picard group of moduli of stable sheaves on abelian surfaces
1996 ”NH‹G‘‡•ª‰È‰ï “Œ‹ž“s—§‘åŠw‚É‚Ä(9/14--9/17)
‘ –ì˜a•Fi“s—§‘嗝j “ÁˆÙƒXƒL[ƒ€ã‚ł̃Š[ƒ}ƒ“Eƒƒbƒz‚̒藝‚̉Š·ŠÂ˜_‚ւ̉ž—p‚ɂ‚¢‚Ä
–Ø‘ºrˆêiL‘嗝j Chow ŒQ‚Ì—LŒÀŽŸŒ³«‚ƑΏ̐ς̒†‚Ì—L—‹Èü‚ɂ‚¢‚Ä
–]ŒŽVˆêi‹ž‘吔—Œ¤j‹ÇŠ‘̏ã‚̉“ƒA[ƒxƒ‹Šô‰½
ŽR“c—TŽji–k‘嗝j Reduced Schur functions and affine Lie algebras
1996 ”Nt‹G”N‰ï VŠƒ‘åŠw‚ɂāi4/1--4/4)
X˜e~i‹ž‘嗝jƒAƒ‰ƒPƒƒtŠô‰½‚̘b‘è‚©‚ç
—эFGi–¼‘命Œ³”—j–ÊŒ^—ÊŽqŒQ‚Æ‚»‚̉ž—p
“n•”—²•viã‘嗝jWeil •\Œ»‚ð—p‚¢‚½•ÛŒ^ L ŠÖ”‚̍\¬
G. van der Geer(Amsterdam) Curves with many points and coding theory
1995 ”NH‹G‘‡•ª‰È‰ï “Œ–k‘åŠw‚É‚Ä(9/27--9/30)
’†ŽR¸i‹ž‘吔—Œ¤j Elliptic fibration ‚̍\‘¢
‹{–{‰ë•Fiˆ¤•Q‘嗝j ’¸“_ì—p‘f‘㐔
“¡Œ´ˆêGi–¼‘命Œ³”—j ŠÖ”‘̏ã‚Ì Langlands —\‘z
¯Žir–¾i“Œ‹ž—‘嗝Hj —LŒÀ Chevalley ŒQ‚ÌŠù–ñŽw•W‚ɂ‚¢‚Ä
1995 ”Nt‹G”N‰ï —§–½ŠÙ‘åŠw(3/27--3/30)
¬–Ø‘]Œ[Ž¦i‚¨’ƒ‚̐…‘嗝j On fibered Calabi-Yau three folds
˜e–{ŽÀiŽOd‘勳ˆçj ƒX[ƒp[‘㐔‚Ì•\Œ»‚Æ‚»‚ê‚ÉŠÖ˜A‚·‚é˜b‘è
Ö“¡GŽii“Œ‘吔—j Fermat —\‘z‚ɂ‚¢‚Ä
‹ÊìˆÀ‹R’ji‹ž‘吔—Œ¤j A-motives and v-adic Galois representations
A. A. IwanoviƒƒVƒA‰ÈŠwƒAƒJƒfƒ~[j A geometric theory of sporadic simple groups
1994 ”NH‹G‘‡•ª‰È‰ï “Œ‹žH‹Æ‘åŠw‚É‚Ä(9/27--9/30)
¬¼Œ[ˆêi“Œ‹ž”_H‘åj $Z_{p}$ Šg‘å‚̐³‹K’ê‚Ì modular units ‚É‚æ‚é\¬
D. W. Masser(Basel) Finiteness theorems for abelian varieties
G. Mason(UCSD/‹ž‘吔—Œ¤j Modular invariance in algebraic conformal field theory
‹{è[Oi‹ž“s‹³ˆç‘勳ˆçj Hecke algebra structures ‚Æ‚»‚̉ž—p
Î“c³“Ti“Œ–k‘嗝j ƒg[ƒŠƒbƒN‘½—l‘Ì‚ÌŒð·ƒzƒ‚ƒƒW[—˜_
1994 ”Nt‹G”N‰ï _ŒË‘åŠw(3/31--4/3)
sŽÒ–¾•Fi‹ž‘呍‡lŠÔj ŠT‹ÏŽ¿ƒxƒNƒgƒ‹‹óŠÔ‚Ì—˜_‚̍ŋ߂̔­“W
òãùähi‹ß‹E‘嗝Hj ³‘¥”Ÿ”‚̈ʐ”‚ÉŠÖ‚·‚鐫Ž¿‚ÆŒ`Ž®”Ÿ”‚ÌŽû‘©‚ÉŠÖ‚·‚鐫Ž¿‚Ì—ÞŽ—‚ɂ‚¢‚Ä
ˆÉŽR’m‹`iã‘嗝j
âV“¡—Ti‹ž‘ålŠÔEŠÂ‹«ŠwŒ¤‹†‰Èj
On zeta functions associated to symmetric matrices
•À‰Í—Ç“Tiã’q‘嗝Hj On deformations of Calabi-Yau spaces
“‡“cˆÉ’m˜Ni–k‘嗝j ŠJ‘㐔‘½—l‘Ì‚ÌŠî–{ŒQ‚ɂ‚¢‚Ä
1993 ”NH‹G‘‡•ª‰È‰ï ‘åã•{—§‘åŠw(9/27--9/30)
’†‘º”Žºi“Œ‘吔—j •›—LŒÀŠî–{ŒQ‚̃KƒƒA„«
²’|ˆè•viã‘嗝j Flat structure for simple elliptic singularity, Jacobi forms, and character of an affine Lie algebra
O. Kerner(Heinrich-Heine Univ.) Representations of wild hereditary algebras
¼‘ºƒˆêi–kŠC“¹‹³ˆç‘åŽD–yj A few examples of local rings
1993 ”Nt‹G”N‰ï ’†‰›‘åŠw(3/26--3/29)
‘º£“āi‹ž“sŽY‹Æ‘åj ƒ†ƒjƒ^ƒŠŒQ‚Ì•ÛŒ^ L ŠÖ”
H. H. Voskuil p-adic uniformization
W. Decker(Saarland) A Syzygy theoretic approach to surfaces in $P^{4}$ and 3-fold in $P^{5}$
K. Hulek (Hannover) Recent results on moduli spaces of abelian surfaces
”ª–qG”üi’}”g‘吔Šwj —LŒÀ’PƒŒQ‚Ì‘f”ƒOƒ‰ƒt
1992 ”NH‹G‘‡•ª‰È‰ï –¼ŒÃ‰®‘åŠw(10/6--10/9)
‰Í–ìräi“Œ‘吔—j ‹¤Œ`ê—˜_‚É‚¨‚¯‚é modular ŒQ‚Ì•\Œ»‚Æ‚»‚̉ž—p
—é–ØŠ°i‘åã‹³ˆç‘åj Distance regular graph ‚ɂ‚¢‚Ä
Žðˆä•¶—Yié‹Ê‘嗝j “ÁˆÙ‘㐔‹È–ʁE“ÁˆÙ‘㐔‹Èü
–{‹´—mˆêi“ú‘嗝Hj ƒŠ[ƒ}ƒ“Eƒ[[ƒ^”Ÿ”‚Æ•ÛŒ^”g‚ÌŠC
1992 ”Nt‹G”N‰ï •Ÿ‰ª‘åŠw(4/1--4/4))
“ú”äF”Vi–k‘嗝j ’P‘Ì“I•¡‘Ì‚Æ“Ê‘½–Ê‘Ì‚Ì‘g‡‚¹˜_
‹÷LGNiL“‡‘嗝j On the geometry of determinantal varieties associated to 2-bundles on $P^{n}$
•½“c“TŽqi“ŒH‘嗝j ƒfƒBƒIƒtƒ@ƒ“ƒgƒX‹ßŽ—‚Ƒ㐔‹Èü‚̐®”“_
‰Á“¡˜a–çi“ŒH‘嗝j p i Hodge —˜_‚Ì”­“W
1991 ”NH‹G‘‡•ª‰È‰ï –kŠC“¹‘åŠw(10/10--10/13)
A. Skowro\'{n}ski(Toru\'{n} Univ.) Tame selfinjective algeras: recent advances and open problems
‹´’Ü“¹•Fi‰ªŽR—‘嗝j ƒOƒ‰ƒt‚̃XƒyƒNƒgƒ‹Šô‰½ --- ƒZƒ‹ƒo[ƒOŒ^ÕŒöŽ®‚Æ‚»‚̉ž—p
‹g–ì—Y“ñi‹ž‘勳—{j Cohen Macaulay ‰ÁŒQ‚Æ Buchsbaum ‰ÁŒQ‚Ì•\Œ»˜_
G. Trautmann(Kaiserslautern) On components of moduli schemes of semi-stable sheaves on projective 3-space
¡–ìˆêGi‹ã‘勳—{j ƒLƒƒƒmƒjƒJƒ‹‹È–Ê‚ÉŠÖ‚·‚é Reid —\‘z‚ɂ‚¢‚Ä
1991 ”Nt‹G”N‰ï Œcœä‘åŠw(4/1--4/4)
‹g“c’msi–k‘嗝j ŒQ˜_‚É‚¨‚¯‚éŒÃ“T“I–â‘è. •”•ªŒQ‚Ə€“¯Œ^‚̌”‚ð‚©‚¼‚¦‚é
¼‰ª‹v”üŽqi“ޗǏ—Žq‘嗝j Mahler ŠÖ”‚Æ’´‰z”
”öŒ`¯‰xi“Œ–k‘嗝j Geometric and arithmetic invariants of cusp singularities
Ke-Zheng Li(Academia Sinica) Moduli space of supersingular abelian varieties
1990 ”NH‹G‘‡•ª‰È‰ï é‹Ê‘åŠw(9/26--9/29)
›–ìFŽjiŽOd‘勳ˆçj Jacobi Œ`Ž®‚Æ theta lifting
U. Christian(Goettingen) On 'prime-number-theorem' for hyperbolic classes and abscissa of convergence of
the logarithmic derivative of Selberg's zeta function for elliptic modular groups
Ö“¡‹Bi“Œ‘嗝j ”˜_‹È–ʂƃRƒ“ƒ_ƒNƒ^[
P. M. H. Wilson(Cambridge) Some recent progress on Calabi-Yau maniforlds
R. Stanley(M.I.T.) Some combinatorial applications of the hard Lefschets theorem
1990 ”Nt‹G”N‰ï ‰ªŽR—‰È‘å(3/31--4/2)
â“à‰pˆêi‹ã‘嗝j ‘㐔“I‘g‡‚¹˜_‚Ì‚ß‚´‚·‚à‚Ì
óÀÆ—Yi•xŽR‘勳ˆçj ‹[‘½€Ž®ŠÂ‚ɂ‚¢‚Ä
™]“Oi‹ž‘嗝j ƒzƒ‚ƒƒW[•½–Ê‚ÆŽ©ŒÈ“¯Œ^
‰–“c“OŽ¡i—§‹³‘嗝j Mordell-Weil lattices and sphere packings
1989 ”NH‹G‘‡•ª‰È‰ï ã’q‘åŠw(9/27--9/30)
”Œ´³Ž÷Kac-Moody Li ŠÂ‚ÉŠÖ‚·‚é Kazhdan-Lusztig —\‘z
W. Casselman(Univ. British Columbia, “Œ–k‘嗝j Recent results in geometry, arithmetic, and analysis for Satake compactification
âV“¡­•Fi–k‘嗝j K3 ‹È–Ê‚Ì rigid ‚Å‚È‚¢‘°‚Ì•ª—Þ‚Æ Arakerov Œ^—LŒÀ«’藝
’†ŽR¸i“Œ‘嗝jZariski •ª—Þ–â‘è‚ɂ‚¢‚Ä
Ž›ž[—FGiç—t‘勳—{j Fermat hypersurface ‚Ì complet intersection ‚Æ
braid ŒQ‚Ì•\Œ»‚ɂ‚¢‚Ä
1989 ”Nt‹G”N‰ï “ú–{‘åŠw—HŠw•”(4/1--4/4)
Ö“¡GŽii“Œ‘嗝j ‚ŽŸŒ³—ޑ̘_‚Æ‚»‚̈ê”ʉ»
²“¡•¶Li—§‹³‘嗝j ƒAƒCƒ[ƒ“ƒVƒ…ƒ^ƒCƒ“‹‰”‚̈ê”ʉ»‚Ɛ”—”‘̏ã‚Ì u‹…ƒt[ƒŠƒG•ÏŠ·v
˜I•ô–Ζ¾iŽOd‘勳ˆçj Modular variety ‚Æ curve ‚Ì moduli
ã–ìŠìŽO—Yi‘‘嗝Hj ”ñƒRƒ“ƒpƒNƒg—ÊŽqŒQ $SU_{q}(1,1)$ ‚̃†ƒjƒ^ƒŠ[•\Œ»‚ɂ‚¢‚Ä
1988 ”NH‹G‘‡•ª‰È‰ï ‹à‘ò‘åŠw‹³—{•”(10/4--10/7)
–x]–M–¾iŽRŒû‘勳—{j j-‘㐔‘Ì‚ÆŠâàV•s•Ï—Ê
D“cFKi“Œ‘嗝j •ÛŒ^Œ`Ž®‚Ì Hodge \‘¢‚ɂ‚¢‚Ä
’†“‡°‹v(“s—§‘嗝j ‘½€Ž®ŠÂ‚Ì•s•Ï•”•ªŠÂ‚ɂ‚¢‚Ä
‰PˆäŽO•½i‚’m‘嗝j ˆê”ÊŒ^‹È–Ê‚Ì Torelli –â‘è
1988 ”Nt‹G”N‰ï —§‹³‘åŠw(3/31--4/3)
’Jèr”Vi“Œ–k‘嗝j ”¼’PƒŒQ‚Ì•\Œ»‚Æ D ‰ÁŒQ
’JìD’ji–¼‘嗝jCHŽR–ÎŽ÷i_ŒË‘厩‘R‰ÈŠwj d‚³‚P‚Ì•ÛŒ^Œ`Ž®‚ÉŠÖ‚·‚é Hecke ì—p‘f‚̐ՌöŽ®‚ɂ‚¢‚Ä
Ö“¡·•Fi‹ž‘吔—Œ¤j Mixed Hodge modules
ÎˆäŽu•ÛŽqi‹ã‘嗝j ŒÇ—§“ÁˆÙ“_‚Ì invariant ‚Æ Hodge \‘¢
1987 ”NH‹G‘‡•ª‰È‰ï ‹ž“s‘åŠw(10/2--10/5)
z–K‹IKi“Œ‹ž“d‹@‘åHj ‘㐔‘½—l‘Ì‚Ì Abel-Jacobi ŽÊ‘œ
óˆäÆ–¾i“Þ—Ç‹³ˆç‘åj —LŒÀ reductive ŒQ‚ÌŠù–ñŽw•W‚ɂ‚¢‚Ä
“n•ÓŒhˆêi“ŒŠC‘嗝j ‰ÂŠ·ŠÂ˜_‚É‚¨‚¯‚é Frobenius ŽÊ‘œ
“y‰®º”Ži–¼‘嗝j Riemann –Ê‚Ì moduli, ‚QŽŸŒ³ê‚Ì—ÊŽq˜_CKP •û’öŽ®(ƒgƒ|ƒƒW[•ª‰È‰ï‚Æ‹¤Ãj
1987 ”Nt‹G”N‰ï “Œ‹ž‘åŠw‹³—{Šw•”i4/1--4/4)
Ž›”öG–¾i‘ÛƒLƒŠƒXƒg‹³‘嗝j ’´•½–Ê‘°‚̐”Šw
ˆÉ“¡Žj˜NiL“‡‘嗝j ƒCƒfƒAƒ‹‚̐®•Â•ï‚ÉŠÖ‚·‚éˆê’藝
Ž›¼’Á’ji–¼‘嗝j ”ñ‰ÂŠ·ŠÂ‚Ì•s•ÏŽ®˜_‚ɂ‚¢‚Ä
Žá¼—²‹`iã•‘åŒo‰cî•ñj A generalization of tilting modules and stable equivalences
1986 ”NH‹G‘‡•ª‰È‰ï ç—t‘åŠw¼ç—t’n‹æ(9/27--9/30)
‹{–{‰ë•Fiˆ¤•Q‘嗝j ®”•\Œ»‚Æ‚QŽŸŒ`Ž®
ŽO‘Æi–¼‘勳—{j ’†SŠg‘å
Œj—˜si‰¡•lŽs‘啶—j ³•W”‚ÌŽå•Î‹ÉƒA[ƒxƒ‹‘½—l‘̂̃‚ƒWƒ…ƒ‰ƒC‹óŠÔ
”~‘º_iŽOd‘勳ˆçj Painlev\'{e} ‚Ì‘æ‚P•û’öŽ®‚ÌŠù–ñ«‚ɂ‚¢‚Ä
1986 ”Nt‹G”N‰ï ‹ž“s‘åŠw(4/2--4/5)
”ì“c°ŽOi–k‘嗝j p-i Hecke algebra ‚Ì—˜_‚Æ Galois •\Œ»
Œã“¡Žl˜Y(“ú‘啶—j Toward the theory of Buchsbaum rings --- Buchsbaum ŠÂ‚̉ߋŽEŒ»ÝE–¢—ˆ---
Î“c³“Ti“Œ–k‘嗝j ƒg[ƒ‰ƒX–„‚ߍž‚Ý‚É‚æ‚é‘g‚ݍ‡‚킹‘㐔Šô‰½Šw
‰œŽR“N˜YiãŽs‘嗝j —LŒÀŒQ‚̃‚ƒWƒ…ƒ‰[•\Œ»‚É‚¨‚¯‚éÅ‹ß‚ÌŒXŒü
1985 ”NH‹G‘‡•ª‰È‰ï •xŽR‘åŠw(9/30--10/3)
‘Δn—´ŽiiŠwK‰@‘嗝j Siegel •ÛŒ^Œ`Ž®‚Ì‹óŠÔ‚ÌŽŸŒ³ŒöŽ®‚ɂ‚¢‚Ä
J. Neukirch(Regensburg) On a general reciprocity law
–q–ì—Ç•½i•Ÿ“‡‘勳ˆçj Rings with the double centralizer property
1985 ”Nt‹G”N‰ï “Œ‹ž“s—§‘åŠw‹³—{•”(4/2--4/5)
’r“cMiKoeln) Generalized Cohen-Macaulay ring ‚Æ blowing-up
Œüˆä–΁i–¼‘嗝j K3 ‹È–Ê‚Æ‚QŽŸŒ`Ž®‚Æ Mathieu ŒQ‚ɂ‚¢‚Ä
D. R. Morrison(Princeton) Som applications of the theory of quadratic forms to algebraic geometry
¬’r³•vi–¼‘嗝j Moonshine ‚ɂ‚¢‚Ä
1984 ”NH‹G‘‡•ª‰È‰ï “Œ‹ž‘åŠwHŠw•”E—Šw•”(10/16--10/19)
ì’†é–¾iã‘嗝j ˆê”ʉ»‚³‚ꂽ Gelfand-Graev •\Œ»‚ÆŠT‹ÏŽ¿ƒxƒNƒgƒ‹‹óŠÔ‚Ì Gauss ˜a
ˆÉŽR’m‹`i‹ã‘勳—{j •ÛŒ^Œ`Ž®ŠÔ‚Ì Langlands ‘ΉžA“Á‚É symplectic ŒQ‚ɂ‚¢‚Ä
‹{‰ª—mˆêi“s—§‘嗝j ’PüD‘½—l‘Ì‚Æ‚RŽŸŒ³‘½—l‘Ì‚Ì•ª—Þ—˜_
F. Oort(Utrecht) Some subvarieties of moduli spaces of algebraic curves and abelian varieties
1984 ”Nt‹G”N‰ï ‘åã‘åŠwHŠw•”(4/3--4/6)
˜e–{ŽÀiL“‡‘嗝j Kac-Moody Lie ŠÂ‚ÌŽw•WŒöŽ®
”~‘º_i–¼‘嗝jCremona ŒQ‚ɂ‚¢‚Ä
A. J. van der Poorten(Macquarie Univ.) Curves with prescribed singularities and the Thue-Siegel-Dyson theorem
1983 ”NH‹G‘‡•ª‰È‰ï ‘ˆî“c‘åŠw—HŠw•”(9/12--9/15)
C. Procesi(Rome) Schubert calculus and algebraic geometry
E. Freitag(Heidelberg) ‘è•s–¾iƒvƒƒOƒ‰ƒ€‚Å‚Í–¢’è‚Æ‚È‚Á‚Ä‚¢‚½j
ì–”—Y“ñ˜Yi“Œ‘嗝j ŽOŽŸŒ³‘㐔‘½—l‘Ì‚Ì minimal model
1983 ”Nt‹G”N‰ï L“‡‘åŠw(4/4--4/7)
‘¾“c‰ëŒÈi‹ž‘嗝j Žu‘º‹Èü‚Æ•ÛŒ^ L ”Ÿ”
D. Simson(N. Copernicus Univ.) Matrices, orbits and indecomposable representations
‰Á“¡Mˆêi“Œ‘嗝j Kazhdan-Lusztig ‘½€Ž®‚Æ Chevalley ŒQ‚̃‚ƒWƒ…ƒ‰[•\Œ»
1982 ”NH‹G‘‡•ª‰È‰ï ŽOd‘åŠw(9/28--10/1)
M. E. Sweedler(Cornell Univ.) A new invariant for the complex numbers over the real numbers
ˆÉ“¡¸ib“ì‘嗝j ƒAƒ_ƒ}[ƒ‹s—ñ‚ÉŠÖ‚·‚é“ñCŽO‚̘b‘è
Xd•¶i–¼‘嗝j ‘㐔‘½—l‘̏ã‚Ì—L—‹Èü‚Æ Fano 3-fold ‚ɂ‚¢‚Ä
1982 ”Nt‹G”N‰ï “Œ–k‘åŠw‹³—{•”(3/30--4/2)
‰Á“¡˜a–çi“Œ‘嗝j —ޑ̘_‚̍‚ŽŸŒ³‰»
sŽÒ–¾•Fiã‘嗝j —LŒÀ‚¨‚æ‚Ñ P-i Chevalley ŒQ‚Ì Hecke ŠÂ‚É•‚µ‚½
Poincar\'{e}‹‰”‚Æ‚»‚̈ê”ʉ»
M. Herrmann (K\"{o}ln) On equimultiplicity and blowing-up
1981 ”NH‹G‘‡•ª‰È‰ï ŽRŒû‘åŠw(10/5--10/8)
‰|ˆê˜Yiã’q‘嗝Hj Compact ‰»‰Â”\•¡‘f‰ðÍ‹È–ʂɂ‚¢‚Ä
²•ˆê˜Yi“Œ–k‘嗝j Jordan ŠÂ‚̐®”˜_‚ւ̉ž—p
1981 ”Nt‹G”N‰ï ‹ž“s‘åŠw(4/3--4/7)
V. Dlab (Carleton Univ.) On classification problems of linear algebra
‹g“cŒh”Vi‹ž‘嗝j CM Œ^ƒA[ƒxƒ‹‘½—l‘̂̃[[ƒ^ŠÖ”‚ɂ‚¢‚Ä
1980 ”NH‹G‘‡•ª‰È‰ï ˆ¤•Q‘åŠw(10/1--10/4)
Œ´“ckˆê˜Y(Ohio State Univ.) —LŒÀŒQ˜_‚ÌŽc‚³‚ꂽ‰Û‘è
‰–“c“OŽ¡i“Œ‘嗝j Hodge ƒTƒCƒNƒ‹‚Ƒ㐔“IƒTƒCƒNƒ‹
M. Raynaud(Univ. Paris Sud) Global sections of vector bundles on curves
1980 ”Nt‹G”N‰ï MB‘åŠw(4/1--4/4)
Œ´“cŠwiãŽs‘嗝j ‰ÁŒQ‚Ì lifting property ‚ɂ‚¢‚Ä
P. M. H. Wilson(Cambridge Univ. , ‹ž‘嗝j Finite generation of rings and algebraic geometry
1979 ”NH‹G‘‡•ª‰È‰ï ‹ž“s‘åŠw(10/1--10/4)
‹g“c’msi–k‘嗝j ƒgƒ|ƒX‚É‚¨‚¯‚é transfer ’藝 ---—LŒÀŒQ˜_‚Í–ð‚É—§‚‚©---
–k‰ª—Ç”Vi–¼‘嗝j ³’l‚QŽŸŒ`Ž®‚̃eƒ“ƒ\ƒ‹Ï‚ɂ‚¢‚Ä
1979 ”Nt‹G”N‰ï –¼ŒÃ‰®H‹Æ‘åŠw(4/3--4/6)
ã–쌒Ž¢i‹ž‘嗝j ŽOŽŸŒ³‘㐔‘½—l‘Ì‚Ì•ª—Þ—˜_‚ÌŒ»ó‚Ɖۑè
X“cN•vi–k‘嗝j ”ñƒAƒ‹ƒLƒƒfƒX“I‚ȑ̏ã‚̉ðÍŠÖ”‚ɂ‚¢‚Ä
1978 ”NH‹G‘‡•ª‰È‰ï “Œ‹ž“d‹@‘åŠw(10/4--10/7)
‰Á“¡–L‹Ii’}”g‘åj Morita contexts and equivalences
C. Hering(Univ. T\"{u}bingen) On the structure of collineation groups of projective planes
1978 ”Nt‹G”N‰ï –¼ŒÃ‰®‘åŠw(4/4--4/7)
ŽRè³i“Œ‘嗝) Fourier •ÏŠ·‚̈ê”ʉ»‚Æ Metaplectic ŒQ
–Ø‘º’B—Yi–¼‘嗝j ŠT‹ÏŽ¿ƒxƒNƒgƒ‹‹óŠÔ‚Ì—˜_
1977 ”NH‹G‘‡•ª‰È‰ï “Œ‹ž—‰È‘åŠw—Šw•”_ŠyâZŽÉ(10/9--10/12)
–x“c—Ç”ViL“‡‘嗝j —LŒÀ‘̏ã‚Ì Chevalley ŒQ‚Ì Green ‘½€Ž®‚Æ Weyl ŒQ‚Ì•\Œ»
“¡“c—²•vi“Œ‘勳—{j ¬•½ŽŸŒ³‚Ì—˜_ --‚»‚̉ߋŽEŒ»ÝE–¢—ˆ---
1977 ”Nt‹G”N‰ï ‹ž“s‘åŠw—Šw•”E”—‰ðÍŒ¤‹†Š
¬¼Œ[ˆêi“ŒH‘嗝j zeta ŠÖ”‚Æ adele ŠÂ‚É‚æ‚é‘㐔‘Ì‚ÌŒˆ’è
–öŒ´OŽuiL“‡‘嗝j ŒQƒXƒL[ƒ€‚É•‚·‚é Hopf ‘㐔‚ɂ‚¢‚Ä
1976 ”NH‹G‘‡•ª‰È‰ï “Œ‹žH‹Æ‘åŠw(10/4--10/7)
–xì‰n“ñi“Œ‘嗝j ŽŸ” 2 ‚Ì K3 ‹È–Ê‚ÌŽüŠú‚ɂ‚¢‚Ä
P. J. Roquette(Heidelberg) ‘è•s–¾iƒvƒƒOƒ‰ƒ€‚Å‚Í‘è–¢’è‚Æ‚È‚Á‚Ä‚¢‚éj
”ö–쎛‹Bi–k‘勳—{j Codominant dimension ‚Æ Morita equivalence
1976 ”Nt‹G”N‰ï ‹ãB‘åŠw(4/2--4/5)
˜QìK•Fi–¼‘嗝j Voronoi ŠÈ–ñ—˜_‚ƕ΋ɃA[ƒxƒ‹‘½—l‘Ì‚Ì‘Þ‰»
J. Tate(Harvard Univ.) ‘è•s–¾
J. H. Coates(Univ. Cambridge) ‘è•s–¾
ŽRŒ`–M•vi’}”g‘åj On Artin rings of finite representation type
B. J. Birch(Oxford Univ.) ‘è•s–¾
1975 ”NH‹G‘‡•ª‰È‰ï “Œ‹ž‘åŠw‹³—{Šw•”(10/1--10/4)
’|“àŒõOi’}”g‘åj On coverings and hyperalgebras of affine algebraic groups
¬“c’‰—Y Torus embedding ‚Æ‚»‚̉ž—p
1975 ”Nt‹G”N‰ï ‘åã‘åŠw(4/2--4/5)
X“cN•vi“Œ‘嗝j p-adic $\Gamma$ -ŠÖ”‚ɂ‚¢‚Ä
âV“¡—Ti‹ž‘嗝j ‘㐔‘Ì‚ÌŠg‘å‚Æ•ÛŒ^Œ`Ž®
1974 ”NH‹G‘‡•ª‰È‰ï ‹ž“s‘åŠw(10/12--10/15)
‹÷LGNib“ì‘嗝j Equivariant completion
’†“‡~i‰ªŽR‘嗝j ‰ÂŠ·ŠÂã‚̃KƒƒA‘Ώ̂ƃRƒzƒ‚ƒƒW[ŒQ‚ɂ‚¢‚Ä
1974 ”Nt‹G”N‰ï “Œ‹ž‘åŠwi–{‹½j(4/2--4/5)
V’J‘ì˜Yi“Œ‘嗝j ŠT‹ÏŽ¿ƒxƒNƒgƒ‹‹óŠÔ‚̃[[ƒ^ŠÖ”‚Æ‚»‚̉ž—p
‹g“c’msi–k‘嗝j ‚ ‚é type ‚Ì—LŒÀ’PƒŒQ‚Ì”ñ‘¶Ý‚ɂ‚¢‚Ä
1973 ”NH‹G‘‡•ª‰È‰ï ‰ªŽR‘åŠw(10/11--10/14)
‹{‰º—fˆêi“Œ‹ž‹³ˆç‘嗝j ŠÂ‚̃KƒƒAŠg‘å‚Ɛڍ‡Ï‚ɂ‚¢‚Ä
ŠÛŽR³Ž÷i‹ž‘嗝j ‘㐔“IƒxƒNƒgƒ‹‘©‚ɂ‚¢‚Ä
1973 ”Nt‹G”N‰ï —§‹³‘åŠw 5 †ŠÙ(4/3--4/6)
ŒÜ–¡Œ’ìi“Œ‘嗝j Bender ŒQ‚Ì“Á’¥‚¯‚ɂ‚¢‚Ä
‘«—§P—Yi‘‘嗝j ’P€‰»’藝‚ɂ‚¢‚Ä
1972 ”NH‹G‘‡•ª‰È‰ï ‹ž“s‘åŠw(10/14--10/17)
ŽO‘î•qPi‹ž‘嗝j On automorphism groups of fields of automorphic functions
–{‹´—mˆêi“ú‘嗝Hj ‘f”’藝‚ɂ‚¢‚Ä
ŽR“cr•Fi“s—§‘嗝j Schur subgroups of the Brauer group
1972 ”Nt‹G”N‰ï Œcœä‹`m‘åŠw“ú‹gZŽÉ(4/1--4/4)
R. Hartshorne(Harvard Univ.) ‘è•s–¾
ŽR“c_i–¼‘嗝j Formal Scheme ‚Ì—˜_‚ÌŠî‘b‚ɂ‚¢‚Ä
ì’†é–¾iã‘嗝j —LŒÀ Chevalley ŒQ‚ÌŠù–ñŽw•W‚ɂ‚¢‚Ä
1971 ”NH‹G‘‡•ª‰È‰ï ‹ž“s‘åŠw—Šw•”E”—‰ðÍŒ¤EŠî‘b•¨—Œ¤EHŠw•”(10/15--10/18)
‘å—Ñ’‰•viãŽs‘嗝j —LŒÀŒQ‚Ì Whitehead ŒQ‚ɂ‚¢‚Ä
‹ß“¡•i“Œ‘勳—{j Singular functor theorem and uniqueness theorem
ŽO‘Æi–¼‘勳—{j On models of certain automorphic function fields
²•ˆê˜YiUniv. California) Linear embeddings of self-dual homogeneous cones
1971 ”Nt‹G”N‰ï “Œ‹ž“s—§‘åŠw‹³—{•”(4/3--4/6)
–Ø‘º_i–k‘嗝j “ñd‰Â‘JŒQ‚ɂ‚¢‚Ä
Nikolas M. Katz(Princeton Univ.) Differential equations in algebraic geometry
1970 ”NH‹G‘‡•ª‰È‰ï Ã‰ª‘åŠwHŠw•”E•l¼Žs–¯‰ïŠÙ(10/1--10/4)
XìŽõi–¼‘嗝j •¡‘f‘½—l‘̏ã‚̎ˉeŒ^”÷•ª•û’öŽ®‚ɂ‚¢‚Ä
“yˆäŒö“ñi‹ž‘嗝jC’·À‰p‹vi‹ž‘嗝j On a recent discovery of Shimura and relating numerical evidences iŽÀ‚QŽŸ‘̏ã‚Ì—Þ‘Ì‚Æ•ÛŒ^”Ÿ”j
F. Kasch(M\"{u}nchen) Injective cogenerators
1970 ”Nt‹G”N‰ï
...
‚±‚êˆÈ‘O‚ÌŽ‘—¿‚͎茳‚É‚ ‚è‚Ü‚¹‚ñD î•ñ‚ð‚¨Ž‚¿‚Ì•û‚ÍŠÇ—ŽÒ‚Ü‚Å‚²ˆê•ñ‰º‚³‚¢

‚±‚̃y[ƒW‚̐擪‚Ö

•ª‰È‰ïƒz[ƒ€ƒy[ƒWƒgƒbƒv‚Ö