‘㐔Šw•Ş‰Č‰ďŠÖŒW Œ¤‹†W‰ď î•ń

‚ą‚Ěƒy[ƒW‚ĚƒvƒƒOƒ‰ƒ€‚ĚÚ×‚É‚Â‚˘‚Ä‚Í’źÚŽĺĂŽŇ‚ɖ₢‡‚í‚š‚Ä‚­‚ž‚ł‚˘D

Œë‚č‚âV‚ľ‚˘î•ń‚Ş‚ ‚č‚Ü‚ľ‚˝‚çŠÇ—ŽŇ‚Ü‚Ĺ‚˛ˆę•ń‚­‚ž‚ł‚˘D

•Ş‰Č‰ďƒz[ƒ€ƒy[ƒWƒgƒbƒv‚Ö


2017”N“xŠJĂ‚ĚƒVƒ“ƒ|ƒWƒEƒ€î•ńiŠJĂ“ú’ö‡j
–źĚ –ěXŽs‘㐔“IŽ”˜_2018
“ú’ö 2018”N2ŒŽ23“úi‹ŕjŒßŒă`24“úi“yjŒß‘O
‰ďę ‹ŕ‘ňH‹Ć‘ĺŠw î‚Ş‹uƒLƒƒƒ“ƒpƒX 24†ŠŮ 24E408‹łŽş
ŽĺĂŽŇ ˆÉ“Ą„Žiiç—tH‹Ć‘ĺŠwj, “Ąˆäri‹ŕ‘ňH‹Ć‘ĺŠwj
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ ‘ć11‰ńƒ[[ƒ^ŽáŽčŒ¤‹†W‰ď
“ú’ö 2018”N2ŒŽ19“ú(ŒŽ)`2018”N2ŒŽ22“ú(–Ř)(4“úŠÔ)
‰ďę ˆ¤•Q‘ĺŠw—Šw•”u‹`“ S32
ŽĺĂŽŇ ź–{ k“ńi–źŒĂ‰Ž‘ĺŠwjAŽRúą ‹`“żiˆ¤•Q‘ĺŠwjA —é–Ř —Y‘ži–źŒĂ‰Ž‘ĺŠwjA–ĺ“c T–çi–źŒĂ‰Ž‘ĺŠwjA”~ŕV —Ä‘ži–źŒĂ‰Ž‘ĺŠwjA ˆäă ăđži–źŒĂ‰Ž‘ĺŠwjA‰““Ą Œ’‘ži–źŒĂ‰Ž‘ĺŠwjA_‹{ Œ[—Si–źŒĂ‰Ž‘ĺŠwjA ˆî—t “N–çi–źŒĂ‰Ž‘ĺŠwjAÖ“Ą k‘ži–źŒĂ‰Ž‘ĺŠwjAŹ—Ń O‹ži–źŒĂ‰Ž‘ĺŠwj
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ ‘ć11‰ń ‘˝dƒ[[ƒ^Œ¤‹†W‰ď
“ú’ö 2018”N2ŒŽ16“úi‹ŕj`18“úi“új
‰ďę ‹ß‹E‘ĺŠw “Œ‘ĺăƒLƒƒƒ“ƒpƒX 31†ŠŮ 5ŠK 506u‹`Žş
ŽĺĂŽŇ ˆäŒ´Œ’‘ž˜Yi‹ß‹E‘ĺŠwj, ‘ĺ–ě‘אśi“Œ–k‘ĺŠwj, Ź–ě’Ë—Fˆęi‹ăB‘ĺŠwj, ‹ŕŽqšMi‹ăB‘ĺŠwj, Š™–ěŒ’i‘ĺăH‹Ć‘ĺŠwj, ˛X–Ř‹`‘ěi‘ĺă‘Ěˆç‘ĺŠwj, “c’†—§Žui‹ž“sŽY‹Ć‘ĺŠwj, LŁ–Ťi‹ăB‘ĺŠwj
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ Polynomial Rings and Affine Algebraic Geometry
“ú’ö 2018”N2ŒŽ12“úiŒŽj`2018”N2ŒŽ16“úi‹ŕj
‰ďę Žń“s‘ĺŠw“Œ‹ž“ě‘ĺ‘ňƒLƒƒƒ“ƒpƒX11†ŠŮ204Žş
ŽĺĂŽŇ •“c–΁iŽń“s‘ĺŠw“Œ‹žjAŹ–ě“cMti•Ÿˆä‘ĺŠwjA Gene FreudenburgiWestern Michigan Univ.j
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ RIMS‹¤“ŻŒ¤‹†(ŒöŠJŒ^) •ŰŒ^Œ`ŽŽ‚̉đÍ“IE”˜_“IŒ¤‹†
“ú’ö 2018”N1ŒŽ15“úiŒŽj`2018”N1ŒŽ19“úi‹ŕj i5“úŠÔj
‰ďę ‹ž“s‘ĺŠw ”—‰đÍŒ¤‹†Š 420Žş (‚P‚W“ú‚̂݉věƒz[ƒ‹)
ŽĺĂŽŇ …–ě‹`‹Ii“ż“‡‘ĺŠwj AŽá’Αi‹ŕ‘ň‘ĺŠwj
•ńW —L î•ń‚Ěƒy[ƒW
–źĚ RIMS‹¤“ŻŒ¤‹†iŒöŠJŒ^ju‘㐔“I‘g‡‚š˜_‚¨‚ć‚Ń—LŒŔŒQE’¸“_ě—p‘f‘㐔‚Ć‚ť‚Ě•\Œť‚Ě Œ¤‹†v
“ú’ö 2017”N12ŒŽ11“ú(–Ř)`14“ú(–Ř)
‰ďę ‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š‚SŠK‚S‚Q‚O†Žş
ŽĺĂŽŇ ˆŔ•”—˜”V(ˆ¤•Q‘ĺŠw‹łˆçŠw•”)
•ńW ěŹ—\’č
–źĚ RIMSŒ¤‹†W‰ďu‘㐔“IŽ”˜_‚Ć‚ť‚ĚŽü•Óv
“ú’ö 2017”N12ŒŽ4“úiŒŽj`12ŒŽ8“úi‹ŕj
‰ďę ‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š420†Žş
ŽĺĂŽŇ ŠpŠFGiă’q‘ĺŠwjAŽRč—˛—Yi“Œ–k‘ĺŠwjA…ŕV–ői–źŒĂ‰ŽH‹Ć‘ĺj
•ńW ěŹ—\’č î•ń‚Ěƒy[ƒW
–źĚ ‘ć39‰ń‰ÂŠˇŠÂ˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö 2017”N11ŒŽ13“ú(ŒŽ)Œß‘O`2017”N11ŒŽ17“ú(‹ŕ)ŒßŒă
‰ďę ‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š420†Žş
ŽĺĂŽŇ ‚‹´ —ş(–ź‘ĺ)A‘吙 ‰pŽj(ŠÖźŠw‰@‘ĺ)A‚–Ř r•ă(“Œ‘ĺ)
•ńW –˘’č
–źĚ Polylogs, multiple zetas, and related topics
“ú’ö 2017”N11ŒŽ11“ú(“y) ` 11ŒŽ12“ú(“ú)
‰ďę “Œ–k‘ĺŠw •Đ•˝ƒLƒƒƒ“ƒpƒX “Œ–k‘ĺŠw’m‚ĚŠŮ ‚RŠK Lecture Theater
ŽĺĂŽŇ ‘ĺ–ě‘אśi“Œ–k‘ĺŠwjEC‹ŕŽqšMi‹ăB‘ĺŠwjCHerbert Gangli‹ăB‘ĺŠwCDurham Univ.j
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ RIMS‹¤“ŻŒ¤‹†(ŒöŠJŒ^)u‰đÍ“IŽ”˜_‚Ć‚ť‚ĚŽü•Óv
“ú’ö •˝Ź29”N10ŒŽ30“ú(ŒŽ) Œß‘O ` 11ŒŽ1“ú(…) ŒßŒă y3“úŠÔz
‰ďę ‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š420†Žş
ŽĺĂŽŇ “Ą“cˆçŽki“ú–{‘ĺŠwjAŒŠłG•Fi“Œ‹ž“d‹@‘ĺŠwj
•ńW ěŹ—\’č î•ń‚Ěƒy[ƒW English
–źĚ ‘ć50‰ńŠÂ˜_‚¨‚ć‚Ń•\Œť˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö 2017”N10ŒŽ7“ú(“y) `10ŒŽ10“ú(‰Î)
‰ďę ŽR—œ‘ĺŠwb•{ƒLƒƒƒ“ƒpƒX
ŽĺĂŽŇ ƒvƒƒOƒ‰ƒ€Ó”CŽŇFáÁ“cŽ“Ti“Œ‹ž—‰Č‘ĺŠwj
‰ďęÓ”CŽŇF˛“ĄáÁ‹vA‹{Œ´‘ĺŽ÷AŽR‰Y_‘žiŽR—œEĺŠwj
•ńW ěŹ—\’č î•ń‚Ěƒy[ƒW
–źĚ 2017‘ĺ•ŞŒF–{Ž”˜_Œ¤‹†W‰ď
“ú’ö ‚Q‚O‚P‚V”N10ŒŽ7“ú(“y)‚Š‚ç10ŒŽ8“ú(“ú)
‰ďę ‚­‚Ü‚ŕ‚ĆŒ§–ŻŒđ—ŹŠŮƒpƒŒƒA‰ď‹cŽş3
ŽĺĂŽŇ Ž›ˆäL_(‘ĺ•Ş‘ĺŠw), “ú”ä–ě„Žm(’é‘ĺŠw)
•ńW ‚Č‚ľ
–źĚ Regulators in Niseko 2017
“ú’ö 2017”N9ŒŽ3“úi“új`2017”N9ŒŽ8“úi‹ŕj
‰ďę ƒqƒ‹ƒgƒ“ƒjƒZƒRƒrƒŒƒbƒW
ŽĺĂŽŇ ’Š‘q­“Ti–kŠC“š‘ĺŠwjA‘ĺ’Ř‹I”Viç—t‘ĺŠwj
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ ‘ć‚Q‚O‰ń”’”nŽ”˜_ƒI[ƒ^ƒ€ƒ[ƒNƒVƒ‡ƒbƒv
“ú’ö ‚Q‚O‚P‚V”N‚XŒŽ‚R“úi“új‚Š‚ç‚XŒŽ‚V“úi–؁j
‰ďę ”’”nƒnƒCƒ}ƒEƒ“ƒgƒzƒeƒ‹
ŽĺĂŽŇ ˆÉŽR’m‹`
•ńW ‚Č‚ľ
–źĚ ‘ć11‰ń•Ÿ‰Ş”˜_Œ¤‹†W‰ď
“ú’ö ‚Q‚O‚P‚V”N‚WŒŽ‚W“ú(‰Î)‚Š‚ç‚WŒŽ‚P‚O“úi–؁j
‰ďę ‹ăB‘ĺŠw(ˆÉ“sƒLƒƒƒ“ƒpƒX)@ƒEƒFƒXƒg‚P†ŠŮ
ŽĺĂŽŇ ‹ŕŽqšM(‹ăB‘ĺŠw), Œ ”J˜D(‹ăB‘ĺŠw), ŠÝNO(ˆ¤’m‹łˆç‘ĺŠw)
•ńW ěŹ—\’č î•ń‚Ěƒy[ƒW
–źĚ “ú–{”Šw‰ď‹GŠúŒ¤‹†ŠuŠâŕV—˜_v(Iwasawa 2017)
“ú’ö 2017”N7ŒŽ19“úi…j`7ŒŽ28“úi‹ŕj
Preparatory Lecture Series: July 19-22, Conference: July 24-28
‰ďę “Œ‹ž‘ĺŠw”—‰ČŠwŒ¤‹†‰Č‘ĺu‹`Žş
ŽĺĂŽŇ ŒIŒ´Ťl(Œcœä‹`m‘ĺŠw)A’Ň—Y(“Œ‹ž‘ĺŠw)Aâ“ŕŒ’ˆę(Œcœä‹`m‘ĺŠw)
•ńW ěŹ—\’č î•ń‚Ěƒy[ƒW
–źĚ ‘ć16‰ńL“‡ĺ‘䐎”˜_W‰ď
“ú’ö 2017”N7ŒŽ11“úi‰Îj`7ŒŽ14“úi‹ŕj
‰ďę L“‡‘ĺŠw—Šw•” (“ŒL“‡ƒLƒƒƒ“ƒpƒX)
ŽĺĂŽŇ •˝”V“ŕr˜Y (‹ăBH‹Ć‘ĺŠw)Aź–{áÁ (L“‡‘ĺŠw)A‹{’J˜a‹ÄiL“‡‘ĺŠwjA ‚‹´_Ž÷ (“ż“‡‘ĺŠw)A“s’z’¨•v (“ŒEk‘ĺŠw)Aá]–ž•F (‹ž“s‘ĺŠw)
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ The Prospects for Commutative Algebra
“ú’ö ‚Q‚O‚P‚V”N‚VŒŽ‚P‚O“úiŒŽj‚Š‚ç‚VŒŽ‚P‚S“úi‹ŕj
‰ďę ƒzƒeƒ‹“úq‘ĺă
ŽĺĂŽŇ D. Cutkoskyiƒ~ƒY[ƒŠ[‘ĺjAD. Eisenbud (MSRI)AŒă“ĄŽl˜Yi–žŽĄ‘ĺŠwjA J. HerzogiƒGƒbƒZƒ“‘ĺjA“ú”äF”Vi‘ĺă‘ĺŠwj
•ńW •s–ž î•ń‚Ěƒy[ƒW
–źĚ ‘ć4‰ń‹ž“s•ŰŒ^Œ`ŽŽŒ¤‹†W‰ď
“ú’ö 2017”N6ŒŽ16“ú(‹ŕ)-6ŒŽ18“ú(“ú)
‰ďę Kyoto University, Graduate School of Science Bldg No.3 Rm 110
ŽĺĂŽŇ á]–ž•F(‹ž“s‘ĺŠw)
•ńW ‚Č‚ľ
–źĚ ‘ć34‰ń‘㐔“I‘g‡‚š˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö 2017”N6ŒŽ15“úi–؁j` 6ŒŽ17“úi“yj
‰ďę ŹŽR¤H‰ď‹cŠ‰ďŠŮ(15, 16“ú)AŹŽRH‹Ć‚“™ę–ĺŠwZ(17“ú)
ŽĺĂŽŇ ˛“Ą›ÜiŹŽRH‹Ć‚“™ę–ĺŠwZjAŽO‹´Gśi–@­‘ĺŠwjAX“cEpÍiŽş—–H‹Ć‘ĺŠwj A@­şOi“Œ–k‘ĺŠwjAŽR“ŕ”Ži“Œ‹ž—Žq‘ĺŠwj
•ńW ěŹ—\’č
–źĚ Hakodate workshop on arithmetic geometry 2017
“ú’ö 2017”N5ŒŽ29“ú(ŒŽ)Œß‘O`5ŒŽ30“ú(‰Î)—[
‰ďę ”ŸŠŮ–k—mƒrƒ‹‚XŠK‰ď‹cŽş
ŽĺĂŽŇ Â–؏š—Yi–kŠC“š‹łˆç‘ĺjAŒă“Ą‘׍Gi–kŠC“š‹łˆç‘ĺjAŽRč—˛—Yi“Œ–k‘ĺj
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW

2016”N“xŠJĂ‚ĚƒVƒ“ƒ|ƒWƒEƒ€î•ńiŠJĂ“ú’ö‡j
–źĚ ‹ăB‘㐔“IŽ”˜_2017
“ú’ö 2017”N3ŒŽ8“úi…jŒßŒă`2017”N3ŒŽ10“úi‹ŕji3“úŠÔj
‰ďę ‹ăB‘ĺŠw ˆÉ“sƒLƒƒƒ“ƒpƒX ƒEƒGƒXƒg1†ŠŮ C-515/C-501 u‹`Žş
ŽĺĂŽŇ H“Ą“Źi‹ăB‘ĺŠwjA’†‰Ž’q‰li‹ăB‘ĺŠwjA‰Ş–{Œ’‘ž˜Yi‹ăB‘ĺŠwjAâ“cŽŔ‰Ái‹ăB‘ĺŠwj
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW English
–źĚ ‘ć10‰ńƒ[[ƒ^ŽáŽčŒ¤‹†W‰ď
“ú’ö 2017”N2ŒŽ20“ú(ŒŽ)`2017”N2ŒŽ23“ú(–Ř)(4“úŠÔ)
‰ďę –źŒĂ‰Ž‘ĺŠw@‘˝Œł”—‰ČŠw“@509u‹`Žş
ŽĺĂŽŇ ź–{ k“ńi–źŒĂ‰Ž‘ĺŠwj, –ĺ“c T–çi–źŒĂ‰Ž‘ĺŠwj, ˆęŠK ’qOi–źŒĂ‰Ž‘ĺŠwj, —é–Ř —Y‘ži–źŒĂ‰Ž‘ĺŠwj, ”~ŕV —Ä‘ži–źŒĂ‰Ž‘ĺŠwj, ˆäă ăđži–źŒĂ‰Ž‘ĺŠwj, ‰““Ą Œ’‘ži–źŒĂ‰Ž‘ĺŠwj, _‹{ Œ[—Si–źŒĂ‰Ž‘ĺŠwj
•ńW –ł î•ń‚Ěƒy[ƒW
–źĚ ‘ć‚V‰ń(”ń)‰ÂŠˇ‘㐔‚Ćƒgƒ|ƒƒW[
“ú’ö ‚Q‚O‚P‚V”N‚QŒŽ‚Q‚O“úiŒŽjŒßŒă`‚Q‚O‚P‚V”N‚QŒŽ‚Q‚Q“úi…jŒß‘O
‰ďę MB‘ĺŠw@—Šw•” u‹`“1ŠK ‘ćˆęu‹`Žş
ŽĺĂŽŇ –Ń—˜ o (Ă‰Ş‘ĺŠw)AŒI—Ń Ÿ•F (MB‘ĺŠw)
•ńW –ł î•ń‚Ěƒy[ƒW
–źĚ ‘ć10‰ń‘˝Edƒ[[ƒ^Œ¤‹†W‰ď
“ú’ö 2017”N2ŒŽ17“úi‹ŕj`19“úi“új
‰ďę ‹ß‹E‘ĺŠw “Œ‘ĺăƒLƒƒƒ“ƒpƒX 31†ŠŮ 301u‹`Žş
ŽĺĂŽŇ ‘ĺ–ě‘אśi“Œ–k‘ĺŠwjA‹ŕŽqšMi‹ăB‘ĺŠwjAŠ™–ěŒ’i‘ĺăH‹Ć‘ĺŠwjA“c’†—§Žui‹ž“sŽY‹Ć‘ĺŠwjAâ“cŽŔ‰Ái‹ăB‘ĺŠwjEA ˛X–Ř‹`‘ěi‘ĺă‘Ěˆç‘ĺŠwj
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ RIMSŒ¤‹†W‰ďu•ŰŒ^Œ`ŽŽ‚Ć‚ť‚ĚŽü•Óv
“ú’ö 2017”N2ŒŽ6“úiŒŽjŒßŒă`2017”N2ŒŽ10“úi‹ŕjŒß‘Oi5“úŠÔj
‰ďę ‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š420Žş
ŽĺĂŽŇ ’ˇ‰Ş¸—Ei‹ß‹E‘ĺŠwjA…–ě‹`‹Ii“ż“‡‘ĺŠwj
•ńW —L
–źĚ RIMSŒ¤‹†W‰ďu‘㐔“I‘w‚Ěƒ‚ƒWƒ…ƒ‰ƒC‚ĚŒ¤‹†‚Ć‚ť‚ĚŽü•Óv
“ú’ö 2017”N2ŒŽ1“ú(…jŒßŒă`2017”N2ŒŽ3“ú(‹ŕjŒßŒăi3“úŠÔj
‰ďę ”—‰đÍŒ¤‹†Š110†Žş
ŽĺĂŽŇ ˆ˘•”Œ’iŒF–{‘ĺŠwj
•ńW ‚Č‚ľ
–źĚ Diophantine Analysis and Related Fields 2017
“ú’ö 2017”N1ŒŽ7“ú(“y)`9“ú(ŒŽEj)
‰ďę “ú–{‘ĺŠw—HŠw•” ‚¨’ƒ‚̐…ZŽÉ‚T‚O‚Q‹łŽş
ŽĺĂŽŇ HŽR –ÎŽ÷ (’}”g‘ĺ)C“V‰H ‰ëş (ŒQ”n‘ĺ)C‰Şč —´‘ž˜YCŒj“c š‹I (Œcœä‘ĺ)C•˝“c “TŽq (“ú‘ĺ—H)C ‘ş“c —扚 (–žŽĄŠw‰@‘ĺ)CˆŔ•Ÿ —I (“ú‘ĺ—H)
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ Algebraic Geometry and Integrable Systems, Kobe 2016
“ú’ö/TD> 2016”N12ŒŽ5“ú(ŒŽj`2016”N12ŒŽ9“ú(‹ŕj
‰ďę _ŒË‘ĺŠw—ŠwŒ¤‹†‰ČZEEZ201E202
ŽĺĂŽŇ ˆîę“š–ži‹ž‘ĺjA×–ě”EiŠwK‰@jA‚‹´“ÄŽjiă‘ĺjA˛–ě‘ž˜Yi_ŒË‘ĺEjAâV“Ą­•Fi_ŒË‘ĺjA‹g‰ŞN‘ži_ŒË‘ĺj
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW(€”ő’†)
–źĚ RIMSŒ¤‹†W‰ďu—LŒŔŒQE‘㐔“I‘g‡‚š˜_E’¸“_ě—p‘f‘㐔‚ĚŒ¤‹†v
“ú’ö/TD> 2016”N12ŒŽ5“ú(ŒŽj`2016”N12ŒŽ8“ú(–؁j
‰ďę ‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š‚SŠK‚S‚Q‚O†Žş
ŽĺĂŽŇ ŽR“ŕ”Ž(“Œ‹ž—Žq‘ĺŠw)
•ńW ‚ ‚č
–źĚ 2016 ”N“x•\Œť˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö 2016”N11ŒŽ29“úi‰Îj`12ŒŽ2“úi‹ŕj
‰ďę “Œ‹ž‘ćˆęƒzƒeƒ‹ ƒIƒLƒiƒƒOƒ‰ƒ“ƒ[ƒ‹ƒŠƒ][ƒg(‰Ť“ęŒ§ ‰Ť“ęŽs —^‹V2’š–Ú8-1)
ŽĺĂŽŇ Îě ‰ë—Y (‰ŞŽR‘ĺŠwE—Šw•”)A‹´–{ NŽj (—Ž‹…‘ĺŠwE—Šw•”)
•ńW —Li—\eWj î•ń‚Ěƒy[ƒW
–źĚ RIMSŒ¤‹†W‰ďu‘㐔“IŽ”˜_‚Ć‚ť‚ĚŽü•Óv
“ú’ö 2016”N11ŒŽ28“úiŒŽj`12ŒŽ2“úi‹ŕj
‰ďę Ež“s‘ĺŠw”—‰đÍŒ¤‹†Š420†Žş
ŽĺĂŽŇ ‘ĺ–ě‘אśi“ŒEk‘ĺŠwjAŠpŠFGiă’q‘ĺŠwjA•˝”V“ŕr˜YiL“‡‘ĺŠwj
•ńW ěŹ—\’č î•ń‚Ěƒy[ƒW
–źĚ ‘㐔‹ČüE‹Č–Ę‚Ć‚ť‚ĚŽü•Ó
“ú’ö 2016”N11ŒŽ26“úi“yj`27“úi“új
‰ďę ‘ĺă‘ĺŠw—Šw•”i–L’†ƒLƒƒƒ“ƒpƒXjiÚ×‚ÍŒă“úŒˆ’čj
ŽĺĂŽŇ tˆäŠxi‚’mH‰Č‘ĺŠwjCŽO‰YŒhi‰F•”‚ęjC‚‹´„iVŠƒ‘ĺŠwj
•ńW ‚Č‚ľ
–źĚ ‘ć‚P‚X‰ńĂ‰Ş‘㐔ŠwƒZƒ~ƒi[
“ú’ö ‚Q‚O‚P‚U”N‚P‚PŒŽ‚Q‚T“úi‹ŕj`‚Q‚O‚P‚U”N‚P‚PŒŽ‚Q‚U“úi“yEj
‰ďę Ă‰Ş‘ĺŠw@—Šw•” C “ 309 †Žş
ŽĺĂŽŇ óŽĹ Gl (Ă‰Ş‘ĺŠw), –Ń—˜ oiĂ‰Ş‘ĺŠwj
•ńW –ł î•ń‚Ěƒy[ƒW
–źĚ School on Mock Modular Forms and Related Topics
“ú’ö 2016”N11ŒŽ21“úiŒŽj`25“úi‹ŕji‚T“úŠÔj
‰ďę ‹ăB‘ĺŠwŽYŠwŠŻ˜AŒgƒCƒmƒx[ƒVƒ‡ƒ“ƒvƒ‰ƒUi•Ÿ‰ŞŽs‘—Ç‹ć•S“š•lj
ŽĺĂŽŇ ˆÉŽR’m‹`i‘ĺă‘ĺŠwjA‹ŕŽqšMi‹ăB‘ĺŠwjA”óă˜aOi‹ăB‘ĺŠwj
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ Workshop on Shimura varieties, representation theory and related topics
“ú’ö 2016”N11ŒŽ21“úiŒŽj`25“úi‹ŕj
‰ďę ‹ž“s‘ĺŠw—Šw•”3†ŠŮ110‹łŽş
ŽĺĂŽŇ ˆ˘•”‹Isi–k‘ĺ—jCˆÉ“Ą“NŽji‹ž‘ĺ—jC Ąˆä’ź‹Bi“Œ‘吔—jCŽOŽ}—mˆęi“Œ‘吔—j
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ Moonshine and K3 surfaces
“ú’ö 2016”N11ŒŽ7“úiŒŽj`11“úi‹ŕj
‰ďę –źŒĂ‰Ž‘ĺŠw—Šw“ěŠŮ 1F â“cE•˝“cƒz[ƒ‹
ŽĺĂŽŇ ]Œű@“O (—§‹ł‘ĺŠw), ‹ŕ“ş˝”V (–źŒĂ‰Ž‘ĺŠw), ‹{–{‰ë•F (’}”g‘ĺŠw)
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ ‘ć‚P‚X‰ń”’”nŽ”˜_ƒI[ƒ^ƒ€ƒ[ƒNƒVƒ‡ƒbƒv
“ú’ö 2016”N11ŒŽ2“úi…j`6“úi“új
‰ďę ”’”nƒnƒCƒ}ƒEƒ“ƒgƒzƒeƒ‹
ŽĺĂŽŇ •˝–슲iˆ¤•Q‘ĺŠwjCÎˆä‘ěiŹćü‘ĺŠwjC‹{č’źi–k—˘‘ĺŠwj
•ńW‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ ‚q‚h‚l‚rŒ¤‹†W‰ďu‰đÍ“IŽ”˜_‚̏”–â‘č‚Ć“W–]v
“ú’ö 2016”N10ŒŽ31“úiŒŽjŒß‘O`11ŒŽ2“úi…jŒßŒă
‰ďę ‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š420†Žş
ŽĺĂŽŇ ÎěG–ži“‡Ş‘ĺjA“Ą“cˆçŽki“ú–{‘ĺŠwj
•ńWěŹ—\’č
–źĚ ‘㐔Šô‰˝ŠwéčƒVƒ“ƒ|ƒWƒEƒ€2016
“ú’ö 2016”N10ŒŽ18“ú(‰Î)`10ŒŽ21“ú(‹ŕ)
‰ďę éč‘ŰƒA[ƒgƒZƒ“ƒ^[
ŽĺĂŽŇ “Ą–ěC(ă‘ĺ)CŹ—ѐł“T(Žń“s‘ĺ)C‘ĺěV”V‰î(ă‘ĺ)
•ńW”­s—\’č
–źĚ pi•ŰŒ^Œ`ŽŽApiƒKƒƒA•\Œť‚ĆŠÖ˜A‚ˇ‚é˜b‘č
“ú’ö 2016”N10ŒŽ17“úiŒŽj`10ŒŽ20“úi–؁j
‰ďę ˛‰ę‘ĺŠw—HŠw•”6†ŠŮiDC“j2ŠK205Eu‹`Žş
ŽĺĂŽŇ ŽsěŽŽui˛‰ę‘ĺŠwj
•ńW‚Č‚ľ
–źĚ 2016‘ĺ•ŞŽ”˜_Œ¤‹†W‰ď
“ú’ö 2016”N10ŒŽ8“ú(“y)`10ŒŽ9“ú(“ú)
‰ďę ƒzƒ‹ƒgƒz[ƒ‹‘ĺ•Ş2ŠK ƒTƒeƒ‰ƒCƒgƒLƒƒƒ“ƒpƒX‚¨‚¨‚˘‚˝u‹`Žş
ŽĺĂŽŇ Ž›ˆäL_i‘ĺ•Ş‘ĺŠwj
•ńW‚Č‚ľ
–źĚ RIMS‡hŒ^ƒZƒ~ƒi[ •ŰŒ^L”Ÿ”‚Ě“ÁŽę’l‚Ć•t‚ˇ‚épiL”Ÿ”
“ú’ö 2016”N9ŒŽ19“ú(ŒŽ)`9ŒŽ23“ú(‹ŕ)
‰ďę ”üŽR’ŹŽŠ‘R•ś‰ť‘ş ‰ÍŽ­‘‘i‹ž“s•{“ě’OŽsEj
ŽĺĂŽŇ —Ž‡—i‘ĺă‘ĺŠwj, “s’zł’jiă’q‘ĺŠwj
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ mini-workshop gModular forms and period integralsEh
“ú’ö 2016”N9ŒŽ12“ú(ŒŽ)`9ŒŽ14“ú(…)
‰ďę “Œ‹ž‘ĺŠw‘ĺŠw‰@”—‰ČŠwŒ¤‹†‰ČƒZƒ~ƒi[Žş118
ŽĺĂŽŇ ‰ÍŸ ‹ż–îi“Œ‹ž‘ĺŠwj, •Xă ”Ei‰Ť“ę‰ČŠw‹Zp‘ĺŠw‰@‘ĺŠwj, D“c FKi‰Ť“ę‰ČŠw‹Zp‘ĺŠw‰@‘ĺŠwj
•ńW ‚Č‚ľ
–źĚ Hopf-Algebra Conference in Tsukuba (H-ACT)
“ú’ö 2016”N9ŒŽ11“ú(“ú)ŒßŒă`9ŒŽ13“ú(‰Î)—[•ű
‰ďę ‚‚­‚΍‘Ű‰ď‹cƒZƒ“ƒ^[303†Žş ‚‚­‚΍‘Ű‰ď‹cę
ŽĺĂŽŇ —эFO(–źŒĂ‰Ž‘ĺŠwjA‘‰Ş˛(’}”g‘ĺŠwjAŽRŞG”V(•xŽR‘ĺŠwj
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ ‘ć49‰ńŠÂ˜_‚¨‚ć‚Ń•\Œť˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö 2016”N8ŒŽ31“ú(…)`9ŒŽ3“ú(“y)
‰ďę ‘ĺă•{—§‘ĺŠw’†•Să’šƒLƒƒƒ“ƒpƒX
ŽĺĂŽŇ ƒvƒƒOƒ‰ƒ€Ó”CŽŇFA“c—ći“‡Ş‘ĺŠwjC ‰ďęÓ”CŽŇF‰Á“ĄŠó—Žqi‘ĺă•{—§‘ĺŠwj
•ńW ěŹ—\’č î•ń‚Ěƒy[ƒW
–źĚ Summer School on Quasi-hereditary Algebras
“ú’ö 2016”N8ŒŽ26“ú(‹ŕ)`8ŒŽ30“ú(‰Î)
‰ďę ‘ĺă•{—§‘ĺŠw A5“ 124†Žş
ŽĺĂŽŇ ˆÉŽRC(–źŒĂ‰Ž‘ĺŠw), Œš‘׍K(‘ĺă•{—§‘ĺŠw), –Ř‘ş‰Ă”V(_ŒË‘ĺŠw)
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ 2016”N“xŽ”˜_ƒTƒ}[ƒXƒN[ƒ‹u•ŰŒ^Œ`ŽŽ‚Ě‚ifamily“ü–ĺv
“ú’ö 2016”N8ŒŽ22“ú(ŒŽ)`26“ú(‹ŕ)
‰ďę z–KŒÎƒzƒeƒ‹
ŽĺĂŽŇ ŽRă “ÖŽm(‘n‰ż‘ĺŠw)CÂ–Ř GŽ÷(“Œ‹ž—‰Č‘ĺŠw)
•ńW ěŹ—\’č î•ń‚Ěƒy[ƒW
–źĚ ‘ć10‰ń•Ÿ‰Ş”˜_Œ¤‹†W‰ď
“ú’ö 2016”N8ŒŽ8“ú(ŒŽ)`8ŒŽ10“ú(…)
‰ďę ‹ăB‘ĺŠw(ˆÉ“sƒLƒƒƒ“ƒpƒX)@ƒEƒFƒXƒg‚P†ŠŮ
ŽĺĂŽŇ ‹ŕŽqšM(‹ăB‘ĺŠw), Œ ”J˜D(‹ăB‘ĺŠw), ŠÝNO(ˆ¤’m‹łˆç‘ĺŠw)
•ńW ěŹ—\’č î•ń‚Ěƒy[ƒW
–źĚ ‘ć15‰ńĺ‘äL“‡Ž”˜_W‰ď
“ú’ö 2016”N7ŒŽ12“úi‰Îj`7ŒŽ15“úi‹ŕj
‰ďę “Œ–k‘ĺŠw—ŠwŒ¤‹†‰Č (Â—tŽRƒLƒƒƒ“ƒpƒX)
ŽĺĂŽŇ •˝”V“ŕ r˜Y (L“‡‘ĺŠw)Cź–{ áÁ (L“‡‘ĺŠw)C‚‹´ _Ž÷ (“ż“‡‘ĺŠw)C“s’z ’¨•v (“Œ–k‘ĺŠw)Cá] –ž•F (‹ž“s‘ĺŠw)
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ ‘˝dƒ[[ƒ^’l‚̏”‘Š
“ú’ö 2016”N7ŒŽ11“úiŒŽj`14“úi–؁j
‰ďę ”—‰đÍŒ¤‹†Š111†Žş
ŽĺĂŽŇ ŒĂŻ‰p˜ai–źŒĂ‰Ž‘ĺŠwj
•ńW —L î•ń‚Ěƒy[ƒW
–źĚ ‘ć‚P‚W‰ńĂ‰Ş‘㐔ŠwƒZƒ~ƒi[
“ú’ö ‚Q‚O‚P‚U”N‚VŒŽ‚W“úi‹ŕj`‚Q‚O‚P‚U”N‚VŒŽ‚X“úi“yj
‰ďę Ă‰Ş‘ĺŠw@—Šw•” C “ 309 †Žş
ŽĺĂŽŇ óŽĹ Gl (Ă‰Ş‘ĺŠw), –Ń—˜ oiĂ‰Ş‘ĺŠwj
•ńW –ł î•ń‚Ěƒy[ƒW
–źĚ ‘ć33‰ń‘㐔“I‘g‡‚š˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö 2016”N6ŒŽ23“úi–؁j`25“úi“yj
‰ďę ƒsƒAƒU’WŠCi23“ú, 24“újAŽ ‰ę‘ĺŠwEĺ’ĂƒLƒƒƒ“ƒpƒX(25“ú)
ŽĺĂŽŇ ŽÂŒ´‰ëŽjiŽ ‰ę‘ĺŠwjA–ěčŠ°iˆ¤’m‹łˆç‘ĺŠwjA@­şOi“Œ–k‘ĺŠwjAŽR“ŕ”ŽEi“Œ‹ž—Žq‘ĺŠwj
•ńW —L î•ń‚Ěƒy[ƒW
–źĚ Algebraic Lie Theory and Representation Theory 2016
“ú’ö 2016”N6ŒŽ9“úi–؁j`6ŒŽ13“úiŒŽj
‰ďę ›•˝‚Œ´ ƒvƒ`Eƒzƒeƒ‹@ƒ]ƒ“ƒ^ƒbƒN
ŽĺĂŽŇ ‰|–{’ź–çi“d‹C’ʐM‘ĺŠwjEÄ“Ą‹`‹vi“Œ‹ž‘ĺŠwj
•ńW —L î•ń‚Ěƒy[ƒW
–źĚ Hakodate workshop on arithmetic geometry 2016
“ú’ö 2016”N5ŒŽ30“ú`6ŒŽ1“ú
‰ďę ”ŸŠŮŽs“ŕiÚ×‚Í–˘’čj
ŽĺĂŽŇ Œă“Ą‘׍Gi–kŠC“š‹łˆçEĺjAŽRč—˛—Yi“Œ–k‘ĺj
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ u‘ć‚X‰ń ”˜_—Ť‚̏W‚Ü‚čiWINJ9)v
“ú’ö 2016”N5ŒŽ21“ú(“yj 13:00 --
‰ďę ă’q‘ĺŠwŽl’JƒLƒƒƒ“ƒpƒX 2-508
ŽĺĂŽŇ L’† —R”üŽqC’†‹Ř–ƒ‹MCŽRŠÝ“úo
•ńW ěŹ—\’č î•ń‚Ěƒy[ƒW

2015”N“xŠJĂ‚ĚƒVƒ“ƒ|ƒWƒEƒ€î•ńiŠJĂ“ú’ö‡j
–źĚ Workshop on Polylogarithms, MZVs and Mahler measures
“ú’ö 2016”N3ŒŽ28“úiŒŽj`29“úi‰Îj
‰ďę “Œ–k‘ĺŠw —Šw•” ”Šw“ 209
ŽĺĂŽŇ ‘ĺ–ě‘אśi“Œ–k‘ĺŠwjAŒĂŻ‰p˜ai–źŒĂ‰Ž‘ĺŠwjAç“c‰ë—˛i“Œ–k‘ĺŠwj
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ Low dimensional topology and number theory VIII
“ú’ö 2016”N3ŒŽ22“úi‰Îj`25“úi‹ŕj
‰ďę ‹ăB‘ĺŠwŽYŠwŠŻ˜AŒgƒCƒmƒx[ƒVƒ‡ƒ“ƒvƒ‰ƒU
ŽĺĂŽŇ ‰Í–ěrä(“Œ‹ž‘ĺŠw), ’†‘ş”Žş(‘ĺă‘ĺŠw), X‰şš‹I(‹ăB‘ĺŠw)
•ńW EȂľ î•ń‚Ěƒy[ƒW
–źĚ –ě“c‘㐔Šô‰˝ŠwƒVƒ“ƒ|ƒWƒEƒ€ 2016
“ú’ö 2016”N3ŒŽ14“ú(ŒŽ)`15“úi‰Îj
‰ďę “Œ‹ž—‰Č‘ĺŠw—HŠw•””Šw‰Č(–ě“cƒLƒƒƒ“ƒpƒX)
ŽĺĂŽŇ ˆÉ“Ą_s(“Œ‹ž—‰Č‘ĺŠw),‘ĺ‹´‹v”Í(“Œ‹ž—‰Č‘ĺŠw),Œ´Lś(“Œ‹ž”_H‘ĺŠw)
•ńW ‚Č‚ľ
–źĚ ‘ć14‰ńƒAƒtƒBƒ“‘㐔Šô‰˝ŠwŒ¤‹†W‰ď
“ú’ö 2016”N3ŒŽ5“ú(“y)`8“ú(‰Î)
‰ďę ŠÖźŠw‰@‘ĺŠw‘ĺă”~“cƒLƒƒƒ“ƒpƒX
ŽĺĂŽŇ ŠÝ–{’ (é‹Ę‘ĺ), Adrien Dubouloz (University of Bourgone), ‘“c‰Ŕ‘ă (ŠÖźŠw‰@‘ĺ), Ź“‡G—Y (VŠƒ‘ĺ)
•ńW –ł î•ń‚Ěƒy[ƒW
–źĚ ‘ć9‰ń‘˝dƒ[[ƒ^Œ¤‹†W‰ď
Eú’E/TD> 2016”N2ŒŽ22“úiŒŽj-23“úi‰Îj
‰ďę ‹ăB‘ĺŠw ˆÉ“sƒLƒƒƒ“ƒpƒX ƒEƒGƒXƒg1†ŠŮD“ IMIƒI[ƒfƒBƒgƒŠƒAƒ€
ŽĺĂŽŇ ‹ŕŽqšMi‹ăB‘ĺŠwjA‘ĺ–ě‘אśi“Œ–k‘ĺŠwjAŠ™–ěŒ’i‘ĺăH‹Ć‘ĺŠwjA“c’†—§Žui‹ž“sŽY‹Ć‘ĺŠwjA ˛X–Ř‹`‘ěi‘ĺă‘Ěˆç‘ĺŠwjAˆäŒ´—f‰îi‹ăB‘ĺŠwjAâ“cŽŔ‰Ái‹ăB‘ĺŠwj
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ i”ńj‰ÂŠˇ‘㐔‚Ćƒgƒ|ƒƒW[
“ú’ö 2016”N2ŒŽ20i“yj-2ŒŽ22iŒŽj
‰ďę MB‘ĺŠw —Šw•” u‹`“1ŠK ‘ćˆęu‹`Žş
ŽĺĂŽŇ ŒI—Ń Ÿ•F iMB‘ĺŠwjA–Ń—˜ o (Ă‰Ş‘ĺŠw)
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ ‘ć9‰ń ƒ[E[ƒ^ŽáŽčŒ¤‹†W‰ď
“ú’ö 2016”N2ŒŽ15“ú(ŒŽ)-18(–Ř)
‰ďę ‰Ť“ę‘Dˆő‰ďŠŮ
ŽĺĂŽŇ ź–{ k“ń i–źŒĂ‰Ž‘ĺŠwj –ĺ“c T–ç i–źŒĂ‰Ž‘ĺŠwj “c’† —Č i–źŒĂ‰Ž‘ĺŠwj
ˆęŠK ’qO i–źŒĂ‰Ž‘ĺŠwj —é–Ř —Y‘ž i–źŒĂ‰Ž‘ĺŠwj Šâ• F˜Yi–źŒĂ‰Ž‘ĺŠwj ”~ŕV —Ä‘ži–źŒĂ‰Ž‘ĺŠwj
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ Higher dimensional algebraic geometry and around, Kobe-Kyoto, 2016
“ú’ö 2016”N2ŒŽ1“ú`5“ú
‰ďę 2ŒŽ1--3“úF_ŒË‘ĺŠw —ŠwŒ¤‹†‰Č B301‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š420†Žş
2ŒŽ4--5“úF‹ž“s‘ĺŠw –k•”‘‡‹łˆçŒ¤‹†“ ‰věƒz[ƒ‹
ŽĺĂŽŇ âV“Ą ­•Fi_ŒË‘ĺŠwjE˛–ě‘ž˜Yi_ŒË‘ĺŠwjE‹g‰ŞN‘ži_ŒË‘ĺŠwjE’†ŽR ¸iRIMS,‹ž“s‘ĺŠwjE•Ŕ‰Í—Ç“Ti‹ž“s‘ĺŠwjE “Ą–ě Ci‹ž“s‘ĺŠwjEŒüˆä –΁iRIMS,‹ž“s‘ĺŠwj
•ńW ˆę•”ƒAEuƒXƒgƒ‰ƒNƒgW—LiŽc”‚Č‚ľj î•ń‚Ěƒy[ƒW
–źĚ RIMSŒ¤‹†W‰ďu•ŰŒ^Œ`ŽŽE•ŰŒ^“ILŠÖ”‚Ć‚ť‚ĚŽü•Óv
“ú’ö 2016”N2ŒŽ1“ú(ŒŽ)-2ŒŽ5“ú(‹ŕj
‰ďę ‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š420†Žş
ŽĺĂŽŇ —Ń“cGˆę(ă‰z‹łˆç‘ĺŠw), ’ˇ‰Ş¸—E(‹ß‹E‘ĺŠw)
•ńW ěŹ—\’č î•ń‚Ěƒy[ƒW
–źĚ RIMSŒ¤‹†W‰ďu—LŒŔŒQ‚Ć‚ť‚Ě•\Œť, ’¸“_ě—p‘f‘㐔, ‘㐔“I‘g‡‚š˜_‚ĚŒ¤‹†v
“ú’ö 2016”N1ŒŽ5“ú(‰Î)-1ŒŽ8“ú(‹ŕj
‰ďę ‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š4ŠK420†Žş
ŽĺĂŽŇ “‡‘q—TŽ÷(“Œ–k‘ĺŠw)
•ńW ‚ ‚č
–źĚ ‘ć‚P‚V‰ńĂ‰Ş‘㐔ŠwƒZƒ~ƒi[
“ú’ö 2015”N12ŒŽ18“úi‹ŕj-12ŒŽ19“úi“yj
‰ďę Ă‰Ş‘ĺŠw —Šw•”‚b“‚R‚O‚X†Žş
ŽĺĂŽŇ óŽĹ@GlA–Ń—˜ o(Ă‰Ş‘ĺŠw)
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ Moduli spaces of abeli an varieties and curves, and related a nalysis
“ú’ö 2015”N12ŒŽ15“úi‰Îj-12ŒŽ18“úi‹ŕj
‰ďę “Œ‹ž‘ĺŠw”—‰ČŠwŒ¤‹†‰Č (15“ú128”Ô‹łŽş, 16“úA17“úA18“ú002”Ô‹łŽş)
ŽĺĂŽŇ D“cFKi‰Ť“ę‰ČŠw‹Zp‘ĺŠwj
•ńW î•ń‚Ěƒy[ƒW
–źĚ ‘ć11‰ńu‘㐔Šw‚ĆŒvŽZvŒ¤‹†W‰ď (AC2015)
“ú’ö 2015”N12ŒŽ14“úiŒŽj-12ŒŽ16“úi…j
‰ďę Žń“s‘ĺŠw“Œ‹ž ‘ŰŒđ—Ź‰ďŠŮ‘ĺ‰ď‹cŽş
ŽĺĂŽŇ ’Ă‘ş”Ž•ś(Žń“s‘ĺŠw“Œ‹ž)A“ŕŽRŹŒ›(Žń“s‘ĺŠw“Œ‹ž)A˜e ŽŽu(ŽRŒ`‘ĺŠw)A ś“c‘ě–ç(_ŒËŠw‰@‘ĺŠw)A
“ŕ“cKŠ°(Žń“s‘ĺŠw“Œ‹ž)AŕV łŒ›(_ŒË‘ĺŠw)
•ńW ěŹ—\’č (“dŽqo”Ĺ) î•ń‚Ěƒy[ƒW
–źĚ Various Aspects of Algebraic Geometry
“ú’ö 2015”N12ŒŽ12“ú-13“ú
‰ďę ICU ƒTƒCƒGƒ“ƒXEƒz[ƒ‹ N232
ŽĺĂŽŇ âV“Ą ­•Fi_ŒË‘ĺŠwjE´…EE“ńiICUjE“ż‰i _—YiŽń“s‘ĺŠw“Œ‹žj
•ńW –ł î•ń‚Ěƒy[ƒW
–źĚ RIMSŒ¤‹†W‰ďu‘㐔“IŽ”˜_‚Ć‚ť‚ĚŽüEӁv
“ú’ö 2015”N11ŒŽ30“úiŒŽj-12ŒŽ4“úi‹ŕj
‰ďę ‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š420†Žş
ŽĺĂŽŇ ‚‹´_Ž÷ (“ż“‡‘ĺŠw)C‘ĺ–ě ‘×śi“Œ–k‘ĺŠwjC’Ă“ˆ ‹MO (“Œ‹ž‘ĺŠw)
•ńW ěŹ—\’č î•ń‚Ěƒy[ƒW
–źĚ ‘ć‚R‰ń“m‚Ě“s‘㐔Šô‰˝ŠwŒ¤‹†W‰ď
“ú’ö 2015”N11ŒŽ25“ú(…)-27“ú(‹ŕ)
‰ďę •Ÿ‰Ş‘ĺŠwƒZƒ~ƒi[ƒnƒEƒX
ŽĺĂŽŇ Î“c ł“T (“Œ–k‘ĺŠw), ˛“Ą ‘ń (•Ÿ‰Ş‘ĺŠw)
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ 2015”N“x•\Œť˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö 2015”N11ŒŽ17“ú(‰Î) - 11ŒŽ20“ú(‹ŕ)
‰ďę Œö‹¤‚̏h‚¨‚¨‚Ć‚č‘‘iĂ‰ŞŒ§ˆÉ“¤E̍‘ŽsŒĂ“Ţ1133j
ŽĺĂŽŇ “ŕ“Ą‘i“Œ‹žH‹Ć‘ĺŠw), ’źˆäŽ”V (“Œ‹ž”_H‘ĺŠw)
•ńW —Li—\eWj î•ń‚Ěƒy[ƒW
–źĚ Japanese-French mini-workshop on zeta-functions 2015
“ú’ö 2015”N11ŒŽ17“úi‰Îj
‰ďę “Œ‹žH‹Ć‘ĺŠw
ŽĺĂŽŇ ’†‘ş—˛ (“Œ‹ž—‰Č‘ĺŠw), ’†‹Ř–ƒ‹M (ă’q‘ĺŠw), —é–ؐłr (“Œ‹žH‹Ć‘ĺŠw), ’Ă‘ş”Ž•ś (Žń“s‘ĺŠw“Œ‹ž)
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ Zeta Functions of Several Variables and Applications
“ú’ö 2015”N11ŒŽ9“úiŒŽj-11ŒŽ13“úi‹ŕj
‰ďę –źŒĂ‰Ž‘ĺŠw‘˝Œł”—‰ČŠw“309 Žş
ŽĺĂŽŇ Driss Essouabri (Univ. St-Etienne), ŒĂŻ‰p˜a (EźŒĂ‰Ž‘ĺŠw)Cź–{k“ń (–źŒĂ‰Ž‘ĺŠw)
•ńW –˘’č î•ń‚Ěƒy[ƒW
–źĚ ‘ć‚P‚W‰ń”’”nŽ”˜_ƒI[ƒ^ƒ€ƒ[ƒNƒVƒ‡ƒbƒvuGeometrical Applications of Modular Forms of Several Variablesv
“ú’ö 2015”N11ŒŽ6“úi‹ŕj-11ŒŽ10“úi‰Îj
‰ďę ”’”nƒnƒCƒ}ƒEƒ“ƒgƒzƒeƒ‹
ŽĺĂŽŇ Â–؍GŽ÷ (“Œ‹ž—‰Č‘ĺŠw), â“c—T (‘ˆî“c‘ĺŠw‚“™Šw‰@), —Ń“cGˆę (ă‰z‹łˆç‘ĺŠw)
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ ‚q‚hEl‚rŒ¤‹†EW‰ďu‰đÍ“IŽ”˜_‚Ć‚ť‚ĚŽü•Óv
“ú’ö 2015”N11ŒŽ4“úi…jŒß‘O-2015”N11ŒŽ6“úi‹ŕjŒßŒă
‰ďę ‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š420†Žş
ŽĺĂŽŇ E_’J—@ˆę(‘ĺ“Œ•ś‰ť‘ĺ)AÎěG–ži“‡Ş‘ĺj
•ńW ěŹ—\’č
–źĚ RIMSŒ¤‹†W‰ďu‘g‡‚š˜_“I•\Œť˜_‚Ć‚ť‚ĚŽü•Óv
“ú’ö 2015 ”N 10 ŒŽ 19 “ú (ŒŽ) - 10 ŒŽ 22 “ú (–Ř)
‰ďę ‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š 110†Žş
ŽĺĂŽŇ ’źˆäŽ”V (“Œ‹ž”_H‘ĺŠw)
•ńW —L î•ń‚Ěƒy[ƒW
–źĚ Derived categories of finite dimensional algebras
Conference honoring Hideto Asashiba on the occasion of his 60th birthday
“ú’ö 2015”N9ŒŽ11“ú-12“ú
‰ďę Ă‰Ş‘ĺŠw —Šw•”‚b“‚R‚O‚X†Žş
ŽĺĂŽŇ ’ˇŁi“Œ‹žŠwŒ|‘ĺŠwjCˆÉŽRCi–źŒĂ‰Ž‘ĺŠwjC‹g˜e——Yi‘ĺăŽs—§‘ĺŠwjC–Ń—˜oiĂ‰Ş‘ĺŠwj
EńW –ł‚ľ î•ń‚Ěƒy[ƒWi–ł‚ľj
–źĚ ‘ć48‰ńŠÂ˜_‚¨‚ć‚Ń•\Œť˜_EVƒ“ƒ|EWƒEƒ€
“ú’ö 2015”N9ŒŽ7“ú(ŒŽ)-9ŒŽ10“ú(–Ř)
‰ďę –źŒĂ‰Ž‘ĺŠw‘˝Œł”—‰ČŠw“
ŽĺĂŽŇ ƒvƒƒOƒ‰ƒ€Ó”CŽŇFź’†P˜ai•şŒÉŒ§—§‘ĺŠwjC ‰ďęÓ”CŽŇFˆÉŽRCi–źŒĂ‰Ž‘ĺŠwj
•ńW ěŹ—\’č î•ń‚Ěƒy[ƒW
–źĚ 2015”N“xŽ”˜_ƒTƒ}[ƒXƒN[ƒ‹ uŽu‘ş‘˝—l‘Ě‚Ć‚ť‚̉ž—pv
“ú’ö 2015”N8ŒŽ17“úiŒŽj-21“úi‹ŕj
‰ďę “ě“c‰ˇňƒzƒeƒ‹ƒAƒbƒvƒ‹ƒ‰ƒ“ƒh
ŽĺĂŽŇ ˆÉ“Ą“NŽji‹ž‘ĺ—jCEç“c‰ë—˛i“Œ–k‘ĺ—jCŽOŽ}—mˆęi“Œ‘吔—j
•ńW ěŹ—\’č î•ń‚Ěƒy[ƒW
–źĚ Kobe-Lyon Summer School in Mathematics 2015 On Quivers : Computational Aspects and Geometric Applications
“ú’ö 2015”N7ŒŽ21“ú-31“ú
‰ďę _ŒË‘ĺŠw —ŠwŒ¤‹†‰Č B301
ŽĺĂŽŇ 1T–Ú(7/21--24) ‚ŽR M‹Bi_ŒË‘ĺŠwjEPhilippe Malbos (Lyon1,France)
2T–Ú(7/27--31) âV“Ą ­•Fi_ŒË‘ĺŠwjEˆÁŒ´ ŒŞŽĄ (Lyon1, France)
•ńW –ł î•ń‚Ěƒy[ƒW
–źĚ‘ć14‰ńL“‡ĺ‘䐎”˜_W‰ď
“ú’ö 2015”N7ŒŽ14“ú(‰Î) - 7ŒŽ17“ú(‹ŕ)
‰ďęL“‡‘ĺŠw—Šw•” (“ŒL“‡ƒLƒƒƒ“ƒpƒX)
ŽĺĂŽŇ•˝”V“ŕr˜Y (L“‡‘ĺŠw)Cź–{áÁ (L“‡‘ĺŠw)C ‚‹´_Ž÷ (“ż“‡‘ĺŠw)C“s’z’¨•v (“Œ–k‘ĺŠw)Cá]–ž•F (‹ž“s‘ĺŠw)
•ńW –ł î•ń‚Ěƒy[ƒW
–źĚ ‘ć3‰ń‹ž“s•ŰŒ^Œ`ŽŽŒ¤‹†W‰ď
“ú’ö 2015”N6ŒŽ26“úi‹ŕj-28“úi“új
‰ďę ‹ž“s‘ĺŠw—Šw•”‚R†ŠŮ110”Ô‹łŽş
ŽĺĂŽŇ á]–ž•F
•ńW î•ń‚Ěƒy[ƒW
–źĚ ‘ć32‰ń‘㐔“I‘g‡‚š˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö 2015”N6ŒŽ22“úiŒŽj-24“úi…j
‰ďę ÎěŒ§•ś‹ł‰ďŠŮi22“úA23“újA‹ŕ‘ň‘ĺŠwƒTƒeƒ‰ƒCƒgEƒvƒ‰ƒU i24“új
ŽĺĂŽŇ •˝–؏˛i‘ĺă‹łˆç‘ĺjAě‰zŒŞˆęi‹ŕ‘ň‘ĺjA–k‹lEłŒ°iç—t‘ĺjA‘ĺ ‰YŠwi‹ŕ‘ň‘ĺj
•ńW ěŹ—\’č î•ń‚Ěƒy[ƒW
–źĚ Algebraic Lie Theory and Representation Theory 2015
“ú’ö 2015”N6ŒŽ5“úi‹ŕj--6ŒŽ8“úiŒŽj
‰ďę ‰ŞŽR‚˘‚ą‚˘‚Ě‘ş
ŽĺĂŽŇ ’r“cŠxCź‘ş’Š—Yi‰ŞŽR—‰Č‘ĺŠwjC—é–Ř•Žji‰ŞŽR‘ĺŠwj
•ńW —L î•ń‚Ěƒy[ƒW
–źĚ ‘ć‚P‚U‰ńĂ‰Ş‘㐔ŠwƒZƒ~ƒi[
“ú’ö 2015”N6ŒŽ5“úi‹ŕj-6ŒŽ6“úi“yj
‰ďę Ă‰Ş‘ĺŠw —Šw•”C“‚R‚O‚X†Žş
ŽĺĂŽŇ óŽĹ@GlA–Ń—˜ oA–Ř‘ş ˆÇŽq (Ă‰Ş‘ĺŠw)
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ ‘ć‚W‰ń ”˜_—Ť‚̏W‚Ü‚čiWINJ8)
“ú’ö 2016”N5ŒŽ30“ú(“yj
‰ďę ă’q‘ĺŠwŽl’JƒLƒƒƒ“ƒpƒX 2-508
ŽĺĂŽŇ L’† —R”üŽqC’†‹Ř–ƒ‹MCŽRŠÝ“úo
•ńW ěŹ î•ń‚Ěƒy[ƒW

2014”N“xŠJĂ‚ĚƒVƒ“ƒ|ƒWƒEƒ€î•ńiŠJĂ“ú’ö‡j
–źĚ“ą—ˆ“Ż’lƒ[ƒNƒVƒ‡ƒbƒv
“ú’ö 2015”N3ŒŽ28“úi“yj- 31“úi‰Îj
‰ďę‘ĺăŽs—§‘ĺŠw u‹†ŽşE408 (—Šw•”E“)
ŽĺĂŽŇi‘ă•\j‘ŠŒ´‘ô–i‘ĺă•{—§‘ĺŠwjCóŽĹGliĂ‰Ş‘ĺŠwjC‰Á“ĄŠó—Žqi‘ĺă•{—§‘ĺŠwjC
Œš‘׍Ki‘ĺă•{—§‘ĺŠwjC‹{’n•ş‰qi‘ĺăŽs—§‘ĺŠwjC‹g˜e——Yi‘ĺăŽs—§‘ĺŠwj
•ńWwebă î•ń‚Ěƒy[ƒW
–źĚLow dimensional topology and number theory VII
“ú’ö 2015”N3ŒŽ25“úi…j- 3ŒŽ28“úi“yj
‰ďę‹ăB‘ĺŠwŽYŠwŠŻ˜AŒgƒCƒmƒx[ƒVƒ‡ƒ“ƒvƒ‰ƒU
ŽĺĂŽŇ‰Í–ěrä(“Œ‘ĺ), ’†‘ş”Žş(ă‘ĺ), X‰şš‹I(‹ă‘ĺ)
•ńEW@
–źĚ‘ć20‰ń‘㐔ŠwŽáŽčŒ¤‹†‰ď
“ú’ö 2015”N3ŒŽ18“úi…j-2015”N3ŒŽ20“úi‹ŕj
‰ďę–źŒĂ‰Ž‘ĺŠw “ŒŽRƒLƒƒƒ“ƒpƒX ‘˝Œł”—‰ČŠwŒ¤‹†‰Č ‘˝Œł”—‰ČŠw“
ŽĺĂŽŇ_“c —Ɂi–źŒĂ‰Ž‘ĺŠwjA‘Ť—§ ’‰pi–źŒĂ‰Ž‘ĺŠwjA…–ě —LĆi–źŒĂ‰Ž‘ĺŠwjA‚‹´ —şi–źŒĂ‰Ž‘ĺŠwj
•ńWěŹ—\’č î•ń‚Ěƒy[ƒW
–źĚ‘ć7‰ń‘㐔ŠwŽáŽčƒZƒ~ƒi[
“ú’ö 2015”N3ŒŽ17“úi‰Îj
‰ďę–źŒĂ‰Ž‘ĺŠw “ŒŽRƒLƒƒƒ“ƒpƒX ‘˝Œł”—‰ČŠwŒ¤‹†‰Č ‘˝Œł”—‰ČŠw“
ŽĺĂŽŇ_“c —Ɂi–źŒĂ‰Ž‘ĺŠwjA‘Ť—§ ’‰pi–źŒĂ‰Ž‘ĺŠwjA…–ě —LĆi–źŒĂ‰Ž‘ĺŠwjA‚‹´ —şi–źŒĂ‰Ž‘ĺŠwj
•ńW–˘’č î•ń‚Ěƒy[ƒW
–źĚ–ě“c‘㐔Šô‰˝ŠwƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö 2015”N3ŒŽ16“ú(ŒŽ)-18“ú(…)
‰ďę“Œ‹ž—‰Č‘ĺŠw—HŠw•” 4†ŠŮ 444†Žş
ŽĺĂŽŇˆÉ“Ą_sA‘ĺ‹´‹v”Í (Š‘Ž‚Í‹¤‚É“Œ‹ž—‰Č‘ĺŠw)
•ńW‚Č‚ľ
–źĚWorkshop on Computational Number Theory with Implementations 2015
“ú’ö 2015”N2ŒŽ21“ú(“y)-2ŒŽ22“ú(“ú)
‰ďę‹ăB‘ĺŠwˆÉ“sƒLƒƒƒ“ƒpƒX ”—Šw‹łˆçŒ¤‹†“ ‘ĺu‹`Žş3
ŽĺĂŽŇ‰ĄŽR rˆęi‹ăB‘ĺŠwj
•ńW‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ‘ć8‰ń‘˝dƒ[[ƒ^Œ¤‹†W‰ď
“ú’ö 2015”N2ŒŽ19“úi–؁j-20“úi‹ŕj
‰ďę‘ĺă‘Ěˆç‘ĺŠwC†ŠŮ
ŽĺĂŽŇ‹ŕŽqšMi‹ăB‘ĺŠwjA‘ĺ–ě‘אśi“Œ–k‘ĺŠwjAŠ™–ěŒ’i‘ĺăH‹Ć‘ĺŠwjA“c’†—§Žui‹ž“sŽY‹Ć‘ĺŠwjA˛X–Ř‹`‘ěi‘ĺă‘Ěˆç‘ĺŠwjAâ“cŽŔ‰Ái‹ăB‘ĺŠwj
•ńW‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ‘ć8‰ńƒ[[ƒ^ŽáŽčŒ¤‹†W‰ď
“ú’ö 2015”N2ŒŽ13“ú-16“ú
‰ďę–źŒĂ‰Ž‘ĺŠw‘˝Œł”—‰ČŠwŒ¤‹†‰Č
ŽĺĂŽŇ ź–{k“ńA“c’†—ȁA–ĺ“cT–çAAde Irma Suriajaya, ˆęŠK’qOA—é–Ř—Y‘žAM‹´‘叫 (‚ˇ‚ׂEŽ‚Í–źŒĂ‰Ž‘ĺŠw)
•ńW‚Č‚ľ
–źĚ i”ńj‰ÂŠˇ‘㐔‚Ćƒgƒ|ƒƒW[
“ú’ö 2015”N2ŒŽ13“ú(‹ŕ)ŒßŒă-2ŒŽ15“ú(“ú)Œß‘O
‰ďę MB‘ĺŠw —Šw•” u‹`“1ŠK ‘ćˆęu‹`Žş
ŽĺĂŽŇ ŒI—Ń Ÿ•F (MB‘ĺŠw)A–Ń—˜ o (Ă‰Ş‘ĺŠw)
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚRIMSŒ¤‹†W‰ďuƒ‚ƒWƒ…ƒ‰[Œ`ŽŽ‚Ć•ŰŒ^•\Œťv
“ú’ö 2015”N2ŒŽ2“ú(ŒŽ)-2ŒŽ6“ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š420†Žş
ŽĺĂŽŇŹ“cGH(ŒF–{‘ĺŠw)A—Ń“cGˆę(ă‰z‹łˆç‘ĺŠw)
•ńWěŹ—\’č î•ń‚Ěƒy[ƒW
–źĚArithmetic and Algebraic Geometry 2015
“ú’ö2015”N1ŒŽ27“úi‰Îj-1ŒŽ31“úi“yj
‰ďę“Œ‹ž‘ĺŠw‘ĺŠw‰@”—‰ČŠwE¤‹†‰Č‘ĺu‹`Žş
ŽĺĂŽŇŒj—˜si–@­‘ĺŠwjAŽ›ž[—FGi“Œ‹ž‘ĺŠwjA‹ŕ“ş˝”Vi–źŒĂ‰Ž‘ĺŠwjA’†‘şˆči–kŠC“š‘ĺŠwjAM. Schuett (Leibniz University Hanoverj
•ńW‚Č‚ľ î•ń‚Ěƒy[ƒWFěŹ’†
–źĚ–k—¤”˜_Œ¤‹†W‰ď
“ú’ö2014”N12ŒŽ25“úi–؁j-12ŒŽ26“úi‹ŕj
‰ďę‹ŕ‘ň‘ĺŠwƒTƒeƒ‰ƒCƒgƒvƒ‰ƒU
ŽĺĂŽŇ•˝—ŃŠ˛li‹ŕ‘ňH‹Ć‘ĺŠwjA–ě‘ş–žli‹ŕ‘ň‘ĺŠwjAŽR‰ş_iEŕ‘ň‘ĺŠwjA–Ř‘şŠŢi•xŽR‘ĺŠwjA“Ąˆäri‹ŕ‘ňH‹Ć‘ĺŠwj
•ńWěŹ—\’č i˜A—ćF–ě‘şj
–źĚ“ą—ˆ‘o‘΃[ƒNƒVƒ‡ƒbƒv
“ú’ö2014”N12ŒŽ22“úiŒŽj, 23“úi‰Îj
‰ďę“Œ‹žŠwŒ|‘ĺŠw@ŽŠ‘R‰ČŠw‚P†ŠŮ@‚QŠKN201
ŽĺĂŽŇŒš‘׍Ki‘ĺă•{—§‘ĺŠwj,@‰Á“ĄŠó—Žqi‘ĺă•{—§‘ĺŠwj,@’ˇŁi“Œ‹žŠwŒ|‘ĺŠwj
•ńW‚Č‚ľ
–źĚRIMSŒ¤‹†W‰ďu—LŒŔŒQ‚Ć‚ť‚Ě•\Œť, ’¸“_ě—p‘f‘㐔, ‘㐔“I‘g‡‚š˜_‚ĚŒ¤‹†v
“ú’ö2014”N12ŒŽ16“úi‰Î)-19“ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š1ŠK111†Žş
ŽĺĂŽŇ“c’†‘ž‰ (“Œ–k‘ĺŠw)
•ńWěŹ—\’č î•ń‚Ěƒy[ƒW
–źĚ‘ć15‰ńĂ‰Ş‘㐔ŠwƒZƒ~ƒi[
“ú’ö2014”N12ŒŽ5“úi‹ŕj, 6“úi“yj, 7“úi“új
‰ďęĂ‰Ş‘ĺŠw—Šw•” C “ 309 †Žş
ŽĺĂŽŇóŽĹGliĂ‰Ş‘ĺŠwjC–Ń—˜oiĂ‰Ş‘ĺŠwjC–Ř‘şˆÇŽqiĂ‰Ş‘ĺŠwj
•ńW‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚRIMSŒ¤‹†W‰ďu‘㐔“IŽ”˜_‚Ć‚ť‚ĚŽü•Óv
“ú’ö2014”N12ŒŽ1“úiŒŽj-12ŒŽ5“úi‹ŕj
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š420†Žş
ŽĺĂŽŇ’Ň —Yi“Œ‹ž‘ĺŠwjC‚‹´ _Ž÷ (“ż“‡‘ĺŠw)CŻ —Tˆę˜Y (‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š)
•ńWěŹ—\’č î•ń‚Ěƒy[ƒW
–źĚ“úŠŘŽ”˜_ƒZƒ~ƒi[2014
“ú’ö2014”N11ŒŽ19(…)-22“ú(“y)
‰ďęŒc‰ž‹`m‘ĺŠw–îăƒLƒƒƒ“ƒpƒX iŒúś“‚RŠK‰ď‹cŽşA20“ú‚Ě‚Ý14“’n‰ş‚QŠKƒ}ƒ‹ƒ`ƒƒfƒBƒA[ƒ‹[ƒ€j
ŽĺĂŽŇ‰Á‰–•ü˜ai“Œ‹ž—‰Č‘ĺŠwjAâ“ŕŒ’ˆęiŒcœä‹`m‘ĺŠwjA“cŒű—Yˆę˜Yi‹ăB‘ĺŠwjA …ŕV–ői–źŒĂ‰ŽH‹Ć‘ĺŠwjAŽRă“ÖŽmi‘n‰ż‘ĺŠwjASun Hae-SangiChungbuk National Universityj
•ńW–˘’č î•ń‚Ěƒy[ƒW
–źĚK3, Enriques Surfaces and Related Topics
“ú’ö2014”N11ŒŽ10(ŒŽ)-14“ú(‹ŕ)
‰ďę–źŒĂ‰Ž‘ĺŠw@—Šw“ěŠŮ@1F@â“cE•˝“cƒz[ƒ‹
ŽĺĂŽŇRadu Laza (Stony Brook University)CŒj@—˜s (–@­‘ĺŠw)C‹ŕ“ş˝”V (–źŒĂ‰Ž‘ĺŠw),@Œüˆä@–Î (‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š)
•ńW‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ‘ć‚P‚V‰ń”’”nŽ”˜_ƒI[ƒ^ƒ€ƒ[ƒNƒVƒ‡ƒbƒv wExplicit Theory of Jacobi Forms and Modular Forms of Several Variablesx
“ú’ö‚Q‚O‚P‚S”N‚P‚PŒŽ‚T“ú(…)-‚X“ú(“ú)
‰ďę”’”nƒnƒCƒ}ƒEƒ“ƒgƒzƒeƒ‹
ŽĺĂŽŇÂ–؍GŽ÷ (“Œ‹ž—‰Č‘ĺŠw), â“c—T (‘ˆî“c‘ĺŠw‚“™Šw‰@), —Ń“cGˆę (ă‰z ‹łˆç‘ĺŠw)
•ńW‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚRIMSŒ¤‹†W‰ďu‰đÍ“IŽ”˜_-”˜_“I‘ÎŰ‚Ě•Ş•z‚Ƌߎ—v
“ú’ö2014”N10ŒŽ29“úi…j-10ŒŽ31“úi‹ŕj
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š420†Žş
ŽĺĂŽŇ–ź‰zO•śiŒQ”n‘ĺŠwjC_’J—@ˆęi‘ĺ“Œ•ś‰ť‘ĺŠwj
•ńWěŹ—\’č î•ń‚Ěƒy[ƒW
–źĚRIMSŒ¤‹†W‰ďu‘g‡‚š˜_“I•\Œť˜_‚Ć•\Œť˜_“I‘g‡‚š˜_v
“ú’ö2014”N10ŒŽ28“ú(‰Î)-10ŒŽ31“úi‹ŕj
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š111†Žş
ŽĺĂŽŇŔ“c‘׉p (MB‘ĺŠw)
•ńWěŹ—\’č î•ń‚Ěƒy[ƒW
–źĚ ‰ÂŠˇŠÂ˜_‚Ć•\Œť˜_@‹g–ě—Y“ńćśŠŇ—ď‹L”OŒ¤‹†W‰ď
“ú’ö 2014”N10ŒŽ11“úi“yj-13“úiŒŽj
‰ďę ‰ŞŽR‘ĺŠw—Šw•”–{ŠŮ‚QŠK‚Q‚P”Ô‹łŽş
ŽĺĂŽŇ ‰Á“Ą Šó—Žqi‘ĺă•{—§‘ĺjCr’J “ÂŽii‰ŞŽR—‰Č‘ĺjC‚‹´ —şi–źŒĂ‰Ž‘ĺjC ‹´–{ Œő–ői‰ŞŽR‘ĺj
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚŒ¤‹†W‰ďu‘㐔‘˝—l‘Ě‚Ć‚ť‚ĚŽü•Óv
“ú’ö‚Q‚O‚P‚S”N‚XŒŽ‚Q‚X“ú(ŒŽ)-‚P‚OŒŽ‚Q“ú(–Ř)
‰ďę—Ž‹…‘ĺŠw—Šw•”
ŽĺĂŽŇ‹{čži˛‰ę‘ĺŠwjC‰Ş“c‘ńŽOi˛‰ę‘ĺŠwjC–ěŠÔ~i‰Ą•l‘—§‘ĺŠwjCŹ{“c‰ë(—Ž‹…‘ĺŠw)
•ńW‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ‘ć47‰ńŠÂ˜_‚¨‚ć‚Ń•\Œť˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö2014”N9ŒŽ13“ú(“y) - 9ŒŽ15“ú(ŒŽ)
‰ďę‘ĺăŽs—§‘ĺŠw—Šw•”
ŽĺĂŽŇƒvƒƒOƒ‰ƒ€Ó”CŽŇF”ň“c–ž•Fié‹Ę‘ĺŠwjC‰ďęÓ”CŽŇF‰Í“cŹli‘ĺăŽs—§‘ĺŠwj
•ńW—Li‰E‚̂؁[ƒW‚Š‚çƒ_ƒEƒ“ƒ[ƒh‚Ĺ‚Ť‚Ü‚ˇj î•ń‚Ěƒy[ƒW
–źĚ‘ć‚X‰ń•Ÿ‰Ş”˜_Œ¤‹†W‰ď in •Ę•{
“ú’ö2014”N9ŒŽ2“ú (‰Î)-9ŒŽ4“ú (–Ř)
‰ďę—§–˝ŠŮƒAƒWƒA‘ž•˝—m‘ĺŠwi‚`‚o‚tj‚e“ ‚e‚P‚O‚P‹łŽş
ŽĺĂŽŇ‹ŕŽq šM (‹ăB‘ĺŠw)CŠÝ NO (ˆ¤’m‹łˆç‘ĺŠw)C ‚Č —Ď‘ž˜Yi—§–˝ŠŮƒAƒWƒA‘ž•˝—m‘ĺŠwjCŒ  ”J˜D (‹ăB‘ĺŠw)
•ńWěŹ—\’č î•ń‚Ěƒy[ƒW
–źĚŒ¤‹†W‰ďuPrehomogeneous vector spaces and related topicsvi“ú–{ŠwpU‹ť‰ď“ń‘ŠÔŒđ—ŹŽ–‹Ćj
“ú’ö2014”N9ŒŽ1“ú(ŒŽ)-9ŒŽ5“ú(‹ŕ)
‰ďę—§‹ł‘ĺŠwƒ}ƒLƒ€ƒz[ƒ‹M201Žş
ŽĺĂŽŇL’†—R”üŽqi‘ˆî“c‘ĺŠwj, —Ž‡Œ[”Vi‹ăB‘ĺŠwj, Marcus Slupinski (Strasbourg), Sofiane Souaifi (Strasbourg);
Scientific Advisor ˛“Ą•śL i—§‹ł‘ĺŠwj, Hubert Rubenthaler (Strasbourg)
•ńW‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚJapan-Taiwan Joint Conference on Number Theory 2014
“ú’ö2014”N9ŒŽ1“ú-9ŒŽ6“ú(“y)
‰ďę‘–Ż‹x‰É‘ş ‹CĺŔ‘哇
ŽĺĂŽŇ ŽRč—˛—Y (“Œ–k‘ĺŠw)C‘ĺ–ě‘אś(“Œ–k‘ĺŠw)Cç“c‰ë—˛(‹ž“s‘ĺŠw)CMing-Lun Hsieh (NTU)CYifan Yang (NCTU)
•ńW‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ‘ć22‰ńŽ”˜_ƒTƒ}[ƒXƒN[ƒ‹u”ń‰ÂŠˇŠâŕV—˜_v
“ú’ö2014”N8ŒŽ28“ú(–Ř)-9ŒŽ1“ú(ŒŽ)
‰ďęŹ“¤“‡‚Ó‚é‚ł‚Ć‘ş Œđ—ŹƒZƒ“ƒ^[
ŽĺĂŽŇŒ´—˛i“Œ‹ž“d‹@‘ĺŠwj, …ŕV–ői–źŒĂ‰ŽH‹Ć‘ĺŠwj
•ńWěŹ—\’č î•ń‚Ěƒy[ƒW
–źĚ‘ć13‰ńĺ‘äL“‡Ž”˜_W‰ď
“ú’ö 2014”N7ŒŽ15“ú(‰Î)-7ŒŽ18“ú(‹ŕ)
‰ďę“Œ–k‘ĺŠw‘ĺŠw‰@—ŠwŒ¤‹†‰Č (Â—tŽRƒLƒƒƒ“ƒpƒX)
ŽĺĂŽŇ•˝”V“ŕr˜Y (L“‡‘ĺŠw)Cź–{áÁ (L“‡‘ĺŠw)C‚‹´_Ž÷ (“ż“‡‘ĺŠw)C“s’z’¨•v (“Œ–k‘ĺŠw)Cá]–ž•F (‹ž“s‘ĺŠw)
•ńW ‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ‘ć14‰ńĂ‰Ş‘㐔ŠwƒZƒ~ƒi[
“ú’ö 2014”N7ŒŽ4“úi‹ŕj, 5“úi“yj
‰ďęĂ‰Ş‘ĺŠw—Šw•” C “ 309 †Žş
ŽĺĂŽŇóŽĹGl (Ă‰Ş‘ĺŠw)C–Ń—˜o (Ă‰Ş‘ĺŠw)C–Ř‘şˆÇŽq(Ă‰Ş‘ĺŠw)
•ńW‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ‘ć31‰ń‘㐔“I‘g‡‚š˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö 2014”N6ŒŽ19“ú(–Ř)-6ŒŽ20“ú(‹ŕ)
‰ďę“Œ–k‘ĺŠw•Đ•˝‚ł‚­‚çƒz[ƒ‹
ŽĺĂŽŇ@­şOAŒ´“cšWA“c’†‘ž‰A“‡‘q—TŽ÷i“Œ–k‘ĺj
•ńWěŹ—\’č î•ń‚Ěƒy[ƒW
–źĚ‘㐔“I‘g‡‚š˜_u‰Ä‚ĚŠwZ‚Q‚O‚P‚Sv
“ú’ö 2014”N6EE5“ú(“ú)-6ŒŽ18“ú(…)
‰ďęƒzƒeƒ‹ƒNƒŒƒZƒ“ƒgiH•Ű‰ˇňj
ŽĺĂŽŇ@­şOAŒ´“cšWA“c’†‘ž‰A“‡‘q—TŽ÷i“Œ–k‘ĺj
•ńW‚Č‚ľ î•ń‚Ěƒy[ƒW

2013”N“xŠJĂ‚ĚƒVƒ“ƒ|ƒWƒEƒ€î•ńiŠJĂ“ú’ö‡j
–źĚBranched Coverings, Degenerations, and Related Topics 2014
“ú’ö 2014”N3ŒŽ7“ú(‹ŕ)?2014”N3ŒŽ10“ú(ŒŽ)
‰ďęL“‡‘ĺŠw—Šw•”‚d“ E104‹łŽş
ŽĺĂŽŇ‘Ť—˜łi“Œ–kŠw‰@‘ĺŠwjCěŠÔ˝iL“‡‘ĺŠwjC“‡“cˆÉ’m˜NiL“‡‘ĺŠwjC“ż‰i_—YiŽń“s‘ĺŠw“Œ‹žjCź–{K•viEwK‰@‘ĺŠwj
•ńW‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ‘㐔“I‘g‡‚š˜_ƒ~ƒjW‰ď
“ú’ö 2014”N3ŒŽ7“ú(‹ŕ)
‰ďę_ŒËŠw‰@EĺŠwƒ|[ƒgƒAƒCƒ‰ƒ“ƒhƒLƒƒE“ƒpƒX ‚a‚P‚O‚Qu‹`Žş
ŽĺĂŽŇEHŽRŒŁ”Vi•Ÿ‰Ş‘ĺŠwjC‹gr‘i“Œ‹ž—Žq‘ĺŠwjC@­şOi“Œ–k‘ĺŠwjCśEc‘ě–çi_ŒËŠw‰@‘ĺŠwj
•ńW‚Č‚ľ î•ń‚ĚƒyE[ƒW
–źĚ‘ć6‰ń‘㐔ŠwŽáŽčƒZƒ~ƒi[
“ú’ö 2014”N3ŒŽ1“ú(“y)
‰ďęMB‘ĺŠw—Šw•”A“4ŠK ”EEEŠ‘RîE?‡“ŻŒ¤‹†Žş(401)
ŽĺĂŽŇ“ŕ“Ą‹Mm(MB‘ĺŠw)A‹TŽR“ˆű(MB‘ĺŠw)A‘Oě—I(MB‘ĺŠw)AŔ“c‘׉p(MB‘ĺŠw)
•ńW—L‚č(HP‚É‚ÄŒöŠJ‚ľ‚Ü‚ˇ) î•ńẼy[ƒW
–źĚ‘ć19‰ń‘㐔ŠwŽáŽčŒ¤‹†‰ď
“ú’ö 2014”N2ŒŽ26“ú(…)?28“ú(‹ŕ)
‰ďęMB‘ĺŠw—Šw•”u‹`“1”Ô‹łŽş
ŽĺĂŽŇ“ŕ“Ą‹Mm(MB‘ĺŠw)A‹TŽREˆEMB‘ĺŠw)AEOě—I(MB‘ĺEw)AŔ“c‘׉p(MB‘ĺŠw)
•ńW—L‚č(HP‚É‚ÄŒöŠJ‚ľ‚Ü‚ˇ) î•ń‚Ěƒy[ƒW
–źĚi”ńjEŠˇ‘㐔‚Ćƒgƒ|ƒƒW[
“ú’ö 2014”N2ŒŽ19“úi…j?21“úi‹ŕj
‰ďęMEB‘ĺŠw—Šw•”
ŽĺĂŽŇŒI—яŸ•FiMB‘ĺŠwjA–Ń—˜oiĂ‰Ş‘ĺŠwj
•ńW‚ȁEľ î•ń‚Ěƒy[ƒW
–źĚ‘ć7‰ńƒ[[ƒ^ŽáŽčŒ¤‹†W‰ď
“ú’ö 2014”N2ŒŽ14“ú(‹ŕ)?2014”N2ŒŽ17“ú(ŒŽ)
‰ďę–źŒĂ‰Ž‘ĺŠw ‘˝Œł”—‰ČŠw“(509u‹`Žş)
ŽĺĂŽŇź–{k“ń(–źŒĂ‰Ž‘ĺŠw), “c’†—Č(–źŒĂ‰Ž‘ĺŠw), –ĺ“cT–ç(–źŒĂ‰Ž‘ĺŠw), Ź–ě’Ë—Fˆę(–źŒĂ‰Ž‘ĺŠw), Źź—´–î(–źŒĂ‰Ž‘ĺŠw), ˆęŠKEqO(–źŒĂ‰Ž‘ĺŠw)
•ńW‚Č‚ľ î•ń‚Ěƒy[ƒW
–źE̒¸“_ě—p‘f‘㐔‚Ć’´Œˇ—˜_
“ú’ö 2014”N1ŒŽ31“ú(‹ŕ)?2ŒŽ1“ú(“y)
‰ďę—§‹łEĺŠw@’r‘܃Lƒƒƒ“ƒpƒX@4†ŠŮ•ĘŠŮ4152Žş
ŽĺĂŽŇE]Œű“Oi—§‹ł‘ĺjA“‡‘q—TŽ÷i“Œ–k‘ĺjC”óă˜aOi‹ă‘ĺj
E?WEȂľ î•ń‚Ěƒy[EW
–źĚRIMSŒ¤‹†W‰ďu•ŰŒ^Œ`ŽŽ‚¨‚ć‚ŃŠÖ˜A‚ˇ‚éƒ[[ƒ^ŠÖ”‚ĚŒ¤‹†v
“ú’ö 2014”N1ŒŽ20“ú(ŒŽ)?1ŒŽ24“ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š420u‹`Žş
ŽĺĂŽŇÎˆä‘ěiŹEEĺŠwj
•ńEWěŹ—\’č î•ń‚Ěƒy[ƒW
–źĚ‘ć2‰ń“m‚Ě“s‘㐔Šô‰˝ŠwŒ¤‹†W‰ď
“ú’ö 2014”N1ŒŽ9“ú(–Ř)E`1ŒŽ10“ú(‹ŕ)
‰ďę“Œ–k‘ĺŠw‘ĺŠw‰@—ŠwŒ¤‹†‰Č”ŠwęU ěˆäƒz[ƒ‹
ŽĺĂŽŇÎ“c ł“T (“Œ–k‘ĺ—), E˛“Ą ‘ń (Šň•Œš“żŠwE?‘ĺŒoĎî•ń)
•ńW‚Č‚ľ
–źĚ–k—¤”˜_Œ¤‹†W‰ď
“ú’ö 2013”N12ŒŽ26“úi–؁j?12ŒŽ27“úi‹ŕj
‰ďę‹ŕ‘ň‘ĺŠwƒTƒeƒ‰ƒCƒgƒvƒ‰ƒU
ŽĺĂŽŇ•˝—ŃŠ˛li‹ŕ‘ňH‹Ć‘ĺŠwjA–ě‘ş–žli‹ŕ‘ň‘ĺŠwjAŽR‰ş_i‹ŕ‘ň‘ĺŠwjA–؁EşEށi•xŽR‘ĺŠwj
•ńWě‚é—\’či˜A—ćF–ě‘ş–žlj
–źĚModular functions and Quadratic forms
“ú’ö 2013”N12ŒŽ21“ú(“y)?23“ú(ŒŽ)
‰ďę‘ĺă‘ĺŠw’†”V“‡ƒZƒ“ƒ^[ 507Žş
ŽĺĂŽŇKen Ono(Emory U), –Ř“c‰ëŹ(“Œ‹ž—‰Č‘ĺ), ’†‘ş”Žş(ă‘ĺ), X‰şš‹I(‹ă‘ĺ), “n•”—˛•v(ă‘ĺ)
•ńW–˘’č î•ń‚Ěƒy[ƒW
–źĚ‘ć10‰ńu‘㐔Šw‚ĆŒvŽZvŒ¤‹†W‰ď (AC2013)
“ú’ö 2013”N12ŒŽ17“ú(‰Î) ? 12ŒŽ19“ú(–Ř)
‰ďęŽń“s‘ĺŠw“Œ‹ž 11†ŠŮ204E勃EŽş
ŽĺĂŽŇ’Ă‘ş”Ž•ś(Žń“s‘ĺŠw“Œ‹ž), “ŕŽRŹŒ›(Žń“s‘ĺŠw“Œ‹ž), ˜eŽŽu(ŽRŒ`‘ĺŠw)C ś“c‘ě–ç(_ŒËŠw‰@‘ĺEw), “ŕ“cKŠ°(Žń“sEĺŠw“Œ‹ž)
•ńW“dŽqo”Ĺ—\’č
–źĚ‘ć‚P‚R‰ńĂ‰Ş‘㐔ŠwƒZƒ~ƒi[
“ú’ö 2013”N12ŒŽ13“úi‹ŕj, 14“úi“yj
‰ďęĂ‰Ş‘ĺŠw—Šw•”
ŽĺĂŽŇóŽĹGliĂ‰Ş‘ĺŠwjC–Ń—˜oiĂ‰Ş‘ĺŠwjC–Ř‘şˆÇEqEiĂ‰Ş‘ĺŠwj
•ńW‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚRIMSŒ¤‹†W‰ďu‘㐔“IŽ”˜_‚Ć‚ť‚ĚŽü•Óv
E?’E/TD> 2013EN12ŒŽ9“ú(ŒŽ)?13“ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š420u‹`Žş
ŽĺĂŽŇ—Ž‡ — (‘ĺă‘ĺŠw)
•ńEW”—Œ¤u‹†˜^•Ęű‚Ć‚ľ‚č쐬—\’č@î•ń‚Ěƒy[ƒW
–źĚ2013”N“x•\Œť˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö 2013”N11ŒŽ26“ú(‰Î)?29“ú(‹ŕ)
‰ďęƒ}ƒzƒƒoƒ}ƒCƒ“ƒYŽO‰Yi_“ŢěŒ§j
ŽĺĂŽŇŹ–Ř‘]Šx‹`iéź‘ĺŠwjA”Ń“cł•qiéź‘ĺŠwj
•ńWěŹ—\’č
–źĚRIMSŒ¤‹†W‰ď Hyperplane arrangements and characteristic classes
“ú’ö 2013”N11ŒŽ12“ú(‰Î)?15“ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š 111u‹`Žş
ŽĺĂŽŇE˘•”‘ń˜Yi‹ž‘ĺEHjC‘ĺ–{‹œi–k‘ĺ—jC‹g‰ił•FiEk‘ĺ—j
•ńWî•ń‚Ěƒy[ƒW
–źĚPerspectives of Representation Theory of Algebras
Conference honoring Kunio Yamagata on the occasion of his 65th birthday
“ú’ö 2013”N11ŒŽ11“ú(ŒŽ)?15“ú(‹ŕ)
‰ďę–źŒĂ‰Ž‘ĺEw
ŽĺĂŽŇóŽĹGliĂ‰Ş‘ĺŠwjCˆÉŽRCi–źŒĂ‰Ž‘ĺŠwEjC‹{’n~ˆęi“Œ‹žŠwŒ|‘ĺŠwjC–Ń—˜oiĂ‰Ş‘ĺŠwjC ˛“ĄáÁ‹viŽR—œ‘ĺŠwjCAndrzej Skowronski (ƒ|[ƒ‰ƒ“ƒhEƒgƒ‹E“CƒRƒyƒ‹ƒjƒNƒX‘ĺŠw)C Aźˇ•v (ă•‘ĺŠw)C‹g–ě—E“ńi‰ŞŽR‘ĺŠwj
•ńEW‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ‘ć‚P‚U‰ń ”’”nŽ”˜_ƒI[ƒ^ƒ€ƒ[ƒNƒVƒ‡ƒbƒv w‹…“™Žż‹óŠÔ@H\G ă‚Ě’˛˜a‰đÍx
“ú’ö 2013”N11ŒŽ7“úi–؁j?11ŒŽ10“úi“ú)
‰ďę”’”nEnƒCE}ƒEƒ“Egƒzƒeƒ‹
ŽĺĂŽŇ“s’złEj(ă’q‘ĺŠw), Îě‰ŔO(‰ŞŽR‘ĺŠw)
•ńW–ł
–źĚ‘ć46‰ńŠÂ˜_‚¨‚ć‚Ń•\Œť˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö 2013”N10ŒŽ12EE“y) ? 10ŒŽ14“ú(ŒŽ)
‰ďę“Œ‹ž—‰Č‘ĺŠw—Šw•”
ŽĺĂŽŇƒvƒƒOƒ‰ƒ€Ó”CŽŇF‹e­ŒMiŽRŒű‘ĺŠwjC‰ďęÓ”CŽŇFáÁ“cŽ“Ti“Œ‹ž—‰Č‘ĺŠwj
•ńWě‚é—\’č@î•ń‚Ěƒy[ƒW
–źĚRIMSŒ¤‹†W‰ďu‘㐔Šô‰˝Šw‚Ć‰ÂĎ•ŞŒn‚É‚¨‚Ż‚郂ƒWƒ…ƒ‰ƒC—˜_v
“ú’ö 2013”N9ŒŽ17“úEi‰Îj? 9ŒŽ20“úi‹ŕj
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†ŠE‚SŠK‘ĺu‹`Žş
ŽĺĂŽŇâV“Ą@­•F(_ŒË‘ĺ—)
•ńW
EźĚ‘ć21‰ńŽ”˜_ƒTƒ}E[ƒXƒN[ƒ‹upiŠČ–ńŒQ‚Ě•\Œť˜_“ü–ĺv
“ú’ö 2013EN9ŒŽ2“ú(EE ? 9ŒŽ6“ú(‹ŕ)
‰ďę” Ş‚Œ´ƒzƒeƒ‹
ŽĺĂŽŇŒ´‰şGŽmi‰Ą•l‘—§‘ĺŠwjAĄ–ě‘ń–çi‹ăB‘ĺŠwjA•˝‰ęˆči‹ž“s‘ĺŠwj
•ńW
–źĚ‘ć8‰ńEŸ‰ƒF”˜_Œ¤‹†W‰ď
“ú’ö 2013”N8ŒŽ8“úi–؁j? 8ŒŽ10“úiEyj
‰ďę‹ăB‘ĺŠw(ˆÉ“sƒLƒƒƒ“ƒpƒX)
ŽĺĂŽŇ‹ŕŽqšM(EăB‘ĺŠw), Œ ”J˜D(‹ăB‘ĺŠw), ŠÝNO(ˆ¤’m‹łˆç‘ĺŠw)
•ńWě‚é—\’č@î•ń‚Ěƒy[ƒW
–źĚ•×‹­‰ďu—ĘŽqŒQ‚ĚŒ—‰ť‚ĆKLR‘㐔Ev
“ú’ö 2013”N8ŒŽ6“úi‰ÎEj?8ŒŽ7“úi…j
‰ďę–źŒĂ‰Ž‘ĺŠw ‘˝Œł”—‰ČŠwŒ¤‹†‰Č —1†ŠŮ109
ŽĺĂŽŇŹź łG(–źŒĂ‰Ž‘ĺŠw ‘˝Œł”—)C•ÄŕV ND(–źŒĂ‰Ž‘ĺŠw ‘˝Œł”—)
•ńEW‚Č‚ľ@î•ń‚Ěƒy[ƒW
–źĚRIMSŒ¤‹†W‰ďu‘˝dƒ[[ƒ^’l‚̏”‘Šv
“ú’ö 2013”N7ŒŽ23“úi‰Îj? 7ŒŽ26“úi‹ŕj
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†ŠE‚SŠK‘ĺu‹`Žş
ŽĺĂŽŇˆäŒ´Œ’Ež˜Yi‘ĺă‘ĺŠwj
•ńWěŹ—\’č@î•ń‚Ěƒy[ƒW
–źĚ‘ć12‰ńL“‡ĺ‘䐎”˜_W‰ď
“ú’ö 2013”N7ŒŽ16“ú(‰Î) ? 7ŒŽ19“ú(‹ŕ)
‰ďęL“‡‘ĺŠw—Šw•” (“ŒL“‡ƒLƒƒƒ“ƒpƒX)
ŽĺĂŽŇ•˝”V“ŕr˜Y (L“‡‘ĺŠw)Cź–{áÁ (L“‡‘ĺŠw)C‚‹´_Ž÷ (L“‡EĺŠw)C“s’z’¨•v (“Œ–k‘ĺŠw)Cá]–ž•F (‹ž“s‘ĺŠw)
•ńW –ł î•ń‚Ěƒy[ƒW
–źĚRIMSŒ¤‹†W‰ďu”ń‰ÂŠˇ‘㐔Šô‰˝Šw‚Ć‚ť‚ĚŽü•ÓvNoncommutative Algebraic Geometry and Related Topics
“ú’ö 2013”N7ŒŽ1“úiŒŽj? 7ŒŽ5“úi‹ŕj
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†ŠEESŠK‘ĺu‹`Žş
ŽĺĂŽŇ–Ń—˜@o(Ă‰Ş‘ĺ—)
•ńWî•ń‚Ěƒy[ƒW
–źĚ‘ć30E?‘㐔“I‘g‡‚š˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö 2013”N6ŒŽ24“ú(ŒŽ)?26“ú(…)
‰ďęĂ‰Ş‘ĺŠwE•lźƒLƒƒƒ“ƒpƒXi˛–‰ďŠŮE‰ď‹cŽşj
EĺĂŽŇ–k‹lłŒ°(ç—t‘ĺ), Œ´“cšW(ŽRŒ`‘ĺ), V’J˝(Ă‰Ş‘ĺ)
EE?W ěŹ—\’č î•ń‚Ěƒy[ƒW
–źĚ‘ć‚Q‰ń‹ž“s•ŰŒ^Œ`ŽŽŒ¤‹†W‰ď
“ú’ö•˝Ź25”N6ŒŽ14“ú (‹ŕ) ‚Š‚ç6ŒŽ16“ú (“ú) ‚Ü‚Ĺ
‰ďę‹ž“s‘ĺŠw—Šw•”3†ŠŮ110(6/14 ‚Í 108)
ŽĺĂŽŇá]–ž•Fi‹ž‘ĺ—j
•ńW ƒvƒƒOƒ‰ƒ€C ƒAEuƒXƒgƒ‰ƒNƒg
–źĚƒ‚ƒWƒ…ƒ‰ƒC—˜_‚Ě”­“Wi2013”N“x“ú–{”Šw‰ď‹GŠúŒ¤‹†Š(The 6th MSJ-SI), ‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š@2013”N“xƒvƒƒWƒFƒNƒgŒ¤‹†)
“ú’ö2013”N6ŒŽ11?14“ú@ƒŒƒNƒ`ƒƒ[ƒVƒŠ[ƒY, 2013”N6ŒŽ17?21“ú@Œ¤‹†W‰ď
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š@420†Žş
ŽĺĂŽŇ“Ą–ě C (‹ž“s‘ĺŠw), X˜e ~ (‹ž“s‘ĺŠw), ’†ŽR ¸ (‹ž‘吔—Œ¤), Œüˆä –Î (‹ž‘吔—Œ¤), ‹ŕ“ş˝”V (–źŒĂ‰Ž‘ĺŠw), âV“Ą­•F (_ŒË‘ĺŠw), ‹g‰ŞN‘ž (_ŒË‘ĺŠw)
•ńWî•ń‚Ěƒy[ƒW
–źĚWorkshop on Modular Forms and Jacobi Forms
“ú’ö 2013”N6ŒŽ11“ú(‰Î)?12“ú(…)
‰ďę ă‰z‹łˆç‘ĺŠw l•ś“ l‚Q‚O‚X
ŽĺĂŽŇÂ–؍GŽ÷i“Œ‹ž—‰ČEĺŠwjAâ“c—Ti‘ˆî“c‘ĺŠw‚E™Šw‰@jA—Ń“cGˆęiă‰z‹łˆç‘ĺŠwj
•ńWî•ń‚Ěƒy[ƒW
–źĚWorkshop: Johnson homomorphisms
“ú’ö 2013”N6ŒŽ3“úiŒŽj?6ŒŽ7“úi‹ŕj
‰ďę “Œ‹ž‘ĺŠw‘ĺŠw‰@”—‰ČŠwŒ¤‹†‰Č ‘ĺu‹`Eş
ŽĺĂŽŇE͐Ÿ‹ż–î (“Œ‘吔—), ’†‘ş”Žş (‰ŞŽR‘ĺ—), Etˆä‘ě–ç (“Œ‘吔—)
•ńEWE˘’č@î•ń‚Ěƒy[ƒW
–źĚ‘ć‚P‚U‰ń ‘㐔ŒQ‚Ć—ĘŽqŒQ‚Ě•\Œť˜_iRAQ2013j
“ú’ö 2013”N6ŒŽ2“úi“új?6ŒŽ5“úi…j
‰ďEE/TD> ‹­—…Â‰_‘‘
_“ŢěŒ§‘Ť•ż‰şŒS” Ş’Ź‹­—…1320
ŽĺĂŽŇÄ“ĄE`‹v (“Œ‹ž‘ĺŠw)
•ńWěŹ—\’č
–źĚWorkshopFOkayama Anabelful Days
“ú’ö 2013”N5ŒŽ22“ú 15:00 ?5ŒŽ23“ú
‰ďę‰ŞŽR‘ĺŠw—Šw•”‚Q†ŠŮ ‚SŠK D401
ŽĺĂŽŇ’†‘ş”Žş (‰ŞŽR‘ĺŠw)
•ńWEł@î•ń‚Ěƒy[ƒW
–źĚp ‰ÂœŒQ‚Ć‚ť‚Ěƒ‚ƒWƒ…ƒ‰ƒC‹óŠÔ‚ÉŠÖ‚ˇ‚éĹ‹ß‚̐i“W
“ú’ö 2013”N5ŒŽ7“ú(‰Î) ? 5ŒŽ11“ú(“y)
‰ďę‹ž“s‘ĺŠw‘ĺŠw‰@—ŠwŒ¤‹†‰Č”Šw‹łŽş
—Šw•” 3 †ŠŮ 108 ‹łŽşi5 ŒŽ 7 “ú‚Ě‚Ý 110 ‹łŽşj
ŽĺĂŽŇŽOŽ}—mˆę(‹ž“s‘ĺŠw)
•ńWî•ń‚Ěƒy[ƒW
–źĚAutomorphic Functions and Arithmetic Geometry
“ú’ö 2013”N4ŒŽ26“úi‹ŕj? 4ŒŽ28“úi“új
‰ďę ‹ăB‘ĺŠw”—ŠwŒ¤‹†‹łˆç“iˆÉ“sƒLƒƒƒ“ƒpƒXj
ŽĺĂŽŇ‰Ľ—сi‹ăB‘ĺŠwj
•ńW‚Č‚ľî•ń‚Ěƒy[ƒW
–źĚWorkshop on Iwasawa theory and p-adic family of automorphic forms
“ú’ö 2013”N4ŒŽ3“ú(…) ? 4ŒŽ6“ú(“y)
‰ďę‹ž“s‘ĺŠw‘ĺŠw‰@—ŠwŒ¤‹†‰Č3†ŠŮ108†Žş
ŽĺEÎҐç“c‰ë—˛(‹ž“s‘ĺEw)
•ńWî•ń‚Ěƒy[ƒW

2012”N“xŠJĂ‚ĚƒVƒ“ƒ|ƒWƒEƒ€î•ńiŠJĂ“ú’ö‡j
–źĚ‘ć‚P‚W‰ńE㐔ŠwŽáŽčŒ¤‹†‰ď
“ú’ö 2013”N3ŒŽ17“ú(“ú) ? 3ŒŽ19“ú(‰Î)
‰ďę‘ĺă‘ĺŠw@–L’†ƒLƒƒƒ“ƒpƒX@—Šw•”‚c“ D407
ŽĺĂŽŇ“Œ’JÍOi‘ĺă‘ĺŠwjA‰Şč—ş‘ži‘ĺă‘ĺŠwjA ‰ÁŁ—Ɉęi‘ĺă‘ĺŠwjA‚‹´“ÄŽji‘ĺă‘ĺŠwj
•ńW—L‚či‚g‚o‚É‚ÄŒöŠJ‚ľ‚Ü‚ˇj î•ń‚Ěƒy[ƒW
–źĚ‘ć‚T‰ń‘㐔ŠwŽáŽč‰ďƒZƒ~ƒi[
“ú’ö 2013”N3ŒŽ16“ú(“y)
‰ďę‘ĺă‘ĺŠw@–L’†ƒLƒƒƒ“ƒpƒX@—Šw•”‚c“ D407
ŽĺĂŽŇ“Œ’JÍOi‘ĺă‘ĺŠwjA‰Şč—ş‘ži‘ĺă‘ĺŠwjA ‰ÁŁ—Ɉęi‘ĺă‘ĺŠwjA‚‹´“ÄŽji‘ĺă‘ĺŠwj
•ńW—L‚či‚g‚o‚É‚ÄŒöŠJ‚ľ‚Ü‚ˇj îE?‚Ěƒy[ƒW
–źĚ‘ć6‰ń‘˝dƒ[[ƒ^’lŒ¤‹†W‰ď
“ú’ö2013”N2ŒŽ22“ú(‹ŕ) ? 2ŒŽ24“ú(“ú)
‰ďę‹ăB‘ĺŠw(ˆÉ“sƒLƒƒƒ“ƒpƒX)
ŽĺĂŽŇ“câ_“ń(‹ăB‘ĺŠw), Ö“ĄVŒá(‹ăB‘ĺŠw)
EńWě‚é—\’č
–źĚRIMSŒ¤‹†W‰ďuE㐔‚ĆƒRƒ“ƒsƒ…[ƒ^ƒTƒCƒGƒ“ƒXv
“ú’ö2013”N2ŒŽ18“ú(ŒŽ) ? 2ŒŽ20“ú(…)
EEE/TD>‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š111u‹`Žş
ŽĺĂŽŇŽR‘ş–žO(H“c‘ĺŠw)
•ńW
–źĚ‘ć‚U‰ńƒ[[ƒ^ŽáŽčŒ¤‹†EW‰ď
“ú’ö2013”N2ŒŽ15“ú(‹ŕ) E` 2ŒŽ18“ú(ŒŽ)
‰ďę’ˇč‘ĺŠwA•ś‹łƒLƒƒƒ“ƒpƒXA‹łˆçŠw•”A‚R‚R”Ô‹łŽş
ŽĺĂŽŇź–{k“ńi–źŒĂ‰Ž‘ĺŠwjAŽá‹ˇ‘¸—T(–źŒĂ‰Ž‘ĺŠw)A‚‹´ —Cl(–źŒĂ‰Ž‘ĺŠw)A’r“c‘nˆę(–źŒĂ‰Ž‘ĺŠw)Aź‰ŞŒŞť(–źŒĂ‰Ž‘ĺŠw)
‰Ş–{ ‘ě–ç (—§–˝ŠŮ‘ĺŠw)A—é–؁Ełri“Œ‹žH‹Ć‘ĺŠwjAÎěG–ži’ˇč‘ĺŠwj
•ńW î•ń‚Ěƒy[ƒW
–źĚRIMSŒ¤‹†W‰ďu•ŰŒ^•\Œť‚Ć‚ť‚ĚŽü•Óv
“ú’ö 2013”N1ŒŽ21“ú(ŒŽ) ? 1ŒŽ25“ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š420u‹`Žş
ŽĺĂŽŇŽs–ě“ÄŽj(‹ž“s‘ĺŠw)
•ńWî•ń‚Ěƒy[ƒW
–źĚRIMSŒ¤‹†W‰ďu—LŒŔŒQ‚Ć‚ť‚Ě•\ŒťC’¸“_ě—p‘f‘㐔C‘㐔“I‘g‡‚š˜_‚ĚŒ¤‹†Ev
“ú’ö2013”N1ŒŽ7“ú(ŒŽ) ? 1ŒŽ10“ú(–Ř)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š420u‹`Žş
ŽĺĂŽŇ’|ƒ–Œ´—TŒł(Žş—–H‹Ć‘ĺ)
•ńW
–źĚMotives in Tokyo, 2012
“ú’ö2012”N12ŒŽ10“ú(ŒŽ) ? 12ŒŽ14“ú(‹ŕ)
‰ďę“Œ‹ž‘ĺŠw‘ĺŠw‰@”—‰ČŠwŒ¤‹†‰Č
ŽĺĂŽŇƒKƒCƒT[ ƒg[ƒ}ƒX (–źŒĂ‰Ž‘ĺŠw), Ž›ž[—FG (“Œ‹ž‘ĺŠw), Ö“ĄGŽi (“Œ‹žH‹Ć‘ĺŠw)
•ńW Eűąń‚Ěƒy[ƒW
–źĚRIMSŒ¤‹†W‰ďu‘㐔“IŽ”˜_EƂť‚ĚŽü•Óv
“ú’ö 2012EN12ŒŽ3“ú(ŒŽ) ? 12ŒŽ7“ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š420u‹`Žş
ŽĺĂŽŇŽu•á~(“Œ‹ž‘ĺŠw)
•ńWî•ń‚Ěƒy[ƒW
–źEĚRIMSEA‹†W‰ďu‰đÍ“IŽ”˜_‚Ć‚ť‚ĚŽü•Óv
“ú’ö2012”N10ŒŽ29“ú(ŒŽ) ? 10ŒŽ31“ú(…)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š420u‹`Žş
ŽĺĂŽŇ’m”OGŽi(‹ßEE‘ĺŠw)EC“cEEF–ž(Œcœä‘ĺEw)
•ńW
–źĚ‘ć‚P‚T‰ń”’”nŽ”˜_ƒI[ƒ^ƒ€ƒE[ƒNƒVƒ‡ƒbEv
“ú’ö2012EN10ŒŽ29“ú(ŒŽ) ? 11ŒŽ3“ú(“y)
‰ďę”’”nƒnƒCƒ}ƒEƒ“ƒgEzƒeƒ‹
ŽĺĂŽŇŒj“c‰p“TiŽş—–H‹Ć‘ĺŠwj
•ńW E˘’č î•ń‚Ěƒy[ƒW
–źĚp-adic cohomology and its applications to arithmetic geometry
“ú’ö2012”N10ŒŽ29“ú(ŒŽ) ? 11EE“ú(‹ŕ)
‰ďę“Œ–k‘ĺŠw‘ĺŠw‰@—ŠwŒ¤‹†‰Č”ŠwęU
ŽĺĂŽŇ“s’z’¨•v(“Œ–k‘ĺŠw), ’†“‡KŠě(“Œ‹ž“d‹@‘ĺŠw), Žu•á~(“Œ‹ž‘ĺŠw)
•ńW î•ń‚Ěƒy[ƒW
–źĚSymposium on Arithmetic Geometry
“ú’ö2012”N10ŒŽ19EE‹ŕ) ? 10ŒŽ21“ú(“ú)
‰ďę‹ăB‘ĺŠw‘ĺŠw‰@”—ŠwŒ¤‹†‰@iˆÉ“sƒLƒƒƒ“ƒpƒXj
ŽĺĂŽŇ‰Ľ—сi‹ăB‘ĺŠwjC’†‘şˆči–kŠC“š‘ĺŠwjC•ž•”Vi‹ăB‘ĺŠwj
•ńW î•ń‚Ěƒy[ƒW
–źĚ‹ž“s•ŰŒ^Œ`ŽŽŒ¤‹†W‰ď
“ú’ö2012”N10ŒŽ5“ú(‹ŕ) ? 10ŒŽ7“ú(EE
‰ďę‹ž“s‘ĺŠw—Šw•”3†ŠŮ110
ŽĺĂŽŇá]–ž•F (‹ž“s‘ĺŠw)
•ńW ƒvƒƒOƒ‰ƒ€   EAƒuƒXƒgƒ‰ƒNƒg
–źĚ‘ć45‰ńŠÂ˜_‚¨‚ć‚Ń•\Œť˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö2012”N9ŒŽ7“ú(‹ŕ) ? 9ŒŽ9“ú(“ú)
‰ďęMB‘ĺŠw—Šw•”‘ć1uE`Žş
ŽĺĂŽŇƒvƒƒOE‰ƒ€Ó”CŽŇFŹ’rŽőr(‰Ť“ę‚ę)C‰ďęÓ”CŽŇF‰Ô–؏͏G(MB‘ĺŠw)
EńWě‚é—\’č î•ń‚Ěƒy[ƒW
–źĚ‘ć20‰ńŽ”˜_ƒTƒ}[ƒXƒN[ƒ‹uStark—\‘zv
“ú’ö 2012”N9ŒŽ2“ú(“ú) ? 9ŒŽ6“ú(–Ř)
‰ďę‘–Ż‹x‰É‘ş“ěˆ˘‘h
ŽĺĂŽŇÂ–؍GŽ÷iEŒ‹ž—‰Č‘ĺŠwjAŽR–{CŽiiŒcœä‹`Em‘ĺŠwjA‰Á‰–•ü˜ai“Œ‹ž—‰Č‘ĺŠwj
•ńW ě‚é—\’č î•ń‚Ěƒy[ƒW
–źĚ‘ć57‰ń‘㐔ŠwƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö 2012”N8ŒŽ20“ú(ŒŽ) ? 8ŒŽ23“ú(–Ř)
‰ďę‹ž“s‘ĺŠw ”—‰đÍŒ¤‹†Š 4ŠK‘ĺu‹`Žş
ŽĺĂŽŇ
•ńEW ě‚é—\’č
–źĚ‘ć7‰ń•Ÿ‰Ş”˜_Œ¤‹†W‰ď
“ú’ö2012”N8ŒŽ8“ú(…) ? 8ŒŽ10“ú(‹ŕ)
‰ďęEăB‘ĺŠw(ˆÉ“sƒLƒƒƒ“ƒpƒX)
ŽĺĂŽŇ‹ŕŽqšM(‹ăB‘ĺŠw), Œ ”J˜D(‹ăB‘ĺŠw), ŠÝNO(ˆ¤’m‹łˆç‘ĺŠw)
•ńWě‚é—\’č î•ń‚Ěƒy[ƒW
–źĚ24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC'12)
“ú’ö 2012”N7ŒŽ30“ú(ŒŽ) ? 8ŒŽ3“ú(‹ŕ)
‰ďę–źŒĂ‰Ž‘ĺŠwâ“c•˝“cƒz[ƒ‹
ŽĺĂŽŇFPSAC'12 ‘gDˆĎˆő‰ď (‰Ş“c‘ˆę(–źŒĂ‰Ž‘ĺŠw)CÎEEEY(EŽ‹…‘ĺEw)C…ě—TŽi(–h‰q‘ĺŠwZ)Cź–{Ů(–źŒĂ‰Ž‘ĺŠw)C
C. Krattenthaler (Univ. Wien), S. Fishel (Arizona State Univ.))
•ńWDiscrete Mathematics and Theoretical Computer Science ‚Ě1ŠŞ‚Ć‚ľ‚ÄŠ§s—\’č î•ń‚Ěƒy[ƒW
–źĚWorkshop on the arithmetic geometry of Shimura varieties, representation theory, and related topics
“ú’ö 2012”N7ŒŽ18“ú(…) ? 7ŒŽ22“ú(“ú)
‰ďę–kŠC“š‘ĺŠw—Šw•”4†ŠŮ 4-501
ŽĺĂŽŇˆ˘•”‹Isi–k‘ĺ‘nŹŒ¤‹†‹@\jCŽOŽ}—mˆęi‹ž‘ĺ—E‹ž‘ĺ”’”űƒZƒ“ƒ^[jCˆÉ“Ą“NŽji‹ž‘ĺ—j
•ńW î•ń‚Ěƒy[ƒW
–źĚ‘ć11‰ńĺ‘äL“‡Ž”˜_EW‰ď
“ú’ö 2012”N7ŒŽ17“ú(‰Î) ? 7ŒŽ20“ú(‹ŕ)
‰ďę“Œ–k‘ĺŠw‘ĺŠw‰@—ŠwŒ¤‹†‰Č (Â—tŽRƒLƒƒƒ“ƒpƒX)
ŽĺĂŽŇ•˝”V“ŕr˜Y (L“‡‘ĺŠw)Cź–{áÁ (“Œ‹ž‘ĺŠw)C‚‹´_Ž÷ (L“‡‘ĺŠw)C“s’z’¨•v (“Œ–k‘ĺŠw)Cá]–ž•F (‹ž“s‘ĺŠw)
•ńW î•ń‚Ěƒy[ƒW
–źĚMini Workshop on Algebraic Curves for Coding Theory and Cryptography
“ú’ö 2012”N7ŒŽ4“ú(…)
‰ďę4th Lecture Room (3rd Floor), General Education and Research Building
Shiga University of Medical Science
ŽĺĂŽŇě–k‘fŽq(Ž ‰ęˆă‰Č‘ĺ)
•ńW
–źĚ“Œ‹ž”˜_Šô‰˝TŠÔ
“ú’ö 2012”N6ŒŽ4“ú(ŒŽ) ? 6ŒŽ8“ú(‹ŕ)
‰ďę“Œ‹ž‘ĺŠw”—‰ČŠwŒ¤‹†‰Č‘ĺu‹`Žş
ŽĺĂŽŇAhmed Abbes (CNRS, IHES), Ö“Ą‹B (“Œ‹ž‘ĺ), ’Ň—Y (EŒ‹ž‘E
•ńW î•ń‚Ěƒy[ƒW
–źĚSymposium on Arithmetic and Geometry
“ú’ö 2012”N6ŒŽ1“ú(‹ŕ) ? 6ŒŽ2“ú(“y)
‰ďę‹ăB‘ĺŠwˆÉ“sƒLƒƒƒ“ƒpƒX ”—ŠwŒ¤‹†‹łˆç“ ’†ƒZƒ~ƒi[Žş‚PCŹu‹`Žş‚Q
ŽĺĂE҉Ľ—Ń (‹ăB‘ĺ)
•ńW î•ń‚Ěƒy[ƒW
–źĚ‘ć‚P‚T‰ń‘㐔ŒQ‚Ć—ĘŽqŒQ‚́E\Œť˜_Œ¤‹†W‰ď
“ú’ö 2012”N5ŒŽ19“ú(“y) ? 5ŒŽ22“ú(‰Î)
‰ďę‚˘‚ą‚˘‚Ě‘ş ƒAƒ[ƒBƒŠƒA”эj iƒŠƒ“ƒNj §380-0888 ’ˇ–ěŒ§ ’ˇ–ěŽs‘厚ăƒ–‰Ž 2471-79
ŽĺĂŽŇ˜aEcŒ˜‘ž˜YiMB‘ĺŠwj, ‹{’n•ş‰qi‘ĺăŽs—§‘ĺŠwj
•ńWě‚é—\’č î•ń‚Ěƒy[ƒW
–źĚ”˜_—Ť‚̏W‚Ü‚č
“ú’ö 2012”N5ŒŽ19(“y)
‰ďę‘ˆî“c‘ĺŠw 14†ŠŮ 7ŠK 717AB
ŽĺĂŽŇL’†—R”üŽq(‘ˆî“c‘ĺŠw)C’†‹Ř–ƒ‹M(–k—˘‘ĺŠw)CŽRŠÝ“úo(“Œ‹ž“d‹@‘ĺŠw)
•ńW î•ń‚Ěƒy[ƒW
–źĚƒ~ƒjŒ¤‹†W‰ďu”˜_Šô‰˝‚Ć‚ť‚ĚŽü•Óv
“ú’ö 2012”N4ŒŽ9“ú(ŒŽ) ? 4ŒŽ11“ú(…)
‰ďę‹ž“s‘ĺŠw—ŠwŒ¤‹†‰Č”Šw‹łŽş —Šw•”‚R†ŠŮ‚P‚P‚O‹łŽşi‚Ü‚˝‚Í‚P‚O‚W‹łŽşj
ŽĺĂŽŇEJŒű—˛Ei_ŒË‘ĺjCç“c‰ë—˛i‹ž“s‘ĺjCŽOŽ}—mˆęi‹ăB‘ĺjCˆÉ“Ą“NŽji‹ž“s‘ĺj
•ńW î•ń‚Ěƒy[ƒW
–źĚŠâŕV—˜_ƒE[ƒNƒVƒ‡Ebƒv2012
“ú’ö 2012”N4ŒŽ3“ú(‰Î) ? 4ŒŽ6“ú(‹ŕ)
‰ďę‘ĺă‘ĺŠw—ŠwŒ¤‹†‰ČB“505†Žş
ŽĺĂŽŇ—Ž‡—(‘ĺă‘ĺŠw)
•ńW î•ń‚Ěƒy[ƒW

2011”N“xŠJĂ‚ĚƒVƒ“ƒ|ƒWƒEƒ€î•ńiŠJĂ“ú’ö‡CĄ”N“x‚ć‚č’x‚˘‚ŕ‚Ě‚Şă‚É—ˆ‚é‚悤‚É•Ŕ‚ׂ܂ľ‚˝j
–źĚ2012 ‘ˆî“cŽ”˜_Œ¤‹†W‰ď
“ú’ö 2012”N3ŒŽ19“ú(ŒŽ) ? 3ŒŽ21“ú(…)
‰ďę‘ˆî“c‘ĺŠw ź‘ˆî“cELƒƒƒ“ƒpƒX i‹ŒE‘ĺ‹v•ŰƒLƒƒƒ“ƒpƒXj 55 †ŠŮ N “ 1 ŠK ‘ć 2 ‰ď‹cŽş
ŽĺEÎҏŹźŒ[ˆę i‘ˆî“c‘ĺŠwjC‹´–{Šěˆę˜N i‘ˆî“c‘ĺŠwjCâ“c—T i‘ˆî“c‘ĺŠw‚“™Šw‰@j
EńW ěŹ—\’č î•ń‚Ěƒy[ƒW
–źĚL-functions of automorphic forms and related problems
“ú’ö 2012”N3ŒŽ10“ú(“y) ? 3ŒŽ13“ú(‰Î)
‰ďę“Œ‹ž‘ĺŠw”—‰ČŠwŒ¤‹†‰ČE‘ĺu‹`Žş
ŽĺĂŽŇD“cFK(“Œ‹ž‘ĺŠw)CNikolai Proskurin (Steklov Inst, St. Perersburg), —é–ؐłr(“Œ‹ž‘ĺŠw)
•ńW –˘’č î•ń‚Ěƒy[ƒW
–źĚRIMSŒ¤‹†W‰ďu—LŒŔŒQ‚Ć‚ť‚Ě•\ŒťA’¸“_ě—p‘f‘㐔A‘g‡‚š˜_‚ĚŒ¤‹†v
“ú’ö 2012”N3ŒŽ5“ú(ŒŽ) ? 3ŒŽ7“ú(…)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š420u‹`Žş
ŽĺĂŽŇŹ“c•śm(ŽRŒ`‘ĺŠw—Šw•”)
•ńW ě‚é—\’č î•ń‚Ěƒy[ƒW
–źĚ—LŒŔ‘Ě‚Ć‚ťEę‚ÉŠÖ˜A‚ˇ‚é‘㐔“I‘g‡‚š˜_
“ú’ö 2012”N3ŒŽ3“ú(“y) ? 4“ú(“ú)
‰ďę_ŒËŠw‰@‘ĺŠwƒ|[ƒgƒAƒCƒ‰ƒ“ƒhƒLƒƒƒ“ƒpƒX
ŽĺĂŽŇ@­şOEi“Œ–k‘ĺjCś“c‘ě–çi_ŒËŠw‰@‘ĺj
•ńW ‚Č‚ľ
–źĚ‘ć17‰ń‘㐔ŠwŽáŽčŒ¤‹†EE/TD>
“ú’ö 2012”N3ŒŽ3“ú(“y) ? 3ŒŽ5“ú(ŒŽ)
‰ďęĂ‰Ş‘ĺŠw@Ă‰ŞƒLƒƒƒ“ƒpƒX@—Šw•”C“309
ŽĺĂŽŇăŽRŒ’‘ž@(Ă‰Ş‘ĺŠw)A–Ř‘ş^‹|@(Ă‰Ş‘ĺŠw)Aź–{Ep‘é@(Ă‰Ş‘ĺŠw)A–Ř‘şˆÇŽq@(Ă‰Ş‘ĺŠw)
•ńW —LiHP‚É‚ÄŒöŠJjî•ń‚Ěƒy[ƒW
–źĚ‘ć4‰ń‘㐔ŠwŽáŽč‰ďƒZƒ~ƒi[
“ú’ö 2012”N3ŒŽ2“ú(‹ŕ)
‰ďęĂ‰Ş‘ĺŠw@Ă‰ŞƒLƒƒƒ“ƒpƒX@—Šw•”C“309
ŽĺĂŽŇăŽRŒ’‘ž@(Ă‰Ş‘ĺŠw)A–Ř‘ş^‹|@(Ă‰Ş‘ĺŠw)Aź–{‰p‘é@(Ă‰Ş‘ĺŠw)A–Ř‘şˆÇŽq@(Ă‰Ş‘ĺŠw)
•ńW –ł Eűąń‚Ěƒy[ƒW
–źĚ‘ć9‰ńƒAƒtƒBE“‘㐔Šô‰˝ŠwŒ¤‹†W‰ď
“ú’ö2012”N3ŒŽ1“ú(–Ř) ? 3ŒŽ4“ú(“ú)
‰ďęŠÖźŠw‰@‘ĺŠw‘ĺă”~“cƒLƒƒƒ“ƒpƒX
ŽĺĂŽŇŠÝ–{’ (é‹Ę‘ĺŠw), Ź“‡G—Y (VŠƒ‘ĺŠw), •“c–Î (Žń“s‘ĺŠw“Œ‹ž)
•ńW–ł‚ľ î•ń‚Ěƒy[ƒW
–źĚ‹ăB‘㐔EIŽ”˜_ 2012 (KANT 2012)
“ú’ö 2012”N2ŒŽ21“ú(‰Î) ? 2ŒŽ23“ú(–Ř)
‰ďę‹ăB‘ĺŠwiˆÉ“sƒLƒƒƒ“ƒpƒXj”—ŠwŒ¤‹†‹łˆç“ Źu‹`Žş2
ŽĺĂŽŇ‚‘q—T(‹ăEB‘ĺŠw)C‰ĄŽRrˆę(‹ăB‘ĺŠw)CŽOŽÄ‘P”Í(‹ăB‘ĺŠw)C‚“c‰č–Ą(‹ăB‘ĺŠw)
•ńWî•ń‚Ěƒy[ƒW
–źĚRIMSŒ¤‹†W‰ďu‘㐔Œn‚¨‚ć‚ŃŒvŽZ‹@‰ČŠwŠî‘bv
“ú’ö 2012”N2ŒŽ20“ú(ŒŽ) ? 2ŒŽ22“ú(…)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š420Eu‹`Žş
ŽĺĂŽŇŽR‘ş–žO(H“c‘ĺŠwHŠwŽ‘ŒšŠwŒ¤‹†‰Č)
•ńW -
–źĚ—LŒŔŒQ‚Ć’¸“_ě—p‘f‘㐔
“ú’ö 2012”N2ŒŽ17“ú(‹ŕ) ? 18“ú(“y)
‰ďę“Œ‹ž—Žq‘ĺŠw
ŽĺĂŽŇ–k‹lłŒ°iç—t‘ĺjC“c•ÓŒ°ˆę˜Ni–kŠC“š‘ĺjCŽR“ŕ”Ži“Œ‹ž—Žq‘ĺj
•ńW ‚Č‚ľ
–źĚ‘ć‚T‰ńƒ[[ƒ^ŽáŽčŒ¤‹†W‰ď
“ú’ö 2012”N2ŒŽ10“ú(‹ŕ) ? 2ŒŽ12“ú(“ú)
‰ďę–źŒĂ‰Ž‘ĺŠwi“ŒŽRƒLƒƒƒ“ƒpƒXj—Šw‚P†ŠŮi‘˝Œł”—‰ČŠw“Ej‚S‚O‚XŽş
ŽĺĂŽŇ˛X–Ř‘žˆę(–źŒĂ‰Ž‘ĺŠw)CŽá‹ˇ‘¸—T(–źŒĂ‰Ž‘ĺŠw)C Â–ŘŒő”Ž(–źŒĂ‰Ž‘ĺŠw)C
‚‹´—Sl(–źŒĂ‰Ž‘ĺŠw)C‰–ŒŠ‘ĺ•ă(–źŒĂ‰Ž‘ĺŠw)CŽsŒ´—R”üŽq(“Ţ—Ç—Žq‘ĺŠw)
•ńW î•ń‚Ěƒy[ƒW
–źĚArithmetic and Algebraic Geometry 2012
“ú’ö 2012”N2ŒŽ15“ú(…) ? 2ŒŽ18“ú(“y)
‰ďę“Œ‹ž‘ĺŠw‘ĺŠw‰@”—‰ČŠwŒ¤‹†‰Č‘ĺu‹`Žş
ŽĺĂŽŇG. van der Geer (Univ. Amsterdam), Œj—˜si–@­‘ĺ—Hj, Ž›ž[—FGi“Œ‘吔—j
•ńW –ł î•ń‚Ěƒy[ƒW
–źĚ‘ć5‰ń‘˝dƒ[[ƒ^Œ¤‹†W‰ď
“ú’ö 2012”N1ŒŽ27“ú(‹ŕ) ? 1ŒŽ29“ú(“ú)
‰ďę‹ăB‘ĺŠwiˆÉ“sƒLƒƒƒ“ƒpƒXj”—ŠwŒ¤‹†‹łE瓁EŹu‹`Žş2
ŽĺĂŽŇĄ•yk‘ž˜Y(‹ăB‘ĺŠw)C“câ_EE‹ăB‘ĺŠw)CŽá—Ń“żŽq(EăBŽY‹Ć‘ĺŠw)
•ńWěŹ—\’č î•ń‚Ěƒy[ƒW
–źĚWorkshop on p-adic arithmetic geometry and motives
“ú’ö 2012”N1ŒŽ23“ú(ŒŽ) ? 1ŒŽ25“ú(…)
‰ďę“Œ–k‘ĺŠw‘ĺŠw‰@—ŠwŒ¤‹†‰Č ěˆäƒz[ƒ‹
ŽĺĂEғs’z’¨•v(“ŒEk‘ĺŠw)CŽRč—˛—Y(“Œ–k‘ĺŠw)
•ńWî•ń‚Ěƒy[ƒW
–źĚRIMSŒ¤‹†W‰ďu•ŰŒ^Œ`ŽŽ‚Ć•ŰŒ^“I L”Ÿ”‚ĚŒ¤‹†v
“ú’ö 2012”N1ŒŽ16“ú(ŒŽ) ? 1ŒŽ20“ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š420u‹`Žş
ŽĺĂŽŇXŽR’m‘Ľ(‘ĺă‘ĺŠw—ŠwŒ¤‹†‰Č)
•ńWě‚é—\’č î•ń‚Ěƒy[ƒW
–źĚ‘ćŽO‰ń East Asia Number Theory Conference
“ú’ö 2012”N1ŒŽ16“ú(ŒŽ) ? 1ŒŽ19“ú(–Ř)
‰ďęNational Taiwan University
EĺĂŽŇSunghan Bae (KAIST), Yuichiro Taguchi (Kyushu U), Lingsheng Yin (Tsinghua U),
Liang-Chung Hsia (NCU), Jing Yu (NTU)
•ńWî•ń‚Ěƒy[ƒW
–źĚDiophantine Analysis and Related Fields 2012
“ú’ö 2012”N1ŒŽ9“ú(ŒŽ) ? 1ŒŽ10“ú(‰Î)
‰ďęVŠƒ‘ĺŠw‰w“ěiƒTƒeƒ‰ƒCƒgjƒLƒƒƒ“ƒpƒXu‚Ć‚Ť‚ß‚˘‚Ɓv
ŽĺĂŽŇHŽR–ÎŽ÷(VŠƒ‘ĺŠw)C“V‰H‰ëş(ŒQ”n‘ĺŠw)CŒj“cš‹I(Œcœä‘ĺŠw)C‰Şč—´‘ž˜Y(“ŻŽuŽĐ‘ĺŠw)
•ńWî•ń‚́Ey[ƒW
–źĚEk—¤”˜_Œ¤EEW‰ď
“ú’ö2011”N12ŒŽ25“ú(“ú) ? 26“ú(ŒŽ)
‰ďę‹ŕ‘ň‘ĺŠwƒTƒeƒ‰ƒCƒgƒvƒ‰ƒU
ŽĺĂŽŇ •˝—ŃŠ˛l(‹ŕ‘ňH‹Ć‘ĺ)C–ě‘ş–žl(‹ŕ‘ň‘ĺ)CŽR‰ş_(‹ŕ‘ň‘ĺ)C–Ř‘şŠŢ(•xŽR‘ĺ)
•ńWEEé—\’č(˜A—ćF–ě‘ş–žl)
–źĚAutomorphisms of algebraic varieties -- Dynamics and Arithmetic
“ú’ö 2011”N12ŒŽ19“ú(ŒŽ) ? 12ŒŽ23“ú(‹ŕ)
‰ďęHotel and Resort Laforet Nanki-Shirahama, ˜a‰ĚŽRŒ§”’•l’Ź
ŽĺĂŽŇěŒűŽü(‘ĺă‘ĺ)C‹ŕ“ş˝”V(–źŒĂ‰Ž‘ĺ)Cˇ“cŒ’•F(‘ĺă‘ĺ)C Ź–Ř‘]Œ[ŽŚ(‘ĺă‘ĺ)
•ńWî•ń‚Ěƒy[ƒW
–źĚRIMSŒ¤‹†W‰ďu“Ć—§Ť‚Ə]‘ŽŤ‚̐”—F ‘㐔‚ĆŠm—Ś‚̏o‰ď‚˘v
“ú’ö 2011”N12ŒŽ19“ú(ŒŽ) ? 12ŒŽ21“ú(…)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š111u‹`Žş
ŽĺĂŽŇ‘ş–؏Ž•ś(ŠâŽčŒ§—§‘ĺŠw‘‡­ôŠw•”)
•ńW -
–źĚInternational Workshop on motives in Tokyo, 2011
“ú’ö 2011”N12ŒŽ12“ú(ŒŽ) ? 12ŒŽ16“ú(‹ŕ)
‰ďę“Œ‹ž‘ĺŠw‘ĺŠw‰@”—‰ČŠwŒ¤‹†‰Č
ŽĺĂŽŇƒKƒCƒT[ ƒg[ƒ}ƒX (–źŒĂ‰Ž‘ĺŠw), Ž›ž[—FG (“Œ‹ž‘ĺŠw), Ö“ĄGŽi (“Œ‹žH‹Ć‘ĺŠw)
•ńW –ł‚ľ î•ń‚Ěƒy[ƒW
–źĚ‘ć9‰ń‘ăE”‹Čü˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö 2011”N12ŒŽ10“ú(“y) ? 12ŒŽ11“ú(“ú)
‰ďęŽń“s‘ĺŠw“Œ‹ži‰ďę–˘’čj
ŽĺĂŽŇ“ż‰i_—Y(Žń“s‘ĺŠw“Œ‹ž)C •Ä“c“ń—Ç(_“ސěH‰Č‘ĺŠw)C‘ĺŸş˜N(“żEßĺŠw)
•ńWî•ń‚Ěƒy[ƒW
–źĚ‘㐔Šô‰˝ƒ[ƒNƒVƒ‡ƒbƒv
“ú’ö 2011”N12ŒŽ7“ú(…) ? 12ŒŽ8“ú(–Ř)
‰ďę“Œ‹ž‘ĺŠw‘ĺŠw‰@”—‰ČŠwŒ¤‹†‰Č002†Žş
ŽĺĂŽŇŒj—˜si–@­E嗝HEj, ě–”—Y“ń˜Yi“Œ‘吔—j
•ńW –ł î•ń‚Ěƒy[ƒW
–źĚRIMSŒ¤‹†W‰ďu‘㐔“IŽ”˜_‚Ć‚ť‚ĚŽü•Óv
“ú’ö 2011”N11ŒŽ28“ú(ŒŽ) ? 12ŒŽ2“ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š420u‹`Žş
ŽĺĂŽŇz–K‹IK(’†‰›‘ĺŠw—HŠw•”)
•ńWî•ń‚Ěƒy[ƒW
–źĚ“úŠŘŽ”˜_ƒZƒ~ƒi[2011
“ú’ö2011”N11ŒŽ9“ú(…) ? 12“ú(“y)
‰ďę–źŒĂ‰Ž‘ĺŠw–ěˆË‹L”OŠwpŒđ—ŹŠŮ
ŽĺĂŽŇ…EV–ő(–źH‘ĺ)CKim, Chang Heon (Hanyang University) ‘ź
•ńW–ł‚Ě—\’č@î•ń‚Ěƒy[ƒW
–źĚ‘ć‚R‚R‰ń‰ÂŠˇŠÂ˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö 2011”N11ŒŽ7“ú(ŒŽ) ? 11ŒŽ10“ú(–Ř)
‰ďęƒJƒŠƒAƒbƒNi•lźŽsj
ŽĺĂŽŇ‹´–{Œő–őC‹g“cŒ’ˆę(–ź‘ĺ‘˝Œł”—)
•ńW—Li—\’čjî•ń‚Ěƒy[ƒW
–źĚ‘ć9‰ńu‘㐔ŠwEƌvŽZvŒ¤‹†W‰ď (AC2011)
“ú’ö 2011”N11ŒŽ7“ú(ŒŽ) ? 11ŒŽ9“ú(…)
‰ďęŽń“s‘ĺŠw“Œ‹ž ‘ŰŒđ—Ź‰ďŠŮ
ŽĺĂŽŇ’†‘şŒ›(Žń“s‘ĺŠw“Œ‹ž)C˜eŽŽu(ŽRŒ`‘ĺŠw)C’Ă‘ş”Ž•ś(Žń“s‘ĺŠw“Œ‹ž)C“ŕERŹŒ›(Žń“s‘ĺŠw“Œ‹ž)
•ńW “dŽqo”Ĺ—\’č
–źĚŽË‰e‘˝—l‘Ě‚ĚŠô‰˝‚Ć‚ť‚ĚŽü•Ó2011
“ú’ö 2011”N11ŒŽ3“ú(–؁Ej) ? 11ŒŽ5“ú(“y)
‰ďę‚’m‘ĺŠw
ŽĺĂŽŇ•ŸŠÔŒc–ži‚’m‘ĺŠwjCŹ“‡G—YiVŠƒ‘ĺŠwj
•ńW —L
–źĚEE4‰ńŽ”˜_ƒI[ƒ^ƒ€ƒ[ƒNƒVƒ‡ƒbƒvuŠČ–ń—˜_‚Ć‚ť‚̉ž—pv
“ú’ö2011”N10ŒŽ31“ú(ŒŽ) ? 11ŒŽ5“ú(EEy)
‰ďę”’”nƒnƒCƒ}ƒEƒ“ƒgƒzƒeƒ‹
ŽĺĂŽŇˆÉŽR’m‹`C“n•”—˛•v(‘ĺă‘ĺŠw)
•ńW–˘’č
–źĚRIMSŒ¤‹†W‰ďu‰đÍ”˜_--”˜_“IŠÖ”‚Ě‘˝dŤ‚ÉŠÖ˜A‚ľ‚āv
“ú’ö 2011”N10ŒŽ31“ú(ŒŽ) ? 11ŒŽ2“ú(…)
‰ďę‹ž“sEĺŠw”—‰đÍŒ¤‹†Š420u‹`Žş
ŽĺĂŽŇ–ě“cH(“ú–{‘ĺŠwHŠw•”)
•ńW”—‰đÍŒ¤‹†Šu‹†˜^‚Ć‚ľ‚ďo”Ĺ—\’č
–źĚ‘㐔Šô‰˝ŠwéčƒVƒ“ƒ|EWƒEƒ€
“ú’ö 2011”N10ŒŽ25“ú(‰Î) ? 10ŒŽ28“ú(‹ŕ)
‰ďę•şŒÉŒ§—§éč‘ĺ‰ď‹cŠŮ
ŽĺĂŽŇ“ü’JŠ°i‹ž‘ĺ—j, ěŒűŽüiă‘ĺ—j, ’†‰ŞGsiŽ­Ž™“‡‘ĺ—j
•ńW —Li’†‰ŞGsj
–źĚRIMSŒ¤‹†W‰ďu‘g‡‚š˜_“I•\Œť˜_‚ĚŠg‚Ş‚čv
“ú’ö 2011”N10EE1“ú(‰Î) ? 10ŒŽ14“ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š420u‹`Žş
ŽĺĂŽŇâ–{—ć•ô(“Œ‹ž—‰Č‘ĺŠw—Šw•”)
•ńW -
–źĚ‘ć44‰ńŠÂ˜_‚¨‚ć‚Ń•\Œť˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö2011”N9EE5“ú(EE ? 9ŒŽ27“ú(‰Î)
‰ďę‰ŞŽR‘ĺŠw—Šw•”‚P†ŠŮ‚Q‚PE‚Q‚QE‚Q‚S”Ô‹łŽş
ŽĺĂŽŇˆÉŽRC(–źŒĂ‰Ž‘ĺEw)C”ň“c–ž•F(é‹Ę‘ĺŠw)C’r”¨Gˆę(‰ŞŽR‘ĺŠw)
•ńW”­s‚ˇ‚é î•ń‚Ěƒy[ƒW
–źĚ‘㐔Šô‰˝Šwƒ[ƒNƒVƒ‡ƒbƒv 2011
“ú’ö 2011”N9ŒŽ7“ú(…) ? 9ŒŽ9“ú(‹ŕ)
‰ďę–@­‘ĺŠwŹ‹ŕˆäƒLƒƒƒ“ƒpƒXźŠŮ‚RŠKî•ń‰ČŠw•”311†Žş
ŽĺĂŽŇŒj—˜si–@­‘ĺ—Hj
•ńW –ł î•ń‚Ěƒy[ƒW
–źĚ‘ć19‰ńŽ”˜_ƒTƒ}[ƒXƒN[ƒ‹u•ŰŒ^Œ`ŽŽ‚ĚƒŠƒtƒeƒBƒ“ƒOv
“ú’ö2011”N9ŒŽ5“ú(ŒŽ) ? 9ŒŽ9“ú(‹ŕ)
‰ďę•xŽm” Şƒ‰ƒ“ƒhEEƒXƒR[ƒŒƒvƒ‰ƒUƒzƒeƒ‹
ŽĺĂŽŇŒRŽiŒ\ˆę(ç—tH‹Ć‘ĺŠw)CŹ“cGH(ŒF–{‘ĺŠw)
•ńWě‚é—\’č î•ń‚́Ey[ƒW
–źĚ‘ć8EńƒAƒtƒBƒ“‘㐔Šô‰˝ŠwŒ¤‹†W‰ď
“ú’ö2011”N9ŒŽ1“ú(–Ř) ? 9ŒŽ4“ú(“ú)
‰ďęŠÖźŠw‰@‘ĺŠw‘ĺă”~“cƒLƒƒƒ“ƒpƒX
ŽĺĂŽŇŹ–ě“cMt (•Ÿˆä‘ĺŠw),@•“c–Î (Žń“s‘ĺŠw“Œ‹ž), ŠÝ–{’ (é‹Ę‘ĺŠw)
•ńW–ł‚ľ î•ń‚Ěƒy[ƒW
–źEĚRIMSŒ¤‹†W‰ďu—LŒŔŒQ‚ĚƒRƒzƒ‚ƒƒW[˜_‚Ć‚ť‚ĚŽü•Óv
“ú’ö 2011”N8ŒŽ29“ú(ŒŽ) ? 9ŒŽ2“ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š420u‹`Žş
ŽĺĂŽŇ˛X–Ř—mé(MB‘ĺŠw‘SŠw‹łˆç‹@\)
•ńWî•ń‚Ěƒy[ƒW
–źĚProgress in Computer Algebra Systems (PCAS'11)
“ú’ö 2011”N8ŒŽ29“ú(ŒŽ) ? 8ŒŽ31“ú(…)
‰ďę‹ăB‘ĺŠw(ˆÉ“sƒLƒƒƒ“ƒpƒX)
ŽĺĂŽŇ‰ĄŽRrˆę(‹ăB‘ĺŠw)
•ńWě‚é—\’čî•ń‚Ěƒy[ƒW
–źĚ‘ć6‰ń•Ÿ‰Ş”˜_Œ¤‹†W‰ď
“ú’ö2011”N8ŒŽ23“ú(‰Î) ? 8ŒŽ25“ú(–Ř)
‰ďę‹ăB‘ĺŠw(ˆÉ“sƒLƒƒƒ“ƒpƒX)
ŽĺĂŽŇ‹ŕŽqšM(‹ăB‘ĺŠw), Œ ”J˜D(‹ăB‘ĺŠw), EݍNO(ˆ¤’m‹łˆç‘ĺŠw)
•ńWě‚é—\’č
–źĚHyperplane arrangements and applications
“ú’ö 2011”N8ŒŽ8“ú(ŒŽ) ? 8ŒŽ12“ú(‹ŕ)
‰ďęUniversity of British Columbia (Vancouver, Canada)
ŽĺĂŽŇˆ˘•”‘ń˜Y (‹ž“s), Michael Falk (Northern Arizona), Max Wakefield (US Naval Academy)
‹g‰ił•F (‹ž“s), Sergey Yuzvinsky (Oregon)
•ńW–˘’č î•ń‚Ěƒy[ƒW
–źĚ‘ć‚P‚O‰ńL“‡ĺ‘䐎”˜_W‰ď
“ú’ö 2011”N7ŒŽ19“ú(‰Î) ? 7ŒŽ22“ú(‹ŕ)
‰ďęL“‡‘ĺŠw—Šw•” (“ŒL“‡ƒLƒƒƒ“ƒpƒX)
ŽĺĂŽŇ•˝”V“ŕr˜Y (L“‡‘ĺŠw)Cź–{EÁ (“Œ‹ž‘ĺŠw)CE‚‹´_Ž÷ (L“‡‘ĺŠw)
“s’z’¨•v (“Œ–k‘ĺŠw)Cá]–ž•F (“Œ–k‘ĺŠw)
•ńW–ł î•ń‚Ěƒy[ƒW
–źĚ‘㐔Šô‰˝ŠwƒTƒ}[ƒXƒN[ƒ‹2011
“ú’ö 2011”N7ŒŽ6“ú(…) ? 7ŒŽ10“ú(“ú)
‰ďę“ŒEž‘ĺŠw‹ĘŒ´‘ŰƒZƒ~ƒi[ƒnƒEƒX
ŽĺĂŽŇě–”—Y“ń˜Yi“Œ‘ĺjCŹ—ѐł“TiŽńEs‘ĺjC‚ŽR–ΐ°i“Œ‘ĺjC—é–؍Di‰Ą‘‘ĺjCâV“Ą ‰Ä—YiL“‡Žs‘ĺj
•ńWî•ń‚Ěƒy[ƒW
–źĚWorkshop on the arithmetic geometry of Shimura varieties and Rapoport-Zink spaces
“ú’ö 2011”N7ŒŽ4“ú(ŒŽ) ? 7ŒŽ8“ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw—Šw•”‚R†ŠŮ@‚P‚P‚OŽş
ŽĺĂŽŇˆÉ“Ą“NŽj(‹ž‘ĺ—)
•ńWî•ń‚Ěƒy[ƒW
–źĚRIMSŒ¤‹†W‰ďu‹ÉŹƒ‚ƒfƒ‹‚Ć’[ŽËüiProject Research 2011jŁ
“ú’ö 2011”N6ŒŽ20“ú(ŒŽ) ? 6ŒŽ24“ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š420u‹`Žş
ŽĺĂŽŇŒüˆä–Î(‹ž“s‘ĺŠw‘ĺŠw”—‰đÍŒ¤‹†EE
•ńW -
–źĚ‘ć28‰ń‘㐔“I‘g‡‚š˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö 2011”N6ŒŽ20“ú(ŒŽ) ? 6ŒŽ22“ú(…)
‰ďę‘ĺ•Ş‘ĺŠwEVBLƒZƒ~ƒi[Žş
ŽĺĂŽŇHŽRŒŁ”V(•Ÿ‰Ş‘ĺŠw)C––’|ç”Ž(‘ĺ•Ş‘ĺŠw)C“c’†ł‹I(’é‘ĺŠw)
•ńW‚ ‚č î•ń‚Ěƒy[ƒW
–źĚRIMSŒ¤‹†W‰ďu‘㐔Šô‰˝Šw‚ĚŠwZ---‹ÉŹƒ‚ƒfƒ‹‚Ć’[ŽËüiProject Research 2011jŁ
Eú’E/TD> 2011”N6ŒŽ13“ú(ŒŽ) ? 6ŒŽ17“ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š420u‹`Žş
ŽĺĂŽŇ“Ą–ěC(‹ž“s‘ĺŠw—ŠwŒ¤‹†‰Č)
•ńW -
–źĚ‘㐔Šô‰˝ŠwƒVƒ“ƒ|ƒWƒEƒ€[˛“n[
“ú’ö 2011”N6ŒŽ2“ú(–Ř) ? 6ŒŽ5“ú(“ú)
‰ďę˛“n“‡ŠJ”­‘‡ƒZƒ“ƒ^[
ŽĺĂŽŇ‹gŒ´‹v•viVŠƒ‘ĺj, Ź“‡G—YiVŠƒ‘ĺj
•ńW –ł î•ń‚Ěƒy[ƒW
EźĚ‘ć14‰ń@‘㐔ŒQ‚Ć—ĘŽqŒQ‚Ě•\Œť˜_
“ú’ö2011”N6ŒŽ2“ú(–Ř) ? 6ŒŽ5“ú(“ú)
‰ďę‘–ŻEhŽÉ@Ź“¤“‡
ŽĺĂŽŇ’r“cŠx(‰ŞŽR—‰Č‘ĺ)C—é–Ř•Žj(‰ŞŽR‘ĺ)
•ńW î•ń‚Ěƒy[ƒW
–źĚ‹ĘE´”˜_Šô‰˝Œ¤‹†W‰ď
“ú’ö 2011”N5ŒŽ30“ú(ŒŽ) ? 6ŒŽ2“ú(–Ř)
‰ďę“Œ‹ž‘ĺŠw‹ĘŒ´‘ŰƒZƒ~ƒi[ƒnƒEƒX
EĺĂŽŇÖ“Ą‹B(“Œ‹ž‘ĺŠw)
•ńW‚Č‚ľ î•ń‚Ěƒy[ƒW
–źĚ”˜_—Ť‚̏W‚Ü‚č
“ú’ö2011”N5ŒŽ28“ú(“y)
‰ďę‘ˆî“c‘ĺŠw 14 †ŠŮ 717AB
ŽĺĂŽŇL’†—R”üŽq (‘ˆî“c‘ĺŠw), ‘ž“c (’Ă“cm‘ĺŠw), ŽsŒ´—R”üŽq (“Ţ—Ç—Žq‘ĺŠw)C ě“ŕáÁ—R”ü (Žń“s‘ĺŠw“Œ‹ž)
•ńW î•ń‚Ěƒy[ƒW
–źĚWorkshop on L-Functions
“ú’ö 2011”N4ŒŽ21“ú(–Ř) ? 4ŒŽ23“ú(“y)
‰ďę‹ăB‘ĺŠw”—ŠwŒ¤‹†‰@iˆÉ“sƒLƒƒƒ“ƒpƒXj
ŽĺĂŽŇLin WENG (‰Ľ@—Ń) (‹ăB‘ĺŠw)
•ńWî•ń‚Ěƒy[ƒW
–źĚ“ą—ˆ‘㐔Šô‰˝•×‹­‰ď - SGAD2011
“ú’ö 2011”N4ŒŽ11“ú(ŒŽ) ? 4ŒŽ15“ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š‘ĺu‹`Žş
ŽĺĂŽŇ•˝”V“ŕr˜Y(EL“‡‘ĺŠw)
•ńWî•ń‚Ěƒy[ƒW
–źĚŠâŕV—˜_ƒ~ƒjŒ¤‹†W‰ď
“ú’ö 2011”N4ŒŽ8“ú(‹ŕ) ? 4ŒŽ10“ú(“ú)
‰ďę‹ž“s‘ĺŠw—ŠwŒ¤‹†‰Č3†ŠŮ108‹łŽş
ŽĺĂŽŇç“c‰ë—˛(‹ž“s‘ĺŠw)
•ńWî•ń‚Ěƒy[ƒW


2010 ”N“x‚ɍs‚í‚ę‚˝ƒVƒ“ƒ|ƒWƒEƒ€‚̏î•ńiŠJĂ“ú’ö‡j
–źĚŠâŕV—˜_ƒ~ƒjŒ¤‹†W‰ď
“ú’ö 2010”N4ŒŽ3“ú(“y) ? 4ŒŽ5“ú(ŒŽ)
‰ďę‹ž“s‘ĺŠw—ŠwŒ¤‹†‰Č”Šw‹łŽş@—Šw•”3†ŠŮ108‹łŽş
ŽĺĂŽŇˆÉ“Ą“NŽj(‹ž‘ĺ—)
•ńEW–ł
–źĚˆĂ†—˜_‚ĚˆŔ‘SŤ‚đŽx‚Ś‚鐔˜_ƒAƒ‹ƒSƒŠƒYƒ€‚Ć‚ť‚̉ž—p
“ú’ö2010EEN6ŒŽ11“ú(‹ŕ)
‰ďę‹ăB‘ĺŠw EɓsƒLƒƒƒ“ƒpƒX ”—ŠwŒ¤‹†‹łˆç“B1 ‘ĺ‰ď‹cŽş111
EĺĂŽŇƒOƒ[ƒoƒ‹COEƒvƒƒOƒ‰ƒ€ ƒ}ƒXEƒtƒHƒAEƒCƒ“ƒ_ƒXƒgƒŠŽĺĂ
‹ăBEĺŠw ”—Šw•{”—ŠwęUCƒVƒXƒeƒ€î•ń‰ČEw•{î•ńHŠwęU
•ńW
–źĚ‘ć11‰ń€Œ‹ť‘Ű‰ď‹c
“ú’ö2010”N6ŒŽ12“ú(“y) ? 18“ú(‹ŕ)
‰ďęConference hall, Sapporo campus of the Hokkaido University
ŽĺĂŽŇY. Ishii (Chuo Univ.) T. Ishimasa (Hokkaido Univ.)
•ńWa special issue of Philosophical Magazine
–źĚ‘ć27‰ń‘㐔“I‘g‡‚š˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö2010”N6ŒŽ21“ú(ŒŽ) ? 23“ú(…)
‰ďę‚’m‘ĺŠwEE’Š‘qƒLƒƒƒ“ƒpƒX
ŽĺĂŽŇ‘ĺ‰YŠw(‚’m‘ĺ)
•ńW—L    î•ń‚Ěƒy[ƒW
–źĚ€ŽüŠú’˜‚̐”—
“ú’ö2010”N6ŒŽ21“ú(ŒŽ) ? 23“ú(…)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤C111†Žş
ŽĺĂŽŇŹź˜aŽu(‚’mEECHŽR–ÎŽ÷(VŠƒ‘ĺ)
•ńW
–źĚArithmetic geometry and p-adic differential equations
“ú’ö2010”N7ŒŽ1“ú(–Ř) ? 7ŒŽ3“ú(“y)
‰ďę“Œ–k‘ĺŠw‘ĺŠw‰@—ŠwŒ¤‹†‰Čěˆäƒz[ƒ‹
ŽĺĂŽŇ“s’z’¨•v(“Œ–k‘ĺŠw)
•ńEWƒvƒƒOƒ‰ƒ€
–źĚ‘ć9‰ńĺ‘äL“‡Ž”˜_W‰ď
“ú’ö2010”N7ŒŽ20“ú(‰Î) ? 7ŒŽ23“ú(‹ŕ)
‰ďę“Œ–k‘ĺŠw‘ĺŠw‰@—ŠwŒ¤‹†‰Čěˆäƒz[ƒ‹
ŽĺĂŽŇ•˝”V“ŕr˜Y(L“‡‘ĺŠw), ź–{áÁ(“Œ‹ž‘ĺŠw), ‚‹´_Ž÷(L“‡‘ĺŠw)
“s’z’¨•v(“ŒEk‘ĺŠw), á]–ž•F(“Œ–k‘ĺŠw)
•ńW–ł
–źĚ‘㐔Šô‰˝ŠwƒTƒ}[ƒXƒN[ƒ‹2010
“ú’ö 2010”N8ŒŽ2“ú(ŒŽ) ? 8ŒŽ6“ú(‹ŕ)
‰ďę“Œ‹ž‘ĺŠw‹ĘŒ´‘ŰƒZƒ~ƒi[ƒnƒEƒX
ŽĺĂŽŇě–”—Y“ń˜Yi“Œ‘ĺjCŹ–Ř‘\Œ[EŚiă‘ĺjCŹ—ѐł“TiŽń“s‘ĺjC—é–؍Di‰ĄE‘‘ĺjCâV“Ą ‰Ä—YiL“‡Žs‘ĺj
•ńWî•ń‚Ěƒy[ƒW
–źĚRepresentation Theory of Algebraic Groups and Quantum Groups, '10
“ú’ö2010”N8ŒŽ2“ú(ŒŽ) ? 8ŒŽ6“ú(‹ŕ)
‰ďę–źŒĂ‰Ž‘ĺŠw‘ĺŠw‰@‘˝Œł”—‰ČŠwŒ¤‹†‰Č
ŽĺĂŽŇŻŽi r–ž(–źŒĂ‰Ž‘ĺŠw)C—L–ؐi(‘ĺă‘ĺŠw)C ’†“‡Œ[(‹ž“s‘ĺŠw)
âV“Ą‹`‹v(“Œ‹ž‘ĺŠw)C⪓cŒ’ˆę(ă’q‘ĺŠw)C’Jčr”V(‘ĺăŽsE§‘ĺŠw)
•ńWěŹ—\’č    î•ń‚Ěƒy[ƒW
–źĚ‘ć55‰ń‘㐔ŠwƒVƒ“E|ƒWƒEƒ€
“ú’ö2010”N8ŒŽ9“ú(ŒŽ) ? 8ŒŽ12EE–Ř)
‰ďę–kŠC“š‘ĺŠwŠwpŒđ—Ź‰ďŠŮ
ŽĺĂEŇ
•ńWEEé—\’č    î•ń‚Ěƒy[ƒW
–źĚ‘ć5‰ń•Ÿ‰Ş”˜_Œ¤‹†W‰ď
“ú’ö2010EN8ŒŽ24“ú(‰Î) ? 8ŒŽ26“ú(–Ř)
‰ďę‹ăB‘ĺŠwiˆÉ“sƒLƒƒƒ“ƒpƒXj
ŽĺĂŽŇ‹ŕŽqšM(‹ăB‘ĺŠw), Œ ”J˜D(‹ăB‘ĺŠw), ŠÝNO(•Ÿ‰Ş‹łˆç‘ĺŠw)
•ńWě‚é—\’č
–źĚ‘ć6‰ńƒAƒtƒBƒ“‘㐔Šô‰˝ŠwŒ¤‹†W‰ď
“ú’ö2010”N9ŒŽ2“ú(–Ř) ? 9ŒŽ5“ú(“ú)
‰ďęŠÖźŠw‰@‘ĺŠw‘ĺă”~“cƒLƒƒƒ“ƒpƒX
ŽĺĂŽŇ ‘“c‰Ŕ‘ă(ŠÖźŠw‰@‘ĺŠw—HŠw•”) ‘ź
EńW–˘’č
–źĚ‘ć18‰ńŽ”˜_ƒTƒ}[ƒXƒN[ƒ‹ (ƒe[ƒ}FƒA[ƒT[EƒZƒ‹ƒo[ƒOŐŒöŽŽ)
“ú’ö2010”N9ŒŽ6“ú(ŒŽ) ? 10“ú(‹ŕ)
‰ďęŽR’†‰ˇň ‰ÍŽ­‘‘EƒCƒ„ƒ‹ƒzƒeƒ‹
ŽĺĂŽŇ•˝‰ęˆč(‹ž“s‘ĺ)CŽá’Α(‹ŕ‘ň‘ĺ)
•ńWě‚é—\’č
–źĚ”˜_ƒAƒ‹ƒSƒŠƒYƒ€‚Ć‚ť‚̉ž—p (JANT)
“ú’ö2010”N9ŒŽ6“ú(ŒŽ)‚Š‚ç9“ú(–Ř)‚Ě‚˘‚¸‚ę‚Š
‰ďę–žŽĄ‘ĺŠwx‰Í‘äƒLƒƒƒ“ƒpƒX
ŽĺĂŽŇ
•ńWî•ń‚Ěƒy[ƒW
–źĚRIMSŒ¤‹†W‰ďu‘˝dƒ[[ƒ^’l‚̏”‘Šv
“ú’ö2010”N9ŒŽ6“ú(ŒŽ) ? 9“ú(–Ř)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š‚S‚Q‚Ou‹`Žş
ŽĺĂŽŇ‘ĺ–ě‘אśi‹ß‹E‘ĺŠw—HŠw•”j
•ńWu‹†˜^Š§s—\’č   î•ń‚Ěƒy[ƒW
–źĚ‘ć43‰ńŠÂ˜_‚¨‚ć‚Ń•\Œť˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö2010”N9ŒŽ10“ú(‹ŕ) ? 12“ú(“ú)
‰ďę––勳ˆç‘ĺŠw
ŽĺĂŽŇŹźO–ži‰ŞŽRŒ§—§‘ĺjC•˝–ěN”Vi––勳ˆç‘ĺjCŠÂ˜_‚¨‚ć‚Ń•\Œť˜_‰^‰cˆĎˆő‰ď
•ńW—LiŹźO–žEj   îEń‚Ěƒy[ƒW
–źĚ‘ć3‰ń ”Šwƒ\ƒtƒgƒEƒFƒA‘ŰŒ¤‹†W‰ď (ICMS 2010)
“ú’ö2010”N9ŒŽ13“ú(ŒŽ) ? 17“ú(‹ŕ)
‰ďę_ŒË‘ĺŠw”Šw‹łŽş
ŽĺĂŽŇ‚ŽRM‹B(_ŒË‘ĺ)
•ńWě‚é—\’č
–źĚThe Second PanAsian Number Theory Conference (PANT-Kyoto 2010)
“ú’ö2010”N9ŒŽ13“ú(ŒŽ) ? 17“ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇ J. Coates (chair) (Cambridge), Y. Choie (Postech), T. Ikeda (Kyoto), K. Kato (Chicago), M. Kim (London)
M. Kurihara (Keio), J. Liu (Shandong), B. C. Ngo (IAS), R. Sujatha (TIFR), Y. Tian (CAS)
•ńWî•ń‚Ěƒy[ƒW
–źĚup-i˛“Ą—˜_‚Ɛ”˜_Šô‰˝v•×‹­‰ď
“ú’ö2010”N9ŒŽ28“ú(‰Î) ? 10ŒŽ1“ú(‹ŕ)
‰ďę“Œ–k‘ĺŠw‘ĺŠw‰@—ŠwŒ¤‹†‰Č”ŠwęU@ěˆäƒz[ƒ‹i”—‰ČŠw‹L”OŠŮj
ŽĺĂŽŇŽRč—˛—Y(“Œ–k‘ĺŠw)
•ńWî•ń‚Ěƒy[ƒW
–źĚ‰đÍ”˜_[•Ą‘fŠÖ”‚Ě’l‚Ě•Ş•z‚ƐŤŽż‚đ’Ę‚ľEÄ
“ú’ö2010”N10ŒŽ4“ú(ŒŽ) ? 8“ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤EEE/TD>
ŽĺĂŽŇ ‰Şč—´‘ž˜Y(“ŻŽuŽĐ‘ĺŠw—HŠw•”)
•ńW”—‰đÍŒ¤‹†Šu‹†˜^‚ƁEľ‚ďo”Ĺ—\’č
–źĚĺ‘䐎”˜_Œ¤‹†WEE/TD>
“ú’ö2010”N10ŒŽ8“ú(EE ? 9“ú(“y)
‰ďę“Œ–k‘ĺŠw‘ĺŠw‰@—ŠwŒ¤‹†‰ČEěˆäƒz[ƒ‹(”—‰ČŠw‹L”OŠŮ)
ŽĺĂŽŇ á]–ž•F(“Œ–k‘ĺŠw)
•ńW–ł    î•ń‚Ěƒy[ƒW
–źĚDevelopment of Galois-Teichmueller Theory and Anabelian Geometry (‘ćŽOEń“ú–{”Šw‰ď‹GŠúŒ¤‹†Š)
“ú’ö2010”N10ŒŽ25“ú(ŒŽ) ? 30“ú(“y)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇ H. Nakamura (Chair, Okayama), F. Pop (Philadelphia), L. Schneps (Paris), A. Tamagawa (Kyoto)
•ńWî•ń‚Ěƒy[ƒW
–źĚ‘ć13‰ńŽ”˜_ƒI[ƒ^ƒ€ƒ[ƒNƒVƒ‡ƒbƒv
“ú’ö2010”N11ŒŽ3“ú(j…) ? 7“ú(“ú)
‰ďę”’”nƒnƒCE}ƒEƒ“ƒgƒzƒeƒ‹
ŽĺĂŽŇ ˘˜bl: ’r“c•Ű(‹ž“s‘ĺ)CÎě‰ŔO(‰ŞŽR‘ĺ)
•ńW
–źĚŽË‰e‘˝—l‘Ě‚ĚŠô‰˝‚Ć‚ť‚ĚŽü•Ó2010
“ú’ö2010”N11ŒŽ5“ú(‹ŕ) ? 7“ú(“ú)
‰ďę‚’m‘ĺŠw
ŽĺĂŽŇ •ŸŠÔŒc–ž(‚’m‘ĺŠw)CŹ“‡G—Y(VŠƒ‘ĺŠw)
•ńWě‚é—\’čC–₢‡‚í‚šćF•ŸŠÔŒc–ž
–źĚLattices, Reflection Groups and Algebraic Geometry
“ú’ö2010”N11ŒŽ24“ú(…) ? 26“ú(‹ŕ)
‰ďę–źŒĂ‰Ž‘ĺŠw‘ĺŠw‰@‘˝Œł”—‰ČŠwŒ¤‹†‰Č
ŽĺĂŽŇ ‹ŕ“ş˝”V(–źŒĂ‰Ž‘ĺŠw)
•ńW‚Č‚ľ    î•ń‚Ěƒy[ƒW
–źȆ㐔“IŽ”˜_‚Ć‚ť‚ĚŽü•Ó
“ú’ö2010”N12ŒŽ6“ú(ŒŽ) ? 12ŒŽ10“ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š 420†Žş
ŽĺĂŽŇ–Ř“c‰ëŹ (“d‹C’ʐM‘ĺŠw)
•ńW”—Œ¤uEE^•Ęű”­s—\’č    î•ń‚Ěƒy[ƒW
–źĚ‘ć8‰ń‘㐔‹Čü˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö2010”N12ŒŽ11“ú(“y) ? 12“ú(“ú)
‰ďęé‹Ę‘ĺŠw‘‡Œ¤‹†“1ŠKƒVƒAƒ^[‹łŽş
ŽĺĂŽŇŽđˆä•ś—Y(é‹Ę‘ĺŠw)C•Ä“c“ń—Ç(_“ސěH‰Č‘ĺŠw)C‘ĺŸş˜N(“ż“‡‘ĺŠw)
•ńW—L   î•ń‚Ěƒy[ƒW
–źȆć32‰ń‰ÂŠˇŠÂ˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö2010”N12ŒŽ11“ú(“y) ? 16“ú(–Ř)
‰ďęIPCśŽYŤ‘ŰŒđ—ŹƒZƒ“ƒ^[
ŽĺĂŽŇ Œă“ĄŽl˜Y(–žŽĄ‘ĺŠw)CĺU–ě˜a•F(–žŽĄ‘ĺŠw)Cź“cEN“ń(ç—t‘ĺŠw)C“n•ÓŒhˆę(“úE{‘ĺŠw)
•ńW—L(Œă“ĄŽl˜Y)
–źĚ‘ć4‰ń International Conference on Pairing-based Cryptography (Pairing 2010)
“ú’ö2010”N12ŒŽ13“ú(ŒŽ) ? 15“ú(…)
‰ďęŽR’†‰ˇň(ÎěŒ§)
ŽĺĂŽŇ
•ńWEűąń‚Ěƒy[ƒW
–źĚ u”˜_‚ĆŠm—Ś˜_v Functions in Number Theory and Their Probabilistic Aspects
“ú’ö2010”N12ŒŽ13“ú(ŒŽ) ? 17“ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š 420 †Žş
ŽĺĂŽŇ HŽR–ÎŽ÷(VŠƒ‘ĺŠw)C•ŸŽRŽŽi(_ŒË‘ĺŠw)Cź–{k“ń(–źŒĂ‰Ž‘ĺŠw)C’‡“c‹Ď(Œc‰ž‹`m‘ĺŠw)
™“c—m(‘ĺă‘ĺŠw)C‚E´—zˆę˜Y(“Œ‹ž‘ĺŠw)C‹ĘěˆŔ‹R’j(‹ž“s‘ĺŠw)
•ńWî•ń‚Ěƒy[ƒW
–źĚ International workshop on motives in Tokyo, Part 6
“ú’ö2010”N12ŒŽ13“ú(ŒŽ) ? 17“ú(‹ŕ)
‰ďę“Œ‹ž‘ĺŠw‘ĺŠw‰@”—‰ČŠwŒ¤‹†‰Č‘ĺu‹`Žş
ŽĺĂŽŇ Thomas Geisser (–źŒĂ‰Ž‘ĺŠw), –Ř‘şrˆę(EL‘ĺ—Šw•”)CÖ“ĄGŽi(“Œ‘吔—)CŽu•á ~(“Œ‘吔—)
•ńWî•ń‚Ěƒy[ƒW
–źĚ–k—¤”˜_Œ¤‹†W‰ď
“ú’ö2010”N12ŒŽ26“ú(“ú) ? 27“ú(ŒŽ)
‰ďęEŕ‘?‘ĺŠwƒTƒeƒ‰ƒCƒgƒvƒ‰ƒU
ŽĺĂŽŇ •˝—ŃŠ˛l(‹ŕ‘ňH‹Ć‘ĺ)C’†“‡ ˆę(ŠwK‰@‘ĺ)C–ě‘ş–žl(‹ŕ‘ň‘ĺ)CŽR‰ş_(‹ŕ‘ň‘ĺ)C–Ř‘şŠŢ(ExŽR‘ĺ)
•ńWě‚é—\’č(˜A—ćF–ě‘ş–žl)
–źĚ‘ć4‰ń‘˝dƒ[[ƒ^Œ¤‹†W‰ď
“ú’ö2011”N1ŒŽ7“ú(‹ŕ) ? 1ŒŽ9“ú(“ú)
‰ďę ‹ăB‘ĺŠwiˆÉ“sƒLƒƒƒ“ƒpƒXj”—ŠwŒ¤‹†E@”—ŠwŒ¤‹†‹łˆç“@’†ƒZƒ~ƒi[Žş1
ŽĺĂŽŇ Ą•yk‘ž˜Y(‹ăB‘ĺŠw), “c’†—§Žu(‹ăB‘ĺŠw), Žá—Ń“żŽq(‹ăBŽY‹Ć‘ĺŠw)
•ńWî•ń‚Ěƒy[ƒW
–źĚ•ŰŒ^Œ`EŽ‚ĆŠÖ˜A‚ˇ‚éŐŒöŽŽCƒ[[ƒ^ŠÖ”‚ĚŒ¤‹†
“ú’ö2011”N1ŒŽ17“ú(ŒŽ) ? 1EE1“ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇ Œ  ”J˜D(‹ăB‘ĺŠw)
•ńWî•ń‚Ěƒy[ƒW
–źĚArithmetic and Algebraic Geometry 2011
“ú’ö2011”N1ŒŽ18“ú(EÎ) ? 22“ú(“y)
‰ďę“Œ‹ž
ŽĺĂŽŇ Œj—˜s(–@­‘ĺ)C‰Á“Ą•śŒł(‹ž‘ĺ)C ’†‘şˆč(–k‘ĺ)CŽ›ž[—FG(“Œ‘ĺ)CG. van der Geer ( Amsterdam ‘ĺ)
•ńW–ł
–źĚă“cćś’Ç“‰•ŰŒ^Œ`ŽŽŒ¤‹†W‰ď
“ú’ö2011”N1ŒŽ24“ú(ŒŽ) ? 1ŒŽ26“ú(…)
‰ďę“Ţ—Ç—Žq‘ĺŠw‹L”OŠŮ
ŽĺĂŽŇ źŕV~ˆęi“Ţ—Ç—ŽqEĺjC‘şŁ“āi‹žEsŽY‹Ć‘ĺjC‚‹´“N–çi‘ĺă•{—§EĺjC’r“c•Űi‹ž“s‘ĺj
•ńWî•ń‚Ěƒy[ƒW
–źĚ‘ć23‰ń‰ÂŠˇŠÂ˜_ƒZƒ~ƒi[
“ú’ö2011”N1ŒŽ31“ú(ŒŽ) ? 2ŒŽ3“ú(–Ř)
‰ďęŽRŒűŒ§‘‡•ŰŒŻ‰ďŠŮ ‘ć‚RŒ¤CŽş
ŽĺĂŽŇ ”сEԌ\ˆę˜Y(“Ţ—ÇH‹Ć‚ę)C‘şˆä‘(ŽRŒű‘ĺ)
E?Wî•ń‚Ěƒy[ƒW
–źĚThe elliptic genus of K3 surfaces and the Mathieu group
“ú’ö2011”N2ŒŽ14“ú(ŒŽ) ? 2ŒŽ15“ú(‰Î)
‰ďEE/TD>–źŒĂ‰Ž‘ĺŠw‘ĺŠw‰@‘˝Œł”—‰ČŠwŒ¤‹†‰Č (A-428)
ŽĺĂŽŇ ›–ě_–ži–źŒĂ‰Ž‘ĺŠwjC‹ŕ“ş˝”Vi–źŒĂ‰Ž‘ĺŠwj
•ńWî•ń‚Ěƒy[ƒW
–źĚ‹ăB‘㐔“IŽ”˜_ 2011iKANT 2011j
“ú’ö 2011”N2ŒŽ17“ú(–Ř) ? 2ŒŽ19“ú(“y)
‰ďę‹ăB‘ĺŠw”—ŠwŒ¤‹†‰@iˆÉ“sƒLƒƒƒ“ƒpƒXj”—ŠwŒ¤‹†‹łˆç“ ’†ƒZƒ~ƒi[Žş 1
ŽĺĂŽŇŹŠÖËNi‹ăB‘ĺŠwjC‚‘q—Ti‹ăB‘ĺŠwjC‰ĄŽRrˆęi‹ăB‘ĺŠwEj
•ńWî•ń‚Ěƒy[ƒW
–źĚ‘ć‚S‰ńƒ[[ƒ^ŽáŽčŒ¤‹†W‰ď
“ú’ö 2011”N2ŒŽ21“ú(ŒŽ) ? 2ŒŽ23“ú(…)
‰ďę‰Ť“ęŒ§Â”N‰ďŠŮ
ŽĺĂŽŇ‰Ş–{‘ě–ç (–źŒĂ‰ŽEĺŠw)C‰–ŒŠ‘ĺ•ă (–źŒĂ‰Ž‘ĺŠw)
•ńWî•ń‚Ěƒy[ƒW
–źĚ‘ć6‰ń Diophantine Analysis and Related Fields
“ú’ö2011”N3ŒŽ3“ú(–Ř) ? 3ŒŽ5“ú(“y)
‰ďęŹćü‘ĺŠw—HŠw•” 14†ŠŮ4ŠK‘ĺ‰ď‹cŽş
ŽĺĂŽŇ “V‰H‰ëş(ŒQ”n‘ĺŠw)CŒj“c š‹I(Œcœä‘ĺŠw)CŽá—ŃŒ÷(ŹćüEĺŠw)
•ńW–˘’č î•ń‚Ěƒy[ƒW
–źĚ‘ć3‰ń‘㐔ŠwŽáŽčƒZƒ~ƒi[
Eú’E/TD>2011”N3ŒŽ5“ú(“y)
‰ďę’}Eg‘ĺŠw@’}”gƒLƒƒƒ“ƒpƒX@‘‡Œ¤‹†“B@0110ŒöŠJu‹`Žş
ŽĺĂŽŇ ˆ˘•”OŽ÷(’}”g‘ĺŠw)AŒĂ‰ęŠ°Ž(’}”g‘ĺŠw)AÎˆä—C—ˆ”ü(’}”g‘ĺŠw)A“V–ěŸ—˜(’}”g‘ĺŠw)
•ńEW–ł î•ń‚Ěƒy[ƒW
–źĚ‘ć16‰ń‘㐔ŠwŽáŽčŒ¤‹†‰ď
“ú’ö2011”N3ŒŽ6“ú(“ú) ? 3ŒŽ8“ú(‰Î)
‰ďę’}”g‘ĺŠw@’}”gƒLƒƒƒ“ƒpƒX@‘‡Œ¤‹†“B@0110ŒöŠJu‹`Žş
ŽĺĂŽŇ ˆ˘•”OŽ÷(’}”g‘ĺŠw)AŒĂ‰ęŠ°Ž(’}”g‘ĺŠw)AÎˆä—C—ˆ”ü(’}”g‘ĺŠw)A“V–ěŸ—˜(’}”g‘ĺŠw)
•ńW—L(HP‚É‚ÄŒöEJ) î•ń‚Ěƒy[ƒW


2009 ”N“x‚ɍs‚í‚ę‚˝ƒVƒ“ƒ|ƒWƒEƒ€‚̏î•ńiŠJĂ“ú’ö‡j
–źĚWorkshop on arithmetic geometry
“ú’ö2009”N4ŒŽ14“ú(–Ř)
‰ďę“Œ‹ž‘ĺŠw‘ĺŠw‰@”—‰ČŠwŒ¤‹†‰Č@‘ĺu‹`Žş
ŽĺĂŽŇÖ“Ą‹B(“Œ‘吔—)
•ńW–ł
–źĚ”˜_—Ť‚̏W‚Ü‚č
“ú’ö2009”N5ŒŽ9“ú(“y)
‰ďę‘ˆî“c‘ĺŠw 14 †ŠŮ 717AB
EĺĂŽŇL’†—R”üŽq (‘ˆî“c‘ĺŠw), ‘ž“c (’Ă“cm‘ĺŠw), ŽsŒ´—R”üŽq (L“‡‘ĺŠw)
•ńW
–źĚ‘ć12‰ń@‘㐔ŒQ‚Ć—ĘŽqŒQ‚Ě•\Œť˜_@Œ¤‹†W‰ď
“ú’ö2009”N5ŒŽ10“ú(“ú) ? 5ŒŽ15“ú(‹ŕ)
‰ďę‹x‰É‘ş“ě‹IŸ‰Y
ŽĺĂŽŇrě’mK(“Ţ—Ç—Žq‘ĺŠw), —é–Ř•Žj(‰ŞŽR‘ĺŠw)
•ńW
–źĚWorkshop on arithmetic geometry in Tambara
“ú’ö2009”N5ŒŽ25“ú(ŒŽ) ? 29“ú(‹ŕ)
‰ďę“Œ‹ž‘ĺŠw‘ĺŠw‰@”—‰ČŠwŒ¤‹†‰Č@‹ĘŒ´‘ŰƒZƒ~ƒi[ƒnƒEƒX
EĺĂŽŇÖ“Ą‹B(“Œ‘吔—)
•ńW–ł
–źĚŒQ‚Ě•\Œť‚Ć”ń‰ÂŠˇ’˛˜a‰đÍ‚̐V“WŠJ
“ú’ö2009”N6ŒŽ1“ú(ŒŽ) ? 6ŒŽ4“ú(–Ř)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š 420Žş
ŽĺĂŽŇˆÉŽt‰p”V(–źŒĂ‰Ž‘ĺŠw)
•ńW u‹†˜^•ĘűŠ§s—\’č
–źĚ‘ć6‰ń‚–ŘƒŒƒNƒ`ƒƒ[
“ú’ö2009”N6ŒŽ6“ú(“y) ? 6ŒŽ7“ú(“ú)
‰ďę–k‘ĺ—Šw•”3†ŠŮ309Žş
ŽĺĂŽŇ ‘gDˆĎˆőFŹ–ěŒO(–kŠC“š‘ĺŠw)C‰Í“Œ‘×”V(“Œ‹ž‘ĺŠw)CŹ—яrs(“Œ‹ž‘ĺŠw)
Ö“Ą‹B(“Œ‹ž‘ĺŠw)C’†“ˆŒ[(‹ž“s‘ĺŠw
•ńW—LiJapanese Journal of Mathematicsj
–źĚ€ŽüEúƒ^ƒCƒ‹‚ĆŒžŒę—˜_‚ĚŽü•Ó (RIMS‹¤“ŻŒ¤‹†)
“ú’ö2009”N6ŒŽ8“ú(ŒŽ) ? 6ŒŽ10“ú(…)
‰ďę‹ž“s‘ĺŠw”—‰đE͌¤‹†Š 202Žş
ŽĺĂŽŇ HŽR–ÎŽ÷(VŠƒEĺŠw)
•ńW
–źĚ@Moduli and Discrete Groups
“ú’ö2009”N6ŒŽ8“ú(ŒŽ) ? 6ŒŽ12“ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š 420Žş
ŽĺĂŽŇ‹ŕ“ş˝”V(–źŒĂ‰Ž‘ĺŠw)AŒüˆä–Î(‹ž‘吔—Œ¤)
•ńW–ł
–źĚ@‘ć5‰ńĂ‰Ş‘㐔ŠwƒZƒ~ƒi[
“ú’ö2009”N6ŒŽ19“ú(‹ŕ) ? 6ŒŽ20“ú(“y)
‰ďęĂ‰Ş‘ĺŠw—Šw•”C“309
ŽĺĂŽŇóŽĹGlC–Ń—˜o(Ă‰Ş‘ĺ—)
•ńW–ł
–źĚ‰Ä‚ĚŠwZuDesigns and Codesv
“ú’ö2009”N6ŒŽ21“ú(“ú) ? 6ŒŽ24“ú(…)
‰ďęƒqƒ‹ƒYƒTƒ“ƒsƒAŽRŒ`
EĺĂŽŇ@­şO(“Œ–k‘ĺî•ń)CŒ´“cšW(ŽRŒ`‘ĺ^‚i‚r‚s‚ł‚Ť‚Ş‚Ż)
•ńW–ł
–źĚ‘ć26‰ń‘㐔“I‘g‡‚š˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö2009”N6ŒŽ24“ú(…) ? 26“ú(‹ŕ)
‰ďę—VŠwŠŮ(ŽRŒ`Žs—Î’Ź‚P’š–Ú‚Q”Ô‚R‚U)
ŽĺĂŽŇ˜eŽŽu(ŽRŒ`‘ĺ), Ź“c•śm(ŽRŒ`‘ĺ)C Œ´“cšW(ŽRŒ`‘ĺ^‚i‚r‚s‚ł‚Ť‚Ş‚Ż)
•ńW—L
–źĚHodge—˜_‚Ƒ㐔Šô‰˝Šw
“ú’ö2009”N6ŒŽ29“ú(ŒŽ) ? 7ŒŽ3“ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š 420Žş
ŽĺĂŽŇ’Š‘q­“T(–kŠC“š‘ĺŠw)
•ńW
–źĚNon-abelian Hodge theory and Geometry of Twsitor struct ures (RIMS‹¤“ŻŒ¤‹†)
“ú’ö2009”N7ŒŽ13“ú(ŒŽ) ? 7ŒŽ16“ú(–Ř)
‰ďę‹ž“s‘ĺŠw—Šw•””Šw‹łŽş
ŽĺĂŽŇâV“Ą­•F(_ŒË‘ĺ—), –]ŒŽ‘ń˜Yi‹ž‘吔—Œ¤)
•ńW–˘’č
–źĚKobe Workshop on Geometry of Moduli Spaces
“ú’ö2009”N7ŒŽ20“ú(ŒŽ) ? 7ŒŽ22“ú(…)
‰ďę_ŒË‘ĺŠw‘ĺŠw‰@—ŠwŒ¤‹†‰Č
ŽĺĂŽŇâV“Ą­•F(_ŒË‘ĺ—j, –]ŒŽ‘ń˜Yi‹ž‘吔—Œ¤)
•ńW–ł
–źĚ‘ć8‰ńL“‡Ž”˜_W‰ď
“ú’ö2009”N7ŒŽ21“ú(‰Î) ? 7ŒŽ24“ú(‹ŕ)
‰ďęL“‡‘ĺŠw
ŽĺĂŽŇŽsŒ´—R”üŽq(L“‡‘ĺŠw), ź–{áÁ(L“‡‘ĺŠw), Eź—ˆ˜H•ś˜N(L“‡‘Ű‘ĺŠw),
‚‹´_Ž÷(L“‡‘ĺŠw), “s’z’¨•v(“Œ–k‘ĺEw), ŽR“ŕ‘ě–ç(‘ĺă•{—§‘ĺŠw)
•ńW–ł
–źĚ‘㐔“IŽOŠpŒ—‚Ć‚ť‚ĚŽü•Ó (RIMSŒ¤‹†W‰ď)
“ú’ö2009”N7ŒŽ22“ú(…) ? 7ŒŽ24“ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw—Šw•”3†ŠŮ127†Žş(‘ĺ‰ď‹cŽşj
i”—‰đÍŒ¤EEŠ‚̑ϐkHŽ–‚É‚ć‚čA’ʏí‚ƁEقȂéęŠ‚Ć‚Č‚Á‚Ä‚¨‚č‚Ü‚ˇj
ŽĺĂŽŇ‰Á“ĄŠó—Žq(‘ĺă•{—§‘ĺŠw)CˆÉŽRC(–źŒĂ‰Ž‘ĺŠw)C‚‹´—ş(MB‘ĺŠw)
•ńW î•ń‚Ěƒy[ƒW
–źĚ‘㐔Šô‰˝ŠwƒTƒ}[ƒXƒN[ƒ‹2009
“ú’ö 2009”N7ŒŽ25“ú(“y) ? 7ŒŽ29“ú(…)
‰ďęEŒ‹ž‘ĺŠw‹ĘŒ´‘ŰƒZƒ~Ei[ƒnƒEƒX
ŽĺĂŽŇě–”—Y“ń˜Yi“Œ‘ĺjC×–ě”Ei“Œ‘ĺjCŹ—ѐł“TiŽń“s‘ĺjC—é–؍Di‰Ą‘‘ĺjCâV“Ą ‰Ä—YiL“‡Žs‘ĺj
•ńWî•ń‚Ěƒy[ƒW
–źĚ The 2nd MSJ-SI Arrangements of Hyperplanes
“ú’ö2009”N8ŒŽ1“ú(“y) ? 8ŒŽ13“ú(–Ř)
‰ďę–kŠC“š‘ĺŠw@ŠwpŒđ—Ź‰ďŠŮ
ŽĺĂŽŇ“ú–{”Šw‰ď (‘gDˆĎˆőFˆ˘•”‘ń˜Y(‹ž‘ĺ—)CŽ›EöG–ž(Ek‘ĺ—)C‹g‰ił•F(‹ž‘ĺ—)C
Sergey Yuzvinsky (University of Oregon))
•ńW—L
–źĚ‘ć‚P‚V‰ńŽ”˜_ƒTƒ}[ƒXƒN[ƒ‹ (ƒe[ƒ}FliƒKƒƒA•\Œť‚ĆƒKƒƒA•ĎŒ`‚̐Ž”˜_)
“ú’ö2009”N8ŒŽ17“ú(ŒŽ) ? 8ŒŽ21“ú(‹ŕ)
‰ďęƒAƒsƒJƒ‹ƒCƒ“‹ž“s
ŽĺĂŽŇ—Ž‡—(‘ĺă‘ĺŠw)Cç“c‰ë—˛(‹ž“s‘ĺŠw)C ŽR“ŕ‘ě–ç(‘ĺă•{—§‘ĺŠw)
•ńWě‚é—\’č
–źĚ”ń‰ÂŠˇ‘㐔Šô‰˝Šw‚Ć‚ť‚ĚŽü•Ó (RIMSŒ¤‹†W‰ď)
“ú’ö2009”N8ŒŽ24“ú(ŒŽ) ? 8ŒŽ28“ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw—Šw•””Šw‹łŽş
ŽĺĂŽŇColin Ingalls (RIMS)C–Ń—˜o(Ă‰Ş‘ĺŠw)CâV“Ą­•F(_ŒË‘ĺŠw)
•ńW–˘’č
–źĚ‘ć‚S‰ń•Ÿ‰Ş”˜_Œ¤‹†W‰ď
“ú’ö2009”N8ŒŽ25“ú(‰Î) ? 8ŒŽ27EE–Ř)
‰ďę‹ăB‘ĺŠwi” čƒLƒƒƒ“ƒpƒXj
ŽĺĂŽŇ‹ŕŽqšM(‹ăB‘ĺŠw), Œ ”J˜D(‹ăB‘ĺŠw), ŠÝNO(•Ÿ‰Ş‹łˆç‘ĺŠw)
•ńW—LC “dŽq”Ĺ    ˜A—ćFŒ ”J˜D
–źĚ—LŒŔŒQ‚ĚƒRƒzƒ‚ƒƒW[˜_‚Ć‚ť‚ĚŽü•Ó (RIMSŒ¤‹†W‰ď)
“ú’ö2009”N8ŒŽ31“ú(ŒŽ) ? 9ŒŽ4“ú(‹ŕ)
‰ďęMB‘ĺŠw‘SŠw‹łˆç‹@\ 61”Ô‹łŽş
ŽĺĂŽŇ˛X–Ř—mé(MB‘ĺŠw)C–ö“cLŒ°(ˆďé‘ĺŠw)
•ńW î•ń‚Ěƒy[ƒW
–źĚ‘ć4‰ńƒAƒtƒBƒ“‘㐔Šô‰˝ŠwŒ¤‹†W‰ď
“ú’ö2009”N9ŒŽ3“ú(–Ř) ? 9ŒŽ6“ú(“ú)
‰ďęŠÖźŠw‰@‘ĺŠw‘ĺă”~“cƒLƒƒƒ“ƒpƒX
ŽĺĂŽŇ Ź“‡G—Y(VŠƒ‘ĺŠwHŠw•”), ŠÝ–{ ’(é‹Ę‘ĺŠw—Šw•”)
•ńW–ł
–źĚ‘ć12‰ńŽ”˜_ƒI[ƒ^ƒ€ƒ[ƒNƒVƒ‡ƒbƒv
“ú’ö2009”N9ŒŽ7“ú(ŒŽ) ? 9ŒŽ11“ú(‹ŕ)
‰ďę”’”nƒnƒCƒ}ƒEƒ“ƒgƒzƒeƒ‹
ŽĺĂŽŇ E˘˜bl: ’r“c•Ű(‹ž“s‘ĺŠw)CL’†—R”üŽq(EˆűŻc‘ĺŠw)
•ńW
–źĚD“cFKćśŠŇ—ď‹L”OŒ¤‹†W‰ď
“ú’ö2009EN9ŒŽ14“ú(ŒŽ) ? 9ŒŽ17“ú(–Ř)
‰ďę“Œ‹ž‘ĺŠw‘ĺŠw‰@”—‰ČŠwŒ¤‹†‰Č‘ĺu‹`Žş
ŽĺĂŽŇ Scientific Committee: ›–ěEFŽj(‹ŕ‘ň‘ĺŠw)C‘şŁ“Ä(‹ž“sŽY‹Ć‘ĺŠw)C ŽsěŽŽu(˛‰ę‘ĺŠw)C
Ź—яrs(EŒ‹ž‘ĺŠw)C•l”¨–F‹I(“Œ‹ž—‰Č‘ĺŠw)
Organizing Committee: •l”¨–F‹I(“Œ‹ž—‰Č‘ĺŠw)C“s’zł’j(ă’qEĺŠw)C Îě‰ŔO(‰ŞŽR‘ĺŠw)C
‘“cF”Ž(ŽRŒ`‘ĺŠw)C•˝–슲(ˆ¤•Q‘ĺŠw)CŒ ”J˜D(‹ăB‘ĺŠw)C XŽR’m‘Ľ(‘ĺă‘ĺŠw)C
Ź“cGH(ŒF–{‘ĺŠw)EC ÎE䑁EŹćü‘ĺŠw)
•ńW
–źĚ‘ć42‰ńŠÂ˜_‚¨‚ć‚Ń•\Œť˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö2009”N10ŒŽ10“ú(“y) ? 10ŒŽ12“ú(ŒŽ)
‰ďę‘ĺă‹łˆç‘ĺŠw‘ĺŠw“V‰¤Ž›ƒLƒƒƒ“ƒpƒX@@
ŽĺĂŽŇƒvƒƒOƒ‰ƒ€Ó”CŽŇF ‰Í“cŹl(‘ĺăŽs—§‘ĺŠw)C‰ďęÓ”CŽŇF”nę—ÇŽn(‘ĺă‹łˆç‘ĺŠw)
•ńW—L
–źĚ‰đÍ”˜_‚¨‚ć‚Ń‚ť‚ĚŽü•Ó‚̏”–â‘č (RIMSŒ¤‹†W‰ď)
“ú’ö2009”N10ŒŽ14“ú(…) ? 10ŒŽ16“ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw—ŠwŒ¤‹†‰Č”Šw‹łŽş ‘ĺ‰ď‹cŽş(3†ŠŮ127†Žş)
ŽĺĂŽŇ Œ¤‹†‘ă•\ŽŇF’Ă‘ş”Ž•ś (Žń“s‘ĺŠw“Œ‹ž —HŠwŒ¤‹†‰Č)C •›‘ă•\ŽŇFŹX–ő(–źŒĂ‰Ž‘ĺŠw ‘˝Œł”—‰ČŠwŒ¤‹†‰Č)
•ńW
–źĚ@‘ć6‰ńĂ‰Ş‘㐔ŠwƒZƒ~ƒi[
“ú’ö2009”N11ŒŽ6“ú(‹ŕ) ? 11ŒŽ7“ú(“y)
‰ďęĂEŞ‘ĺŠw—Šw•”C“309
ŽĺĂŽŇóŽĹGlC–Ń—˜o(Ă‰Ş‘ĺ—)
•ńW–ł
–źĚInvariants in Algebraic Geometry
“ú’ö2009”N11ŒŽ9EEŒŽ) ? 11ŒŽ13“ú(‹ŕ)
‰ďę“Œ‹ž‘ĺŠw‘ĺŠw‰@”—‰ČŠwŒ¤‹†‰Č‘ĺu‹`Žş
EĺĂŽŇ EXd•ś(RIMS), ’ŇŒł(Sophia Univ.), Îˆä Žu•ŰŽq(“Œ‹žH‹Ć‘ĺŠw)
âV“Ą­•F(_ŒË‘ĺŠw),@‚–Ř Š°’Ę(“Œ‹ž‘ĺŠw)
•ńW–ł
–źĚCasimir Force, Casimir Operators and the Riemann Hypothesis
“ú’ö2009”N11ŒŽ9“ú(ŒŽ) ? 11ŒŽ13“ú(‹ŕ)
‰ďęźVƒvƒ‰ƒUC‹ăB‘ĺŠw
ŽĺĂŽŇ ŽáŽRłl(‹ăB‘ĺŠw)CGerrit van Dijk(Leiden Univ.), Roger Howe(Yale Univ.)
Evgeny Verbitskiy(Philips Research Lab.), ‹ŕŽqšM(‹ăB‘ĺŠw), ’JŒűŕ’j(‹ăB‘ĺŠw)
•ńW
–źĚ‘㐔“I‘g‡‚š˜_‚¨‚ć‚ŃŠÖ˜A‚ˇ‚éŒQ‚Ƒ㐔 (RIMSŒ¤EEW‰ď)
“ú’ö2009”N11ŒŽ17“ú(‰Î) ? 11ŒŽ20“ú(‹ŕ)
‰ďęMB‘ĺŠw—Šw•”
ŽĺĂŽŇ ‰Ô–؏͏G(MB‘ĺŠw)
•ńW
–źĚŽË‰e‘˝—l‘Ě‚ĚŠô‰˝‚ƁEť‚ĚŽü•Ó2009
“ú’ö2009”N11ŒŽ21“ú(“y) ? 11ŒŽ23“ú(ŒŽ)
‰ďę‚’m‘ĺŠwC‚’m‹¤Ď‰ďŠŮ
ŽĺĂEŇ •ŸŠÔŒc–ž(‚’m‘ĺŠw)CŹ“‡G—Y(VŠƒ‘ĺŠw)
•ńW—LC–₢‡‚í‚šćF•ŸŠÔŒc–ž
–źĚ“Œ–k•œ’U‘㐔Šô‰˝‡“ŻƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö2009”N11ŒŽ24“ú(‰Î) ? 11ŒŽ26“ú(–Ř)
‰ďę“Œ–k‘ĺŠw‘ĺŠw‰@—ŠwŒ¤‹†‰Č”—‰ČŠw‹L”OŠŮ
ŽĺĂŽŇ Î“cł“T(“Œ–k‘ĺ—)C‘Ť—˜ł(“Œ–kŠw‰@‘ĺH)
•ńW–ł
–źĚ‘ć31‰ń‰ÂŠˇŠÂ˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö2009”N11ŒŽ24“ú(‰Î) ? 27“ú(‹ŕ)
‰ďęƒzƒeƒ‹ƒAƒEƒB[ƒi‘ĺă
ŽĺĂŽŇ ‰Á“ĄŠó—Žq(‘ĺă•{—§‘ĺ)
•ńW—L(‰Á“ĄŠó—Žq)
–źĚ‘ć8‰ńu‘㐔Šw‚ĆŒvŽZvŒ¤‹†W‰ď (AC2009)
“ú’ö2009”N12ŒŽ2“ú(…) ? 12ŒŽ4“ú(‹ŕ)
‰ďęŽń“s‘ĺŠw“Œ‹ž ‘ŰŒđ—Ź‰ďŠŮ
ŽĺĂŽŇ ’†‘şŒ›iŽń“s‘ĺŠw“Œ‹žjC˜eŽŽuiŽRŒ`‘ĺŠwjC’Ă‘ş”Ž•śiŽń“s‘ĺŠw“Œ‹žjC“ŕŽRŹŒ›iŽń“s‘ĺŠw“Œ‹žj
•ńW“dŽqo”Ĺ—\’č
–źĚ‘ć‚V‰ń‘㐔‹Čü˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö2009”N12ŒŽ5“ú(“y) ? 12ŒŽ6“ú(“ú)
‰ďę‰Ą•lƒ‰ƒ“ƒhE}[ƒNEƒ^ƒ[18 ŠK@‰Ą•l‘—§‘ĺŠwƒTƒeƒ‰ƒCƒgEƒLƒƒƒ“ƒpƒX
ŽĺĂŽŇ•Ä“c“ń—ǁi_“ސěH‰Č‘ĺŠwj–ěŠÔ~ (‰Ą•l‘—§‘ĺŠw) E基˜Ni“ż“‡‘ĺŠwj
•ńWî•ń‚Ěƒy[ƒW
–źĚ‘㐔“IŽ”˜_‚Ć‚ť‚ĚŽü•Ó (RIMSŒ¤‹†W‰ď)
“ú’ö2009”N12ŒŽ7“ú(ŒŽ) ? 12ŒŽ11“ú(‹ŕ)
‰ďę“Œ‹ž‘ĺŠw‘ĺŠw‰@ ”—‰ČŠwŒ¤‹†‰Č ‘ĺu‹`Žş
ŽĺĂŽŇŽsěŽŽu(˛‰ę‘ĺŠw)
•ńWî•ń‚́Ey[ƒW u‹†˜^•ĘűŠ§s—\’č
–źĚ‘ć‚T‰ńƒ‚ƒ`[ƒt•×‹­‰ď(International Workshop on Motives in Tokyo, part 5)
“ú’ö2009”N12ŒŽ14“ú(ŒŽ) ? 12ŒŽ18“ú(‹ŕ)
‰ďę“Œ‹ž‘ĺŠw‘ĺŠw‰@”—‰ČŠwŒ¤‹†‰Č ‘ĺu‹`Žş
ŽĺĂŽŇ Thomas Geisser (USC), –Ř‘şrˆę(L‘ĺ—Šw•”) , Ö“ĄGŽi(“Œ‘吔—), Žu•á~(“Œ‘吔—)
•ńW–ł
–źĚ‚ŽŸŒł‘㐔Šô‰˝‚ĚŽü•Ó (RIMSŒ¤‹†W‰ď)
“ú’ö2009”N12ŒŽ14“ú(ŒŽ) ? 12ŒŽ18“ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw —Šw‚R†ŠŮ 127
ŽĺĂŽŇ ź‰ş‘ĺ‰î(–kŠC“š‘ĺŠw)
•ńWu‹†˜^•ĘűŠ§s—\’č
–źĚ•ŰŒ^Œ`ŽŽE•ŰŒ^•\Œť‚¨‚ć‚Ń‚ťEę‚É”ş‚¤L”Ÿ”‚ĆŽüŠú‚ĚŒ¤‹† (RIMSŒ¤‹†W‰ď)
“ú’ö2010”N1ŒŽ18“ú(ŒŽ) ? 1ŒŽ22“ú(‹ŕ)
‰ďę“Œ‹ž‘ĺŠw”—‰ČŠwŒ¤‹†‰Č@‘ĺu“°
ŽĺĂŽŇ “s’zł’j(ă’q‘ĺŠw)
•ńW
–źĚ‘ć22‰ń‰ÂŠˇŠÂ˜_ƒZƒ~ƒiE[
“ú’ö2010”N2ŒŽ1“ú(ŒŽ) ? 2ŒŽ4“ú(–Ř)
‰ďEE/TD>ź–{Žs’†‰›Œö–ŻŠŮ(‚lƒEƒCƒ“EO)
ŽĺĂŽŇ ‚–؏r•ă(‹ăB‘ĺ)C‚‹´—ş(EMB‘ĺ)
•ńW—L(‚‹´—ş)
–źĚ‘ć5‰ńŽ­Ž™“‡‘㐔E‰đÍEŠôE˝ƒZƒ~ƒi[
“ú’ö2010”N2ŒŽ15“ú(ŒŽ) ? 2ŒŽ19“ú(‹ŕ)
‰ďęŽ­Ž™“‡‘ĺŠw
ŽĺĂŽŇ ˘˜blF–Ř‘şrˆęAäo‘qşŽĄ‚Ů‚Š
•ńW
–źĚ‘ćŽO‰ńƒ[[ƒ^ŽáŽčŒ¤‹†W‰ď
“ú’ö2010”N2ŒŽ19“ú(EE ? 2ŒŽ21“ú(“ú)
‰ďę–źŒĂ‰Ž‘ĺŠw
ŽĺĂEŇ ‰Ş–{‘ě–çCˆÉ“ŒˆÇŠóŽq (–źŒĂ‰Ž‘ĺŠw)
•ńEW–ł
–źĚ‘ć5‰ńƒAƒtƒBƒ“‘㐔Šô‰˝ŠwŒ¤‹†W‰ď
“ú’ö2010”N3ŒŽ4“ú(–Ř) ? 3ŒŽ7“ú(“ú)
‰ďęŠÖźŠw‰@‘ĺŠw‘ĺă”~“cƒLƒƒƒ“ƒpƒX
ŽĺĂŽŇ ‘“c‰Ŕ‘ă(ŠÖźŠw‰@‘ĺŠw—HŠw•”), Ź“‡G—Y(VŠƒ‘ĺŠwHŠw•”), ŠÝ–{ ’(é‹Ę‘ĺŠw—Šw•”)
E?EW–ł
–źĚDiophantine Analysis and Related Fields 2010
“ú’ö2010EN3ŒŽ4“ú(–Ř) ? 3ŒŽ5“ú(‹ŕ)
‰ďęŹćü‘ĺŠw
ŽĺĂŽŇ HŽR–ÎŽ÷iVŠƒ‘ĺŠwjC“V‰H‰ëşiŒQ”n‘ĺŠwjCEŞč—´‘ž˜Yi“ŻŽuŽĐ ‘ĺŠwj
ŹźŽ•viO‘O‘ĺŠwjCŽá—ŃŒ÷iŹćü‘ĺŠwj
•ńEW o”ĹĎ    î•ń‚Ěƒy[ƒW
–źĚWorkshopu”˜_‚ĆƒGƒ‹ƒS[ƒh—˜_v
“ú’ö2010”N3ŒŽ6“ú(“y), 7“ú(“ú)
‰ďę‹ŕ‘ň‘ĺŠwƒTƒeƒ‰ƒCƒgEƒvƒ‰ƒU
ŽĺĂŽŇ ˆÉ“ĄrŽŸ(Eŕ‘?‘ĺŠw)CÎ‘şŒőŽ‘˜Y(“Œ—m‘ĺŠw)C“Ąč—çŽu(‹ŕ‘ň‘ĺŠw)
•ńW–ł
–źĚBranched Coverings, Degenerations, and Related Topics 2010
“ú’ö2010”N3ŒŽ8“ú(ŒŽ)? 12“ú(‹ŕ)
‰ďęL“‡‘ĺŠw ‘ĺŠw‰@ć’[•¨Žż‰ČEwE¤‹†‰Č
ŽĺĂŽŇ ź–{K•v(ŠwK‰@EĺŠw)C‘Ť—˜ł(“Œ–kŠw‰@‘ĺŠw)C ěŠÔ˝(L“‡‘ĺŠw)
“ż‰i_—Y(Žń“s‘ĺŠw“Œ‹ž)C“‡“cˆÉ’m˜N(L“‡‘ĺŠw)
•ńW–ł, ‚˝‚ž‚ľ‚ą‚ą‚ÉŠÖ˜A•ś‘iƒXƒ‰ƒCƒhCƒvƒŒƒvƒŠƒ“ƒg‚Ȃǁj‚Ş‚¨‚˘‚Ä‚ ‚čE܂ˇD
–źĚ“Ąˆäş—Y‹łŽö‘ސE‹L”Oƒ[[ƒ^ŠÖ”Œ¤‹†W‰ď
“ú’ö2010”N3ŒŽ9“ú(‰Î)
‰ďę—§‹ł‘ĺEw14†ŠŮ2ŠKD201‹łŽş
ŽĺĂŽŇ ˛“Ą•śLCÂ–؏¸(—§‹ł‘ĺŠw—Šw•”)
•ńW–ł
–źĚƒ~ƒjW‰ďEu‘㐔“I‘g‡‚š˜_v
“ú’ö2010”N3ŒŽ16“ú(‰Î) ? 3ŒŽ18“ú(–Ř)
‰ďę_ŒËŠw‰@‘ĺŠw
ŽĺĂEŇ @­şO(“Œ–k‘ĺ)CŒ´“cšW(ŽRŒ`‘ĺ—^‚i‚r‚s‚ł‚Ť‚Ş‚Ż)Cś“c‘ě–ç(_ŒËŠw‰@‘ĺ)
•ńW–ł
–źĚ•ŞŠň”핢A‘މťAŠÖ˜A‚ˇ‚é˜b‘č
“ú’ö2010”N3ŒŽă{
‰ďęL“‡‘ĺŠw
ŽĺĂŽŇ ‘gDˆĎˆőF“‡“cˆÉ’m˜N(L“‡‘ĺŠw)CěŠÔ˝(L“‡‘ĺŠw)C‘Ť—˜ł(“Œ–kŠw‰@‘ĺŠw)C
ź–{K•v(ŠwK‰@‘ĺŠw)C“ż‰i_—Y(Žń“s‘ĺŠw“Œ‹ž)
•ńW


2008 ”N“x‚ɍs‚í‚ę‚˝ƒVƒ“ƒ|ƒWƒEƒ€‚̏î•ńiŠJĂ“ú’ö‡j
–źĚ•ĎŠˇŒQ‚ĚŠô‰˝‚Ć‚ť‚ĚŽü•Ó
“ú’ö2008”N5ŒŽ19“úiŒŽj?23“úi‹ŕj
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇŒ´@–ő_(‘ĺă‘ĺŠw—EwŒ¤‹†‰Č)
•ńW
–źĚƒ‚ƒWƒ…ƒ‰ƒC‹óŠÔ‚Ć‘o—L—Šô‰˝Šw
“ú’ö2008”N6ŒŽ9“úiŒŽj?13“úiEŕj
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇź‰ş‘ĺ‰îi–kŠC“š‘ĺŠwj
•ńW
–źĚ‘ć25‰ń‘㐔“I‘g‡‚š˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö2008”N6ŒŽ23“úiŒŽj?25“úi…j
‰ďę–kŠC“š‘ĺŠwŠwpŒđ—Ź‰ďŠŮ
ŽĺĂŽŇ˜a“ˆ‰ëKi–kŠC“šH‹Ć‘ĺŠwjC’|ƒ–Œ´—SŒłiŽş—–H‹Ć‘ĺŠwjC “c•ÓŒ°ˆę˜Ni–kŠC“š‘ĺŠwj
•ńW—L
–źĚ‘㐔“I K —˜_‚Ć motive —˜_‚ĚŒťó
“ú’ö2008”N6ŒŽ30“úiŒŽj?7ŒŽ2“úi…j
‰ďę‹ž‘吔—Œ¤
ŽĺĂŽŇ–]ŒŽ“NŽji“Œ‹ž‘ĺŠwjC•˝”V“ŕr˜Yi‹ăB‘ĺŠwjC ˛“ĄŽü—Fi–źŒĂ‰Ž‘ĺŠwj
ˆŔ“cł‘ĺi‹ž“s‘ĺŠwjC–Ř‘şrˆęiL“‡‘ĺŠwj
•ńW HP
–źĚLŠÖ”‚Ě’l•Ş•z‚ĆŠÖŒW‚ˇ‚鐔˜_“I‚ȏ”ŠÖ”‚ĚŒ¤‹†
“ú’ö2008”N6ŒŽ30“úiŒŽj?7ŒŽ4“úi‹ŕj
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇź–{@k“ń(–źŒĂ‰Ž‘ĺŠw‘˝Œł”—‰ČŠwŒ¤‹†‰Č)
•ńW
–źĚConference on Arithmetic and Algebraic Geometry
“ú’ö2008”N7ŒŽ3“úi–؁j?6“úi“új
‰ďę“Œ‹ž‘ĺŠw”—‰ČŠwŒ¤‹†‰Č
ŽĺĂŽŇŽ›ž[—FGi“Œ‹ž‘ĺŠw)CâV“Ą­•Fi_ŒË‘ĺŠwjC´…—E“ńi‘ŰŠî“‹ł‘ĺ ŠwjCŹ–Ř‘]Œ[ŽŚ(Œc‰ž‘ĺŠwj
•ńW
–źĚ ‘ć7‰ńL“‡Ž”˜_W‰ď
“ú’ö2008”N7ŒŽ22“úi‰Îj?25“úi‹ŕj
‰ďęL“‡‘ĺŠw
ŽĺĂŽŇŽsŒ´—R”üŽqiL“‡‘ĺŠwjCź—ˆ˜H•ś˜NiL“‡‘Ű‘ĺŠwjC ‚‹´_Ž÷i“ż“‡‘ĺŠwjC
“s’z’¨•vEi“Œ–kEĺŠwjCź–{áÁiL“‡‘ĺŠwjCŽR“ŕ‘ě–çi‘ĺă•{—§‘ĺŠwEj
•ńEW
–źĚ Tsuda College Mini-Workshop on Number Theory and Physics at the Crossroads
“ú’ö2008”N8ŒŽ4“úiŒŽj?6“úi…j
‰ďę’Ă“cm‘ĺŠw
ŽĺĂŽŇNoriko Yui (Queen's University)
•ńEW ƒvƒƒOƒ‰ƒ€ ƒAƒuƒXƒgƒ‰ƒNƒg
–źĚ‘ć‚T‚Q‰ń‘㐔ŠwƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö2008”N8ŒŽ5“úi‰Îj?8“úi‹ŕj
‰ďęˇ‰Ş‰w‘O ƒAƒC[ƒi
ŽĺĂŽŇ‰ďęÓ”CŽŇ : ‘吟—Ç”Ž, ”ö‘äŠěF (ŠâŽč‘ĺŠw)
ƒvƒƒOƒ‰ƒ€Ó”CŽŇF ŠÂ˜_ : ‰z’Jd•v, ź“cN“ń; ‘ăE”Š?E˝ : ě–”—Y“ń˜Y, X˜e~;
Ž”˜_ : á]–ž•F, Žu•á~;ŒQ˜_ : Œ““cłŽĄ, ‹gr‘.
•ńW ƒz[ƒ€ƒy[ƒW
–źĚ‘㐔Šô‰˝ƒZƒ~ƒi[2008
“ú’ö 2008”N8ŒŽ11“ú(ŒŽ) ? 8ŒŽ15“ú(‹ŕ)
‰ďę“Œ‹ž‘ĺŠw‹ĘŒ´‘ŰƒZƒ~ƒi[ƒnƒEƒX
EĺĂŽŇě–”—Y“ń˜Yi“Œ‘ĺjCŹ—ѐł“TiŽń“s‘ĺjC—é–؍Di‰Ą‘‘ĺjCâV“Ą ‰Ä—YiLE‡Žs‘ĺj
•ńWî•ń‚Ěƒy[ƒW
–źĚ ‘ć‚P‚U‰ńŽ”˜_ETƒ}[ƒXƒN[ƒ‹
“ú’ö2008”N8ŒŽ18“úiŒŽj?8ŒŽ21“úi–؁j
‰ďę–‹’ŁƒƒbƒZ‘Ű‰ď‹cę
ŽĺĂŽŇÎˆä‘ěiç—tH‘ĺjA•˝–슲iˆ¤•Q‘ĺŠwj
•ńWEEé—\’č
–źĚ ‘ć‚R‰ń•Ÿ‰Ş”˜_Œ¤‹†W‰ď
“ú’ö2008”N8ŒŽ26“úi‰Îj?8ŒŽ28“úi–؁j
‰ďę‹ăB‘ĺŠwi” čƒLƒƒƒ“ƒpƒXj
ŽĺĂŽŇ‹ŕŽq šMi‹ăB‘ĺŠwj Œ  ”J˜Di‹ăB‘ĺŠwj EÝ NOi•Ÿ‰Ş‹łˆç‘ĺŠwj
•ńWě‚é—\’č î•ń‚Ěƒy[ƒW
–źĚ —LŒŔŽŸŒł‘˝ŒłŠÂ‚Ě•\Œť˜_ƒ[ƒNƒVƒ‡ƒbƒv
Eú’E/TD>2008”N9ŒŽ2“úi‰Îj?4“úi–؁j
‰ďęĂ‰Ş‘ĺŠw—Šw•”
ŽĺĂŽŇƒvƒƒOƒ‰ƒ€Ó”CŽŇFóŽĹGliEĂ‰Ş‘ĺŠw—Šw•””Šw‹łŽşj
‰ďęÓ”CŽŇF–Ń—˜oiĂ‰Ş‘ĺŠw—Šw•””Šw‹łŽşj
•ńW ƒz[ƒ€ƒy[ƒW
–źĚ Explicit Structures in Modular Forms and Number Theory
“ú’ö2008”N9ŒŽ4“úi–؁j?7“úi“úEj
‰ďę‹ß‹E‘ĺŠw“Œ‘ĺăƒLƒƒƒ“ƒpƒX
ŽĺĂŽŇD“cFKi“Œ‹ž‘ĺŠwjC‹ŕŽqšMi‹ăB‘ĺŠwjC‘ĺ–ě‘אśi‹ß‹E‘ĺŠwEj
•ńW î•ń‚Ěƒy[ƒW
–źĚ ‘ć‚S‚P‰ńŠÂ˜_‚¨‚ć‚Ń•\Œť˜_ƒVƒ“ƒ|ƒWƒ…[ƒ€
“úEE/TD>2008”N9ŒŽ5“úi‹ŕj?7“úi“új
‰ďęĂ‰Ş‘ĺŠw—Šw•”
ŽĺĂŽŇƒvƒƒOƒ‰ƒ€Ó”CŽŇF“Ą“cŽši’}”g‘ĺŠw”—•¨Žż‰ČŠwŒ¤‹†‰Č”ŠwęUj
‰ďęÓ”CŽŇF–Ń—˜oiĂ‰Ş‘ĺŠw—Šw•””Šw‹łŽşj
•ńW
–źĚ ƒKƒƒA—˜_‚Ć‚ť‚ĚŽü•Ó “ż“‡2008
“ú’ö2008”N9ŒŽ9“úi‰Îj?12“úi‹ŕj
‰ďę“ż“‡‘ĺŠwH‹Ć‰ďŠŮ“ńŠKƒƒ‚ƒŠƒAƒ‹ƒz[ƒ‹
ŽĺĂŽŇ‹´–{EEę˜N(‘ˆî“c‘ĺŠw)A•ĐŽR^ˆę (Eż“‡‘ĺŠw)A ’†‘ş”Žş (‰ŞŽR‘ĺŠw)
‚‹´_Ž÷ (“ż“‡‘ĺŠw)A–Ř“c‰ëŹ (“dEC’ʐM‘ĺŠw)
•ńW ƒz[ƒ€ƒy[ƒW
–źĚ ‘ć‚P‚P‰ńŽ”˜_ƒIE[ƒ^ƒ€ƒ[ƒNƒVƒ‡ƒbƒv
“ú’ö2008”N9ŒŽ11“úi–؁j?15“úiŒŽj
‰ďę”’”nƒnƒCƒ}ƒEƒ“ƒgƒzƒeƒ‹
ŽĺĂŽŇ’r“c•Űi‹ž“s‘ĺŠwjAˆÉŽR’m‹`i‘ĺă‘ĺŠwj
•ńW–˘’č
–źĚ•\Œť˜_‚Ć”ń‰ÂŠˇ’˛˜a‰đÍ‚É‚¨‚Ż‚éEV‚ľ‚˘Ž‹“_
“ú’ö2008”N9ŒŽ16“úi‰Îj?19“úi‹ŕj
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇˆÉ“Ą@–Ť(Ž­Ž™“‡‘ĺŠw—Šw•”)
•ńWu‹†˜^•Ęű
–źĚ‘ć5‰ń“úŠŘ‘㐔‚¨‚ć‚Ń‘g‡‚š˜_Œ¤‹†‰ď
“ú’ö2008”N9ŒŽ19“úi‹ŕj?20“úi“yj
‰ďę‹ăB‘ĺŠw” čƒLƒƒƒ“ƒpƒX
ŽĺĂŽŇâ“ŕ‰pˆęi‹ă‘吔—jEC•˝âviŠ˜ŽR‘ĺjCˆÉ“Ą’B˜Yi‹ŕ‘ň‘ĺjC @­şOi“Œ–k‘ĺjC‘ź
•ńW–ł
–źĚŽË‰e–@‚Š‚猊‚˝€ŽüŠú\‘˘‚ĆŠÖ˜A‚ˇ‚é˜b‘č
“ú’ö2008”N10ŒŽ1“úi…j?3“úi‹ŕj
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇˆÉ“Ą@rŽŸ(‹ŕ‘ň‘ĺŠwŽŠ‘R‰ČŠwŒ¤‹†‰Č)
EńW
–źĚ‘g‡‚š˜_“I•\Œť˜_‚ĚŠg‚Ş‚č
“ú’ö2008”N10ŒŽ7“úi‰Îj?10“úi‹ŕj
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇ‹{’n@•ş‰q(–źŒĂ‰Ž‘ĺŠw‘˝Œł”—‰ČŠwŒ¤‹†‰Č)
•ńW‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Šu‹†˜^‚đěŹ‚˘‚˝‚ľ‚Ü‚ˇ‚̂ŁC ‚ť‚ż‚ç‚Š‚ç“üŽč‰Â”\‚É‚Č‚é—\’č‚Ĺ‚ˇ.
–źĚ‰đÍ“IŽ”˜_‚̐V‚ľ‚˘“WŠJ
“ú’ö2008”N10ŒŽ27“úiŒŽj?29“úi…j
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺEÎҏŹEź@Ž•v(O‘O‘ĺŠw—EHŠwŒ¤‹†‰Č)
•ńW
–źĚƒ‚ƒfƒ‹—˜_EƂť‚̑㐔‚ւ̉ž—p
“ú’ö2008”N11ŒŽ10“úiŒŽj?12“úi…j
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇ“c’†@ŽŒČ(‰ŞŽR‘ĺŠwƒAƒhƒ~ƒbƒVƒ‡ƒ“ƒZƒ“ƒ^[)
•ńW
–źĚ“úŠŘŽ”˜_ƒZƒ~ƒi[2008
“ú’ö2008”N11ŒŽ12“úi…j?15“úi“yj
‰ďę“Œ–k‘ĺŠw•Đ•˝ƒLƒƒƒ“ƒpƒX‚ł‚­‚çƒz[ƒ‹
ŽĺĂŽŇ“c’J‹v—Yi‹{é‹łˆç‘ĺŠwjCSohn, Jaebum (Yonsei University)
•ńW”­s—\’č “úŠŘŽ”˜_ƒZƒ~ƒi[2008Webƒy[ƒW
–źĚ‘ć30‰ń‰ÂŠˇŠÂ˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö2008”N11ŒŽ18“úi‰Îj?21“úi‹ŕj
‰ďę‘–ŻhŽÉ“ř‚̏źŒ´ƒzƒeƒ‹i˛‰ęŒ§“‚’ĂŽsj
ŽĺĂŽŇ‹{čži˛‰ę‘ĺ—HjAŽ›ˆä’źŽ÷i˛‰ę‘ĺ•ś‰ť‹łˆçjA ‚–؁Er•ăi‹ă‘ĺSSPj
•ńW—\’č
–źĚ—LŒŔŒQ‚Ƒ㐔‚Ě•\Œť˜_‚¨‚ć‚Ń‚ť‚ĚŽü•Ó
“ú’ö2008”N11ŒŽ20Eúi–؁j?21“úi‹ŕj
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇ‰z’Jd•v(ç—t‘ĺŠw—ŠwŒ¤‹†‰Č)
•ńW–{”N“x’†‚ɍěEŹ—\’čC˜A—ć@‰z’Jd•viç—t‘ĺŠw—ŠwŒ¤‹†Eȁj
–źĚComputer Algebra-Design of Algorithms, Implementations and Applications
“ú’ö2008”N11ŒŽ25“úi‰Îj?27“úi–؁Ej
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇ“Ą–{@ŒőŽj(•Ÿ‰Ş‹łˆç‘ĺŠw‹łˆçŠw•”)
•ńW
–źĚ On the Resolution of Singularities
“ú’ö2008”N12ŒŽ1“úiŒŽj?5“úi‹ŕj
‰ďę‹ž‘ĺE”—Œ¤
ŽĺĂŽŇXd•śi‹ž‘吔—Œ¤j
•ńW
–źĚ ‘㐔“IŽ”˜_‚ƁEť‚ĚŽü•Ó
“ú’ö2008”N12ŒŽ8“úiŒŽj?12“úi‹ŕj
EEE/TD>‹ž‘吔—Œ¤
ŽĺĂŽŇEEş@”Žş(‰ŞŽR‘ĺŠw—Šw•”)
•ńWu‹†˜^•Ęű î•ń‚Ěƒy[ƒW
–źĚ ‘ć‚U‰ń‘㐔‹Čü˜_ƒVE“ƒ|ƒWƒEƒ€
“ú’ö2008”N12ŒŽ15“úiŒŽj?18“úi–؁j
‰ďę_“ސě‘ĺŠwHŠw•”
ŽĺĂŽŇ‘ĺŸş˜Ni“ż“‡‘ĺŠwjC•Ä“c“ń—ǁi_“ސěH‰Č‘ĺŠwj
•ńW ƒz[ƒ€ƒy[ƒW
–źĚ ƒ‚ƒ`[ƒt•×‹­‰ď‘ć‚S‰ń
“ú’ö2008”N12ŒŽ15“úiŒŽj?19“úi‹ŕj
‰ďę“Œ‹ž‘ĺŠw
ŽĺĂŽŇThomas Geisser (University of Southern California), Žu•á~i“Œ‹ž‘ĺŠwj
ŽR‰ş„(University of Nottingham)C–Ř‘şrEęiL“‡‘ĺŠwj
•ńW
–źĚ —LŒŔŒQE’¸“_ě—p‘f‘㐔‚Ć‘g‡‚š˜_
“ú’ö2009”N1ŒŽ6“úi‰Îj?9“úi‹ŕj
‰ďę‹ž‘吔—Œ¤
EĺĂŽŇŽR“c@—T—(ˆę‹´‘ĺŠwŒoĎŠwŒ¤‹†‰Č)
•ńW
–źĚ •ŰŒ^E\Œť‚Ć•ŰŒ^L-E֐”‚̐”˜_“IŒ¤‹†
“ú’ö2009”N1ŒŽ19“úiŒŽj?23“úi‹ŕj
‰ďę‹ž‘吔—Œ¤
ŽĺĂŽŇÎě@‰ŔO(‰ŞŽR‘ĺŠwŽŠ‘R‰ČŠwŒ¤‹†‰Č)
•ńW
–źĚ Arithmetic and Algebraic Geometry Related to Moduli Spaces
“ú’ö2009”N1ŒŽ19“úiŒŽj?23“úi‹ŕj
‰ďę“Œ‹ž‘ĺŠw‘ĺŠw‰@”—‰ČŠwŒ¤‹†‰Č‘ĺu‹`Žş
ŽĺĂŽŇT. Katsura (Univ. of Tokyo), S. Kondo (Nagoya Univ.), T. Terasoma (Univ. of Tokyo)
G. van der Geer(Amsterdam Univ.)
•ńW
–źĚ‘㐔Šô‰˝ŽáŽčƒZƒ~Ei[
“ú’ö 2009”N1ŒŽ24“ú(“y) ? 1ŒŽ25“ú(“ú)
‰ďęŽń“s‘ĺŠw“Œ‹ž —HŠwŒ¤‹†‰Č 8-610
ŽĺĂŽŇŹ—ѐł“TiŽń“s‘ĺj
•ńWî•ń‚Ěƒy[ƒW
–źĚ ‘㐔ŒnƒAƒ‹ƒSƒŠƒYƒ€‚ĆŒžŒę‚¨‚ć‚ŃŒvŽZ—˜_
“ú’ö2009”N2ŒŽ16“úiŒŽj?18“úi…j
‰ďę‹ž‘吔—Œ¤
ŽĺĂŽŇ•Ä“c@“ń—Ç(_“ސěH‰Č‘ĺŠwŠî‘bE‹ł—{‹łˆçƒZƒ“ƒ^[)
•ńW
–źĚ ‘ć‚S‰ń@Ž­Ž™“‡‘㐔E‰đÍEŠô‰˝ƒZƒ~ƒi[
“ú’ö2009”N2ŒŽ16“úiŒŽj?20“úi‹ŕj
‰ďęŽ­Ž™“‡‘ĺŠw
ŽĺĂŽŇäo‘qşŽĄiŽ­Ž™“‡‘ĺŠwjC’|“ŕŒ‰i’}”g‘ĺŠwjC –Ř‘şrˆęiL“‡‘ĺŠwjj
•ńW
–źĚ The 4th Japan-Vietnam joint seminar
“ú’ö2009”N2ŒŽ17“úi‰Îj?2ŒŽ21“úi“yj
‰ďę–žŽĄ‘ĺŠw—HŠw•”
ŽĺĂŽŇŒă“ĄŽl˜Y(–žŽĄ‘ĺ)A“n•ÓŒhˆę(“ú–{‘ĺ)Aź“cN“ń(ç—t‘ĺ)AĺU–ě˜a•F(–žŽĄ‘ĺ)
•ńW–ł
–źĚ Diophantine Analysis and Related Fields 2009
“ú’ö2009”N3EE“úiŒŽj? 3“úi‰Îj
‰ďę“ú–{‘ĺŠw—HŠw•”
ŽĺĂŽŇ“V‰H@‰ëşiŒQ”n‘ĺHjE‰Şč@—´Ež˜Yi“ŻŽuŽĐ‘ĺHjE Źź@Ž•v (O‘O‘ĺ—H)
•˝“c@“TŽqi“ú‘ĺ—HjEŽá—с@Œ÷iŹćü‘ĺHj
•ńW‚Č‚ľ
–źĚ Low dimensional topology and number theory
“ú’ö2009”N3ŒŽ17“úi‰Îj? 20“úi‹ŕj
‰ďę•Ÿ‰Şƒ\ƒtƒgƒŠƒT[ƒ`ƒp[ƒNEZƒ“ƒ^E[
ŽĺĂŽŇ‰Í–ěrä(“Œ‘吔—), X‰şš‹I(‹ă‘吔—j
•ńW‚Č‚ľ î•ń‚Ěƒy[ƒW


2007 ”N“x‚ɍs‚í‚ę‚˝ƒVƒ“ƒ|ƒWƒEƒ€‚̏î•ńiŠJĂ“ú’ö‡j
–źĚ •ĎŠˇŒQ‚Ě—E_‚Ć‚ť‚̉ž—p
“ú’ö2007”N5ŒŽ28“ú?2007”N6ŒŽ1“ú
‰ďę‹ž‘吔—Œ¤
ŽĺĂŽŇ’ˇč@śŒő(‹ž“s•{—§ˆă‰Č‘ĺŠwˆăŠw•”)
•ńW?
–źĚ ‘ć10‰ń‘㐔ŒQ‚Ć—ĘŽqŒQ‚Ě•\Œť˜_ Œ¤‹†W‰ď
“ú’ö07/5/31--6/3
‰ďęă’q‘ĺŠwŒyˆä‘ňƒZƒ~ƒi[ƒnƒEƒX
ŽĺĂŽŇ—L–ؐi (RIMS), ’†“‡rŽ÷ (ă’q‘ĺŠw—H)C
ŒÜ–Ą–ő (ă’q ‘ĺŠw—H), ‹{’n•ş‰q (–ź‘ĺ‘˝Œł”—)
•ńWƒz[ƒ€Ey[ƒW
–źĚ ‘gE????š“IƒfƒUƒCƒ“—˜_‚Ć‚ť‚̉ž—p
“ú’ö2007-06-11?2007-06-13
‰ďę‹ž‘吔—Œ¤
ŽĺĂŽŇ“ĄŒ´@—Ǐf(’}”g‘ĺŠwƒVƒXƒeƒ€î•ńHŠwŒ¤‹†‰Č)
•ńW?
–źĚ ”˜_Šô‰˝‚É‚¨‚Ż‚épi“I•ű–@‚Ć‚ť‚́Ež—p, 2007
“ú’ö‚Q‚O‚O‚V”N6ŒŽ11EúiŒŽj?13“úi…)
‰ďę“Œ‹ž‘ĺŠw‘ĺŠw‰@”—‰ČŠwŒ¤‹†‰Č
ŽĺĂŽŇź–{áÁA“s’z’¨•v (L‘ĺ—), ’Ň—YAŽu•á~(“Œ‘吔—), ‰Á “Ą•śŒł(‹ž‘ĺ—)
•ńW–łƒz[ƒ€ƒy[ƒW
–źĚ ‘ć24‰ń‘㐔“I‘g‡‚š˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö‚Q‚O‚O‚V”N‚UŒŽ‚Q‚W“úiŒŽj?‚R‚O“úi…j
‰ďę‹ß‹E‘ĺŠw
ŽĺĂŽŇ’†ě’¨•vi‹ß‹E‘ĺŠwjAóˆäPMi‹ß‹E‘ĺŠwjAEgr‘i“Œ‹ž—Žq‘ĺj
•ńW—LiŽc•”–ń‚P‚OűA˜A—ćFâ“ŕ‰pˆęA‹ă‘吔—j
–źĚ‚ŽŸŒł‘㐔‘˝—l‘Ě‚ĆƒxƒNƒgƒ‹‘Š‚ĚŒ¤‹†
“ú’ö2007-07-02?2007-07-06
‰ďę‹ž‘吔—Œ¤
ŽĺĂŽŇ˛“Ą@‰hˆę(‹ăB‘ĺŠw”—ŠwŒ¤‹†‰@)
•ńW”—Œ¤u‹†˜^•Ęű
–źĚƒ‚ƒ`[ƒt•×‹­‰ď‘ć3‰ń
“ú’ö‚Q‚O‚O‚V”N‚VŒŽ‚Q“úiŒŽj?‚U“úEi‹ŕ)
‰ďę“Œ‹ž‘ĺŠw‘ĺŠw‰@”—‰ČŠwŒ¤‹†‰Č
ŽĺĂŽŇThomas Geisser (USC), –Ř‘şrˆę(L‘ĺ—) , Žu•á~(“Œ‘ĺ ”—), ŽR‰ş„(RIMS)
•ńW–łƒz[ƒ€ƒy[EW
–źĚ‘ć6‰ńL“‡Ž”˜_W‰ď
“ú’ö‚Q‚O‚O‚V”N‚VŒŽ‚Q‚R“úiŒŽj?‚Q‚U“úi–Ř)
‰ďęL“‡‘ĺŠw‘ĺŠw‰@—ŠwŒ¤‹†‰Č
ŽĺĂŽŇŽsE´ —R”üŽqAź–{áÁ, “s’z’¨•vA
ŽR“ŕ‘ě–ç (L“‡‘ĺŠw)C ź—ˆ˜H •ś˜N (L“‡‘Ű‘ĺŠw)C‚‹´ _Ž÷ (“ż“‡‘ĺŠw)
•ńW–łƒz[ƒ€ƒy[ƒW
–źĚ‘ć‚T‚Q‰ń‘㐔ŠwƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö‚Q‚O‚O‚V”N‚WŒŽ‚U“úiŒŽj?EX“úi–Ř)
‰ďę_ŒË‘ĺŠw•S”N‹L”OŠŮi_‘ĺ‰ďŠŮj˜Zbƒz[ƒ‹
ŽĺĂŽŇŻŽir–ži–źŒĂ‰Ž‘ĺjA’|ƒ–Œ´—TŒłiŽş—–H‘ĺjA Ą–ě‘ń–çi‹ă‘ĺj
“s’z’¨•v (L“‡‘ĺŠw)AŒüˆä–΁i‹ž‘吔Œ¤jA ‹g‰ŞN‘ž (_ŒË‘ĺ)
ź“cŒ›ŽiiMB‘ĺjA‹´–{Œő–ői–źŒĂ‰Ž‘ĺj
âV“Ą­•Fi_ŒË‘ĺj
•ńWěŹ ƒz[ƒ€ƒy[ƒWA•ńWŒ´e
–źĚ‘㐔Šô‰˝ƒZƒ~ƒi[2007
“ú’ö 2007”N8ŒŽ6“ú(ŒŽ) ? 8ŒŽ10“ú(‹ŕ)
‰ďę“Œ‹ž‘ĺŠw‹ĘŒ´‘ŰƒZƒ~ƒi[ƒnƒEƒX
ŽĺĂŽŇě–”—YE?˜YiEŒ‘ĺjCŹ—ѐł“TiŽń“s‘ĺjC—é–؍Di“ŒH‘ĺjCâV“Ą ‰Ä—YiL“‡Žs‘ĺj
•ńWî•ń‚Ěƒy[ƒW
–źĚ‘ć‚P‚T‰ńŽ”˜_ƒTƒ}[ƒXƒN[ƒ‹
uŽí”‚̍‚‚˘‘㐔‹Čü‚Ć Abel ‘˝—l‘́v
“ú’ö2007-08-20?2007-08-24
‰ďę‘ĺ‘ň‰ˇňiŠâŽčŒ§‰ÔŠŞŽsj
ŽĺĂŽŇ‘吟—Ç”ŽA”ö‘äŠěFiŠâŽč‘ĺŠwj
•ńWěEé—\’čA ƒz[ƒ€ƒy[ƒW
–źĚ—LŒŔŒQ‚ĚƒRƒzƒ‚ƒƒW[˜_‚ĚŒ¤‹†
“ú’ö2007-08-27?2007-08-31
‰ďę‹ž‘吔—Œ¤
ŽĺĂŽŇ˛X–؁@—mé(MB‘ĺŠw‘SŠw‹łˆç‹@\)
•ńW ƒz[ƒ€ƒy[ƒW
–źĚBirational Automorphisms of Compact Complex Manifolds and Dynamical Systems
“ú’ö2007”N8ŒŽ27“úiŒŽj?31“úi‹ŕj
‰ďę–źŒĂ‰Ž‘ĺŠw‘ĺŠw‰@‘˝Œł”—EȁEwŒ¤‹†‰Č
ŽĺĂŽŇ‹ŕEş˝”Vi–ź‘ĺ‘˝Œł”—jCŒüˆä–΁i‹ž‘吔—Œ¤jC Ź–Ř‘]Œ[ŽŚiŒcEĺŒoĎj
•ńW‚Č‚ľD ƒz[ƒ€ƒy[ƒW
–źĚFourth Franco-Japanese Symposium on Singularities--Singularities in Geometry and Topology
“ú’ö2007”N8ŒŽ27“ú?31“ú
‰ďę—§ŽR‘Űƒzƒeƒ‹iExŽRŽsj
ŽĺĂŽŇÎˆäŽu•ŰŽqi“ŒH‘ĺ‘ĺŠw‰@—HŠwŒ¤‹†‰ČjC ˆ˘•”K—˛i•xŽR‘ĺ—jCz–K—§—YiVŠƒ‘ĺHj
Jean-Paul Brasselet (CNRS) Michel Vaqui\'e (Toulouse),
•ńWASPM‚Š‚ço”Ĺ‚Ě—\’čC˜A—ćF ÎˆäŽu•ŰŽqi“ŒH‘ĺ‘ĺŠw‰@—HŠwŒ¤‹†‰Čj
–źĚ‘ć2‰ń•Ÿ‰Ş”˜_Œ¤‹†W‰ď
“ú’ö2007”N8ŒŽ28“úi‰Îj?30“úi–؁j
‰ďę‹ăB‘ĺŠw”—ŠwŒ¤‹†‰@Ei” čƒLƒƒƒ“ƒpƒXj
ŽĺĂŽŇ‹ŕEqšMi‹ă‘吔—jCŠÝNOi•Ÿ‹ł‘ĺ‹łˆçjCŒ ”J˜Di‹ă‘吔—j
•ńW—L‚čD˜A—EćF‹ŕŽqšMi‹ă‘吔—j
–źĚŒQ‚Ě•\Œť‚Ć“™Žż‹óŠÔă‚Ě’˛˜a‰đÍ
“ú’ö2007-09-03?2007-09-06
‰ďę‹ž‘吔—Œ¤
ŽĺĂŽŇ‹e’r@Ž•F(‹ž“s‘ĺŠw—ŠwŒ¤‹†‰Č)
•ńW”—Œ¤u‹†˜^•Ęű
–źĚAlgebraic and Arithmetic Structures of Moduli Spces
“ú’ö2007”N9ŒŽ3“ú?7“ú
‰ďę–kŠC“š‘ĺŠw
ŽĺĂŽŇ’†‘ş@ˆči–kŠC“š‘ĺŠwjC‰Ľ—сiLin WengEji‹ăBEĺŠwj
•ńWASPM‚Š‚ço”Ĺ—\’čD ƒz[ƒ€ƒy[ƒW
–źĚ‚ŽŸŒł‘㐔‘˝—l‘Ě‚ĆƒxƒNƒgƒ‹‘Š‚̑㐔Šô‰˝Šw
“ú’ö2007”N9ŒŽ10“úiŒŽj?12“úi…j
‰ďę‹ăB‘ĺEw”—ŠwŒ¤‹†‰@@—Šw•”‘ĺ‰ď‹cEş
ŽĺĂŽŇâV“Ą­•Fi_ŒË‘ĺŠwjCˆîę“š–ži‹ž“s‘ĺŠwjC‚–؏r•ăi‹ăB‘ĺŠwj
•ńW‚Č‚ľƒz[ƒ€ƒy[ƒW
–źĚ•ŞEň‚ƏÁŽ¸—Ö‘Ě
“ú’ö2007”N9ŒŽ10“ú-14“ú
‰ďę“Œ‹žEĺŠw”—‰ČŠwŒ¤‹†‰Č ‘ĺu‹`Žş
ŽĺĂEŇAhmed Abbes, Ö“Ą@‹B
•ńW‚Č‚ľƒz[ƒ€ƒy[ƒW
–źĚ‘ć‚S‚O‰ńŠÂ˜_‚¨‚ć‚Ń•\Œť˜_ƒVƒ“ƒ|ƒWƒ…[ƒ€
“ú’ö2007”N9ŒŽ10“úiŒŽj?15“úi“yj
‰ďę‘—§ƒIƒŠƒ“ƒsƒbƒN‹L”OÂ­”N‘‡ƒZƒ“ƒ^[
ŽĺĂŽŇ­’rŠ°ŽOi“Œ‹žŠwŒ|‘ĺŠwj
•ńW—LF@˜A—ć-‘ĺé‹I‘ăŽsiŽRŒű‘ĺŠwC—j
–źĚ“ú–{ŠwpU‹ť‰ď@‘ŰŒ¤‹†W‰ď ‘ć‚T‰ń“ú’†ŠŘŠÂ˜_‘ŰƒVƒ“ƒ|ƒWƒ…[ƒ€
“ú’ö2007”N9ŒŽ10“úiŒŽj?15“úi“yj
‰ďę‘—§ƒIƒŠƒ“ƒsƒbƒN‹L”OÂ­”N‘‡ƒZƒ“ƒ^[
ŽĺĂŽŇ“ú’†ŠŘŠÂ˜_‘ŰƒVƒ“ƒ|ƒWƒ…[ƒ€‘gDˆĎˆő‰ď ‘ă•\ŽŇF­’rŠ°ŽOi“Œ‹žŠw Œ|‘ĺŠwj
•ńW—LFWorld Scientific ‚ć‚čo”ŁD ƒz[ƒ€ƒy[ƒW
–źĚ‰đÍ“IŽ”˜_‚Ć‚ť‚ĚŽüEÓ
“ú’ö2007”N10ŒŽ17“ú?19“ú
‰ďę‹ž‘吔—Œ¤
ŽĺĂŽŇě“c@_ˆę(ŠâŽč‘ĺŠw‹łˆçŠw•”)
•ńWěŹ—\’čD Ú× web iƒvƒƒOƒ‰ƒ€j
–źĚ‘g‡‚š˜_“I•\Œť˜_‚ĚŠg‚Ş‚č
“ú’ö2007-10-23?2007-10-26
‰ďę‹ž‘吔EŒ¤
ŽĺEÎҔöŠp@łl(‘ĺă‘ĺŠwŠî‘bHŠwŒ¤‹†‰Č)
•ńW”—Œ¤u‹†˜^•Ęű
–źĚ ‘㐔Šô‰˝ŠwéčƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö 07/10/23--07/10/26
‰ďę •şŒÉŒ§—§éč‘ĺ‰ď‹cŠŮ
ŽĺĂŽŇ ŠC˜VŒ´ ‰~ié‹Ę‘ĺ—jCˆÉ“Ą —R‰Ŕ—i–źE命Œłj
‚‹´ “ÄŽj iă‘ĺ—j
•ńW ě‚é—\’č
–źĚ‘ć‚Q‚X‰ń‰ÂŠˇŠÂ˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö‚Q‚O‚O‚V”N‚P‚PŒŽ‚P‚X“úiŒŽj?‚Q‚Q“úi–؁j
‰ďęƒEƒFƒ‹ƒVƒeƒB[‚Č‚˛‚âi–źŒĂ‰ŽŽsj
ŽĺĂŽŇ‹´–{Œő–őE‹g“cŒ’ˆę@i–ź‘ĺ‘˝Œł”—j
•ńWěŹ—\’čƒz[ƒ€ƒyE[ƒW
–źĚ‘ć‚P‚O‰ńŽ”˜_ƒI[ƒ^ƒ€ƒ[ƒNƒVƒ‡ƒbƒv
“ú’ö2007”N11ŒŽ21“ú‚Š‚ç25“ú‚Ü‚Ĺ
‰ďę”’”nƒnƒCƒ}ƒEƒ“ƒgƒzƒeƒ‹
ŽĺĂŽŇŒĂŕVšHi‘ĺăŽs‘ĺj
•ńW?
–źĚŽË‰e‘˝—l‘Ě‚ĚŠô‰˝‚Ć‚ť‚ĚŽü•Ó2007
“ú’ö2007”N11ŒŽ23“ú‚Š‚ç25“ú‚Ü‚Ĺ
‰ďę–˘’či‚’mŽs“ŕj
ŽĺĂŽŇ•ŸEԌc–ži‚’m‘ĺjŹ“‡G—YiVŠƒ‘ĺj
•ńWěŹ—\’č
–źĚƒ~ƒ‰[‘Ώ̐Ť‚É‚¨‚Ż‚é‘㐔Šô‰˝Šw‚ĚŒ—˜_“I‘¤–Ę
“ú’ö2007-12-03?2007-12-07
‰ďę‹ž‘吔—Œ¤
ŽĺĂŽŇ‚‹´@“ÄŽj(‘ĺă‘ĺŠw—ŠwŒ¤‹†‰Č)
•ńW”—Œ¤u‹†˜^•Ęű
–źĚ ‘ć7‰ńu‘㐔ŠwEƌvŽZvŒ¤‹†W‰ď (AC2007)
“ú’ö 2007”N 12ŒŽ 5“ú (…) - 7“ú (‹ŕ)
‰ďę Žń“s‘ĺŠw“Œ‹ž ‘ŰŒđ—Ź‰ďŠŮ
ŽĺĂŽŇ ’†‘ş Œ› iŽń“s‘ĺŠw“Œ‹žjAŹŠÖ“š•viŽRŒ`‘ĺŠwE–ź—_‹łŽöj
‚ŽRM‹Bi_ŒË‘ĺŠwjA ˜e ŽŽu iŽRŒ`‘ĺŠwj
’Ă‘ş”Ž•śiŽń“s‘ĺŠw“Œ‹žjA “ŕŽRŹŒ›iŽń“s‘ĺŠw“Œ‹ž)
•ńW “dŽqo”Ĺ—\’č ftp
EźĚ‘㐔“IŽ”˜_‚Ć‚ť‚ĚŽü•Ó
“ú’ö2007-12-10?2007-12-14
‰ďę‹ž‘吔—Œ¤
ŽĺĂŽŇ’Š“c@ĺĘ(‹ž“sHŒ|‘@ˆŰ‘ĺŠw)A’†‘ş ”Žşi‰ŞŽR‘ĺŠwj
•ńW”—Œ¤u‹†˜^•Ęű ƒvƒƒOƒ‰ƒ€
–źĚAlgebraic Geometry and Commutative Algebra Tokyo 2007
“ú’ö2007”N12ŒŽ11“úi‰Îj?15“úi“yj
‰ďę“Œ‹ž‘ĺŠw‘ĺŠw‰@”—‰ČŠwŒ¤‹†‰Č
ŽĺĂŽŇŒj—˜si“Œ‘吔—jCě–”—Y“ń˜Yi“Œ‘吔—j
•ńW‚Č‚ľ
–źĚ—LŒŔŒQ˜_‚Ƒ㐔“I‘g‡‚š˜_
“ú’ö2007-12-17?2007-12-20
‰ďę‹ž‘吔—Œ¤
ŽĺĂŽŇŒ´“c@šW(ŽRŒ`‘ĺŠw—Šw•”)
•ńW?
–źĚKobe Workshop on Quantum Cohomology and Mirror Symmetry
“ú’ö2008”N1”N4“úEi‹ŕj?5“úi“yj
‰ďę_ŒË‘ĺŠw‘ĺŠw‰@—ŠwŒ¤‹†‰Č
ŽĺĂŽŇâV“Ą­•Fi_ŒË‘ĺŠwjC[’JŒŤEĄi‹ž“s‘ĺŠwjC ×–ě”Ei“Œ‹ž‘ĺŠwjC‹g‰ŞN‘ž(_ŒË‘ĺŠwj
•ńW‚Č‚ľ
–źĚNew developments in Algebraic Geometry, Integrable Systems and Mirror symmetry
i”—‰đÍŒ¤‹†ŠƒvƒƒWƒFƒNƒgŒ¤‹†j
“ú’ö2008”N1”N7“úiŒŽj?11“úi‹ŕEj
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇâV“Ą­•F(_ŒË‘ĺ—jC×–ě@”E(“Œ‘吔—jC [’JŒŤŽĄ(‹ž‘ĺ—jC‹g‰ŞN‘ž(_ŒË‘ĺ—
•ńW”­s—\’či2008”N“x’†j
–źĚ uƒ[[ƒ^ŠÖ”, L ŠÖ”v“ú•§“~‚ĚŠwZ
E?’E/TD> 2008”N 1ŒŽ 8“ú (‰Î) - 11“ú (‹ŕ)
‰ďę ƒzƒeƒ‹uƒ}ƒzƒƒoƒ}ƒCƒ“ƒYEO‰Yv
ŽĺĂŽŇ ź–{k“ńi–źŒĂ‰Ž‘ĺŠwjC’Ă‘ş”Ž•śiŽń“s‘ĺŠw“Œ‹žj
•ńW MSJ Memoir ‚Ć‚ľ‚ďo”Ĺ‚ˇ‚é‚ׂ­€”ő’†D ƒz[ƒ€ƒy[ƒW
–źĚƒg[ƒŠƒbƒN‘˝—l‘Ě‚Ě—˜_‚Ě“WŠJ‚Ɖž—p
“ú’ö2008”N1ŒŽ10“úi–؁j?12“úi“yj
‰ďę“Œ–k‘ĺŠw‘ĺŠw‰@—EwŒ¤‹†‰Č”ŠwęU
ŽĺĂŽŇ˛“Ą‘ńiŠň•Œš“żŠw‰€‘ĺŒoĎî•ńjCÎ“cł“Ti“Œ–k‘ĺ—j
•ńW‚Č‚ľ
–źĚ•ŰE^•\ŒťE•ŰŒ^Œ`ŽŽ‚ĆLŠÖ”‚ĚŽü•Ó
“ú’ö2008-01-21?2008-01-25
‰ďę‹ž‘吔—E¤
ŽĺĂŽŇ•˝‰ę@ˆč(‹ž“s‘ĺŠw—ŠwŒ¤‹†‰Č)
•ńW?
–źĚ‘ć‚Q‚O‰ń‰ÂŠˇŠÂ˜_ƒZƒ~ƒi[
“ú’ö2008”N1ŒŽ28“ú--1ŒŽ31“ú
‰ďęŸ‰YŠČˆŐ•ŰŒŻ•Ű—{ƒZƒ“ƒ^[
ŽĺĂŽŇŸNˆäGl(–žŽĄ‘ĺ)Aź“cN“ń(ç—t‘ĺ)
•ńW—L
–źĚ’´•˝–Ę”z’u‚Ě‚ł‚Ü‚´‚Ü‚Č‘¤–Ę
“ú’ö2008”N2ŒŽ4“úiŒŽj?5“úi‰Îj
‰ďę_ŒË‘ĺŠwŽŠ‘R‰ČŠwŒ¤‹†“3†ŠŮ620
ŽĺĂŽŇ‹gEił•Fi_ŒË‘ĺEwj
•ńW‚Č‚ľ
–źĚ‘㐔AŒžŒę‚ĚƒAƒ‹ƒSƒŠƒYƒ€‚ĆŒvŽZ—˜_
“ú’ö2008-02-20?2008-02-22
‰ďę‹ž‘吔—Œ¤
ŽĺĂŽŇ•Ä“c@“ń—Ç(_“ސěH‰Č‘ĺŠwŠî‘bE”—ƒZƒ“ƒ^[)
•ńW?
–źĚ”Ž‘˝”˜_ŹŒ¤‹†W‰ď
“ú’ö2008”N2ŒŽ23“úi“yj
‰ďę‹ăB‘ĺŠw”—ŠwŒ¤‹†‰@i” čƒLƒƒƒ“ƒpƒXj
ŽĺĂŽŇ‹ŕŽqšMi‹ă‘吔—jC–öˆä—T“šiˆ¤H‘ĺŠî‘b‹łˆçj
•ńW—L‚čD˜A—ćF‹ŕŽqšMi‹ă‘吔—j
–źĚRecent Developments in Nonkaehler Geometry
“ú’ö2008”N3ŒŽ5“úi…j?6“úi–؁j
‰ďę–kŠC“š‘ĺŠw
ŽĺĂŽŇ’†‘ş@ˆči–k‘ĺjC‰Á“ĄšEpiă’q‘ĺj
•ńW‚Č‚ľ
–źĚDiophantine Analysis and Related Fields 2008
“ú’ö2008”N3ŒŽ5“ú?7“ú
‰ďę“ŻŽuŽĐ‘ĺŠw
ŽĺĂŽŇ“V‰H@‰ëşiŒQ”n‘ĺHjE‰Şč@—´‘ž˜Yi“ŻŽuŽĐ‘ĺHjE Źź@Ž•v (O‘O‘ĺ—H)
•˝“c@“TŽqi“ú‘ĺ—HjEŽá—с@Œ÷iŹćü‘ĺHj
•ńWDiophantine Analysis and Related Fields: DARF 2007/2008 AIP Conference
Proceedings Volume 976, ISBN: 978-0-7354-0495-3 ed. Takao Komatsu@iƒ}ƒeƒ}ƒeƒBƒJ‚Ŕ̔„j
Ú× web iƒvƒƒOƒ‰ƒ€j
–źĚHodge E˜_E‘މťE“ÁˆŮ“_Ȇ㐔Šô‰˝‚Ćƒgƒ|ƒƒW[i‘ć‚S‰ńj
“ú’ö2008”N3ŒŽ10“úiŒŽj?14“úi‹ŕj
‰ďę“Œ–kŠw‰@‘ĺŠwHŠw•”‘˝‰ęéƒLƒƒƒ“ƒpƒX
ŽĺĂŽŇ‰PˆäŽO•˝iEă‘ĺ—jCĄ–ěˆęEGiă‘ĺ—jC ‘Ť—˜ łi“ŒEkŠw‰@‘ĺHj
•ńW—LC˜A—ćFĄ–ěEęGiEă‘ĺ—jC‘Ť—˜ łi“Œ–kŠw‰@‘ĺHj
–źĚInternational Conference on Commutative Algebra
“ú’ö2008”N3ŒŽ17“ú--3ŒŽ21“ú
‰ďę‰Ą•lŠJu‹L”O‰ďŠŮ
ŽĺĂŽŇŒă“ĄŽl˜Y(–žŽĄ‘ĺ)A“n•ÓŒhˆę(“ú–{‘ĺ)Aź“cN“ń(ç—t‘ĺ)AĺU–ě˜a•F(–žEĄ‘ĺ)
•ńW–ł
–źĚƒ~ƒjW‰ďu‘㐔“I‘g‡‚š˜_v
“ú’ö‚Q‚O‚O‚W”N‚RŒŽ‚Q‚P“úiŒŽj?‚Q‚Q“úi…j
‰ďę_ŒËŠw‰@‘ĺŠw
ŽĺĂŽŇ@­şOi“Œ–k‘ĺjAś“c‘ě–çi_ŒËŠw‰@‘ĺjAŒ´“cšWiŽRŒ`‘ĺj
•ńW–ł


2006 ”N“x‚ɍs‚í‚ę‚˝ƒVƒ“ƒ|ƒWƒEƒ€‚̏î•ńiŠJĂ“ú’ö‡j
–źĚ‘ć‚X‰ń‘㐔ŒQ‚Ć—ĘŽqŒQ‚́E\Œť˜_ Œ¤‹†W‰ď
“ú’ö5/19 - 5/21
‰ďęƒ^ƒiƒx–źŒĂ‰ŽŒ¤CƒZƒ“ƒ^[(–ź“Sźt‰w)
ŽĺĂŽŇ—L–ؐi i‹žE吔—Œ¤j
•ńW?
–źĚ •ĎŠˇŒQ˜_‚ĚŽč–@
“ú’ö 2006-05-22--2006-05-26
‰ďę RIMS420
ŽĺĂŽŇ ‹ăB‘ĺŠw‘ĺŠw‰@Œ|pHŠwŒ¤‹†‰@ Šp@rEY
•ńW ƒz[ƒ€‚؁[ƒW
–źĚ ‘㐔Šô‰˝ŠwƒVƒ“ƒ|ƒWƒEƒ€-˛“n-
“ú’ö6/5-6/8
EEE/TD>˛“n“‡ŠJ”­‘‡ƒZƒ“ƒ^[
ŽĺĂŽŇ‹gŒ´‹v•viVŠƒ‘ĺjAŹ“‡G—YiVŠƒEĺj
•ńW?
–źĚRepresentation Theory of Algebraic Groups and Quantum Groups 06
“ú’ö6/12 - 6/17
‰ďę–źŒĂ‰Ž‘ĺŠw–ěˆË‹L”OŠwpŒđ—ŹŠŮ
ŽĺĂEҏŻŽir–ži–ź‘ĺjAsŽŇ–ž•Fi–ź‘ĺj
⪓cŒ’ˆęiă’q‘ĺjA ’†“‡Œ[i‹ž‘ĺjA ’Jčr”VEiăŽs‘ĺj
•ńW web page : ˜AEćF ŻŽi r–ž (–ź‘ĺ‘˝Œł”—j ƒz[ƒ€ƒy[ƒW
–źĚ‘ć‚Q‚R‰ń‘㐔“I‘g‡‚š˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö6/26- 6/30
‰ďęĺ‘䍑ŰƒZƒ“ƒ^[
ŽĺĂŽŇ˜A—ćF@­şO(“Œ–k‘ĺŠwj
•ńW ěŹ—\’čA ƒz[ƒ€ƒy[ƒW
–źĚ‘ć5‰ńL“‡Ž”˜_W‰ď
“ú’ö‚VŒŽ‚P‚P“ú‚Š‚ç‚P‚S“ú
‰ďęL“‡‘ĺŠwE‘ĺŠw‰@—ŠwŒ¤‹†‰Č
ŽĺĂŽŇ“sEz’¨•viL“‡‘ĺjAź–{áÁiL“‡‘ĺjA
ź—ˆ˜H •ś˜NiL“‡‘Ű‘ĺEjAŽsŒ´—R”üŽqiL“‡‘ĺj
•ńW?
–źĚ‘ć51‰ń‘㐔ŠwƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö8/5-8/8
‰ďę“Œ‹ž‘ĺŠw(‰ďę•ĎX’ˆÓj
ŽĺĂŽŇ‰ďęÓ”CŽŇF‹{‰Ş—mˆę ƒvƒƒOƒ‰ƒ€Ó”CŽŇF‹{–{‰ë•Fi’}”g‘ĺj
–k‹lłŒ°iç—t‘ĺjAE֓Ą‹Bi“Œ‘ĺjA’†‘şˆči–k‘ĺj
‹{‰Ş—mˆęi“Œ‘ĺjAŽRŒ`–M•vi“Œ‹ž”_H‘ĺjA‹{’n~ˆęi“Œ‹žŠwŒ|‘ĺj
•ńW•ńWƒvƒƒOƒ‰ƒ€
–źĚ‘ć‚P‚S‰ńŽ”˜_ƒTƒ}[ƒXƒN[ƒ‹
“ú’ö8/14-8/18
‰ďę ‚¨‚¨‚Ć‚č‘‘iˆÉ“¤j
ŽĺĂŽŇ‰Şč—´‘ž˜Y(“ŻŽuŽĐ‘ĺŠwjAÂ–؍GŽ÷i“Œ‹ž—‰Č‘ĺŠwj
•ńWěŹ—\’č
–źĚ •\Œť˜_‚Ć“™Žż‹óŠÔă‚̉đÍŠw
“ú’ö 2006-08-21--2006-08-24
‰ďę RIMS 420
ŽĺĂŽŇ “Œ‹ž‘ĺŠw‘ĺŠw‰@”—‰ČŠwŒ¤‹†‰Č ŠÖŒű@‰pEq
•ńW
–źĚ ‘㐔Šô‰˝ƒZƒ~ƒi[‚Q‚O‚O‚U
“ú’ö8 ŒŽ 24 “ú ? 8 ŒŽ 27 “ú
‰ďę“Œ‹ž‘ĺŠw‹ĘŒ´‘ŰƒZƒ~ƒi[ƒnƒEƒX
‘ă•\ŽŇŹ—ѐł“TiŽń“s‘ĺŠw“Œ‹žjA—éE؍Di“Œ‹ž‘ĺŠwjA
œA–吳siL“‡Žs—§‘ĺŠwjAâV“Ą‰Ä—YiL“‡Žs—§‘ĺŠwj
•ńWƒm[ƒg‚đŒöŠJA ƒz[ƒ€ƒy[ƒW
–źĚ”—Œ¤’ZŠú‹¤“ŻŒ¤‹†uArc space ‚Ć multiplier ideal ‚ĚŒ¤‹†v
“ú’ö 8/29-9/1
‰ďę”—‰đÍŒ¤‹†Š
ŽĺĂŽŇ“n•ÓŒhˆę (“ú‘ĺ)
•ńW?
–źĚ Arithmetic Algebraic Geometry
“ú’ö ‚Q‚O‚O‚UD‚XD‚P‚P?‚P‚T
‰ďę RIMS 420
ŽĺĂŽŇ ‹ž“s‘ĺŠw‘ĺŠw‰@—ŠwŒ¤‹†‰Č ‰Á“Ą@˜a–ç
•ńW ěŹ—\’č ƒz[ƒ€ƒy[ƒW
–źĚ ‘g‡‚š—˜_‚Ć‚ť‚̏î•ń‰ČŠw‚ւ̉žEp
“ú’ö 2006-09-13--2006-09-15
‰ďę RIMS 115
ŽĺĂŽŇ ’}”g‘ĺŠw‘ĺŠw‰@ƒVƒXƒeƒ€îEńHŠwŒ¤‹†‰Č “ĄŒ´@—Ç
•ńW
–źĚ‘ć39‰ńŠÂ˜_‚¨‚ć‚Ń•\Œť˜_EVƒ“ƒ|ƒWƒEƒ€
“ú’ö9/16-9/18
‰ďęL“‡‘ĺŠw
ŽĺĂŽŇ‹v•Ű•yŽm’jiL“‡‘ĺj ƒvƒƒOƒ‰ƒ€Ó”CŽŇF‹v“cŒŠ@ŽçiŽRŒű‘ĺj
•ńW?
–źĚƒ‚ƒ`[ƒt•×‹­‰ď‘ć‚Q‰ń
“ú’ö9/25-9/29
‰ďę“Œ‹ž‘ĺŠw
ŽĺĂŽŇ–Ř‘şrˆęiL“‡‘ĺjA Thomas Geisseri“ěƒJƒŠ‘ĺA“Œ‘ĺj
Žu•á~i“Œ‘ĺjA Lars HesselholtiMIT,–źŒĂ‰Ž‘ĺj
•ńW?
–źĚ‰đÍ“IŽ”˜_
“ú’ö10/11-13
‰ďę‹ž‘吔E‰?ÍŒ¤
ŽĺĂŽŇ]ă”ÉŽ÷i•xŽR‘ĺŠwHŠw•”j
•ńWěŹ—\’č
–źĚ Arithmetic Galois Theory and Related Moduli Spaces
“ú’ö 2006-10-23--2006-10-27
‰ďę RIMS 420
ŽĺĂŽŇ ‰ŞŽR‘ĺŠw‘ĺŠw‰@ŽŠ‘R‰ČŠwŒ¤‹†EČ ’†‘ş@”Žş
•ńW ƒz[ƒ€ƒy[ƒW
–źĚé”Vč‘㐔Šô‰˝ŠwƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö10/24-10/27
‰ďęé”Vč‘ĺ‰ď‹cŠŮ
ŽĺEÎ҉Á“Ą•śŒł(‹ž“s‘ĺŠwj žľŒł(‘ˆî“c‘ĺŠw)A–Ř‘şrˆę(L“‡‘ĺŠw)
•ńWěŹ—\’čC˜A—ć ‰Á“Ą•śŒł(‹ž“s‘ĺŠwj
–źĚ ‘g‡‚š˜_“I•\Œť˜_‚Ć‚ť‚ĚŽü•Ó
“ú’ö 2006-10-24--2006-10-27
‰ďę RIMS 115
ŽĺĂŽŇ ‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š —é–؁@•Žj
•ńW ěŹ—\’č
–źĚ ŽË‰e‘˝—l‘Ě‚ĚŠô‰˝‚Ć‚ť‚ĚŽü•Ó2006
“ú’ö 11ŒŽ3“ú‚Š‚ç5“ú‚Ü‚Ĺ
‰ďę ‚’m‘ĺŠw@—Šw•”
ŽĺĂŽŇ •ŸŠÔŒc–ži‚’m‘ĺjŹ“‡G—YiVŠƒ‘ĺj
•ńW ěŹ(—\’č)
–źĚ‘ć‚X‰ńŽ”˜_ƒI[ƒ^ƒ€ƒ[ƒNƒVƒ‡ƒbƒv
“ú’ö11/6-11/10
‰ďę”’”nƒnƒCƒ}ƒEƒ“Egƒzƒeƒ‹
ŽĺĂŽŇŒĂŕVšH(‘ĺăŽs—§‘ĺŠwj
•ńW?
–źĚ ŒvŽZ‘㐔“Œv‚Ě“WŠJ
“ú’ö 2006-11-06--2006-11-10
‰ďę RIMS 420
ŽĺĂŽŇ “Œ‹žEĺŠw‘ĺŠw‰@î•ń—HŠwŒnŒ¤‹†‰Č ’|‘ş@˛’Ę
•ńW
–źĚ‘ć28‰ń‰ÂŠˇŠÂ˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö11/13-11/16i—\’čj
‰ďęƒEƒFƒ‹ƒTƒ“ƒsƒA‘˝–€
ŽĺĂŽŇź“cN“ń (ç—t‘ĺ)
•ńW?
–źĚ”˜_Šô‰˝‚É‚¨‚Ż‚é p i“IŽč–@‚Ć‚ť‚̉ž—p
“ú’ö11ŒŽ’†{ (2, 3 “úŠÔ)
‰ďęL“‡‘ĺŠwE‘ĺŠw‰@—ŠwŒ¤‹†‰Č
ŽĺĂŽŇ“s’z’¨•viL“‡‘ĺj‘ź
•ńW?
–źĚ p-adic Arithmetic Geometry
“ú’ö 2006-11-20--2006-11-22
‰ďę RIMS 115
ŽĺĂŽŇ ‹ž“s‘ĺŠw‘ĺŠw‰@—ŠwŒ¤‹†‰Č ‰Á“Ą@˜a–ç
•ńW ƒz[ƒ€ƒy[ƒW
–źĚ ‘o‹Č‹óŠÔ‚Ěƒgƒ|ƒƒW[A•Ą‘f‰đÍ‚¨‚ć‚ѐ”˜_
E?’E/TD> 2006-12-04--2006-12-08
‰ďę RIMS 115
ŽĺĂŽŇ ‹ž“s‘ĺEw‘ĺŠw‰@—ŠwŒ¤‹†‰Č “Ąˆä@“š•F
•ńW
–źĚ ‘㐔“IŽ”˜_‚Ć‚ť‚ĚŽü•Ó
“ú’ö 2006-12-11--2006-12-15
‰ďę RIMS 420
ŽĺĂŽŇ ‘ˆî“c‘ĺŠw—HŠw•” ‹´–{@Šěˆę˜N
•ńW ěŹ—\’č
–źĚ Computer Algebra-Design of Algorithms, Implementations and Applications
“ú’ö 2006-12-18--2006-12-21
‰ďę RIMS 420
ŽĺĂŽŇ —§‹ł‘ĺŠw—Šw•” ‰ĄŽR@˜aO
•ńW
–źĚ ŒQ˜_‚Ć‚ť‚ĚŽü•Ó
“ú’ö 2006-12-18--2006-12-21
‰ďę ‹ž‘ĺ‰ďŠŮ101
ŽĺĂŽŇ Žş—–H‹Ć‘ĺŠwHŠw•” ç‹g—ǁ@’ź‹I
•ńW
–źĚ Œ´ŽnŒ`ŽŽ‚ĚŒ—˜_“I\Ź II
“ú’ö 2006-12-18--2006-12-22
‰ďę RIMS 202
ŽĺĂŽŇ ‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š ‚‹´@“ÄŽj
•ńW ěŹ—\’č
–źĚ ŒvŽZ‰ÂŠˇ‘㐔‚ĆŒvŽZ‘㐔Šô‰˝
“ú’ö 2007-01-15--2007-01-19
‰ďę RIMS 420
ŽĺĂŽŇ ‘ĺă‘ĺŠw‘ĺŠw‰@î•ń‰ČŠwŒ¤‹†‰Č “ú”ä@F”V
•ńW
–źĚ•ŰŒ^Œ`ŽŽ‚¨‚ć‚Ń‚ť‚ĚŽüŠú‚̍\Ź‚Ɖž—p
“ú’ö1/15-1/19
‰ďę‹ž“s‘ĺŠw•SŽü”NŽžŒv‘ä‹L”OŠŮ
ŽĺĂŽŇĄ–ě‘ń–çEi‹ăB‘ĺŠwj
•ńWěŹ—\’č
–źĚ‘ć‚P‚X‰ń‰ÂŠˇŠÂ˜_ƒZƒ~ƒi[
“ú’ö1/29-2/1
‰ďę‹ăB‘ĺŠw
ŽĺĂŽŇ‚–؏r•ă (‹ăB‘ĺŠw)
•ńW?
–źĚĺ‘䐔˜_‹y‚Ń‘g‡‚š˜_ŹŒ¤‹†W‰ď2006(‘ć3‰ń)
“ú’ö2007”N1ŒŽ29“ú(ŒŽ)‚Š‚ç30“ú(‰Î)
‰ďę“Œ–k‘ĺŠw‘ĺŠw‰@î•ń‰ČŠwŒ¤‹†‰Č“ 2ŠK‘ĺu‹`Žş
ŽĺĂŽŇ@­şOi“Œ–k‘ĺî•ń, ŠJĂÓ”CŽŇjA
ĄˆäG—Yi“Œ–k‘ĺî•ńjEC“c’J‹v—Yi“Œ–k‘ĺî•ńj
•ńWěŹ—\’č ƒz[ƒ€ƒy[ƒW
–źĚ‘ć‚S‰ńŽ”˜_ƒXƒvƒŠƒ“EOƒRƒ“ƒtƒ@ƒŒƒ“ƒX
Siegel Modular Forms and Abelian Varieties
“ú’ö‚QEŽ‚T“úiŒŽj‚Š‚ç‚X“ú(‹ŕj
‰ďę•l–źŒÎƒJƒŠƒAƒbƒN
ŽĺĂŽŇˆÉŽR’m‹` (‘ĺă‘ĺŠw)
•ńW?
–źĚ ‘㐔AŒ`ŽŽŒžŒęAŒvŽZ—˜_‚Ć‚ť‚̉ž—p
“ú’ö 2007-02-19--2007-02-21
‰ďę RIMS 115
ŽĺĂŽŇ “‡Ş‘ĺŠw‘‡—HŠw•” ŻŽi@–MF
•ńW
–źĚƒ‚ƒ`[ƒtAŠÖ˜A‚ˇ‚é˜b‘čA‰ž—p
“ú’ö3/5-3/9 —\’č
‰ďEE/TD>L“‡EˆŔŒ|ƒOƒ‰ƒ“ƒhƒzƒeƒ‹—\’č
ŽĺĂŽŇ–Ř‘şrˆęEź–{áÁiL“‡‘ĺj‘ź
•ńW?
–źĚDiophantine Analysis and Related Fields 2007
“ú’ö2007”N3ŒŽ7“ú?9“ú
‰ďęŒcœä‹`m‘ĺŠw—HŠw•”
ŽĺĂEҏŹźŽ•viO‘O‘ĺ—j
•ńW‚ ‚čDÚ×‚Í HP


2005 ”N“x‚ɍs‚í‚ę‚˝ƒVƒ“ƒ|ƒWƒEƒ€‚̏î•ńiŠJĂ“ú’ö‡j
–źĚ‘ć8‰ńu‘㐔ŒQ‚Ć—ĘŽqŒQ‚Ě•\Œť˜_vŒ¤EEW‰ď
“ú’ö5ŒŽ27“ú?29“ú
‰ďę•xŽmEłˆçŒ¤CŠ(Ă‰ŞŒ§ž–ěŽs)
ŽĺĂŽŇ“ŕ“Ą ‘A˛Š_ ‘ĺ•ăi’}”g‘ĺj
•ńW?
–źĚSecond COE Workshop on Sphere Packings
“ú’ö5ŒŽ30“ú?6ŒŽ3“ú
‰ďę‹ăB‘ĺŠw
ŽĺĂŽŇâ“ŕ‰pˆęi‹ă‘ĺj
•ńW?
–źĚInternational Conference on Probability and Number Theory 2005 (P&NT 05)
“ú’ö6ŒŽ20“ú(ŒŽ)?24“ú(‹ŕ)
‰ďę‹ŕ‘ň“Ç”„‰ďŠŮ (‹ŕ‘ňŽs)
ŽĺĂŽŇź–{k“ń (–ź‘ĺ)A™“c—m (ă‘ĺ)
•ńW? ƒz[ƒ€ƒy[ƒW
–źĚ‘ć22‰ń‘㐔“I‘g‡‚š˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö6ŒŽ27“ú?29“ú
‰ďęˆ¤•Q‘ĺ
ŽĺĂŽŇ˛X–Ř—méiˆ¤•Q‘ĺjEAˆŔ•”—˜”Viˆ¤•Q‘ĺj
’ëč—˛iˆ¤•Q‘ĺj
•ńWÝŒÉ‚ ‚či–⍇‚šćF’ëč—˛j ƒz[E€Ey[ƒW
–źĚ ‘ć‚S‰ńL“‡Ž”˜_W‰ď
“ú’ö ‚Q‚O‚O‚T”N‚VŒŽ‚Q‚O“ú‚Š‚ç‚Q‚Q“ú‚Ü‚Ĺ
‰ďę L“‡‘ĺŠw
ŽĺĂŽŇ ź–{áÁA“s’z’¨•vAŽsŒ´—R”üŽq
‹÷“c_Ž÷ (L“‡‘ĺŠw)Aź—ˆ˜H•ś˜NiL“‡E‘Ű‘ĺŠwj
•ńW —\’č‚Č‚ľ ƒz[ƒ€ƒy[ƒW
–źĚ ‘ć‚T‚O‰ń‘㐔ŠwƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö ‚Q‚O‚O‚T”N‚WŒŽ‚QEúi‰Îj‚Š‚ç‚T“úi‹ŕj
‰ďę “ż“‡‘ĺŠw
ŽĺĂŽŇ ‰ďęÓ”CŽŇF‘ĺŸş˜Ni“ż“‡‘ĺŠwjA•ĐŽR^ˆęi“ż“‡‘ĺŠwj
ƒvƒƒOƒ‰ƒ€Ó”CŽŇEF‰Á“Ą•śŒłi‹ž“s‘ĺŠwjA˛“Ą‰hˆęi‹ăB‘ĺŠwj
óŽĹGli‘ĺăŽs—§‘ĺŠwjAŒă“ĄŽl˜Yi–žŽĄ‘ĺŠwj
•ńW •ńW ƒvƒƒOƒ‰ƒ€
–źĚ‘g‡‚šƒfƒUƒCƒ“‚Ć‚ť‚ĚŽü•Ó‚É‚¨‚Ż‚鐔—“IŠî‘b ‚¨‚ć‚Ń‚ť‚ę‚ç‚̉ž—p
“ú’ö8ŒŽ3“ú ? 5“ú
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇ–žŻ‘ĺŠwî•ńŠw•” ŽÂŒ´‘
•ńW?
–źĚ 2005 Workshop on Cryptography and Related Mathematics
“ú’ö 2005”N8ŒŽ8“úiŒŽj?10“úi…j
‰ďę ’†‰›‘ĺŠwŒăŠy‰€ƒLƒƒƒ“ƒpƒX3†ŠŮ3ŠKŹƒz[ƒ‹
ŽĺĂŽŇ ’†‰›‘ĺŠw21˘‹ICOEƒvƒƒOƒ‰ƒ€ @@@@˘˜blFŠÖŒű—́i’†‰›‘ĺŠwj
•ńW ěŹ—\’č ƒz[ƒ€ƒy[ƒW
–źĚ‘ć13‰ńŽ”˜_ƒTƒ}[ƒXƒN[ƒ‹
“ú’ö8EE2“úi…j? 26“ú
‰ďę‘–Ż‹x‰É‘ş”\“oç—˘•l
ŽĺĂŽŇ•l”¨–F‹IAÂ–؍GŽ÷i“Œ‹ž—‘ĺj
•ńW?
–źĚTheoretical Effectivity and Practical Effectivity of Groebner Bases
“ú’ö8ŒŽ22“ú?26“ú
‰ďę—§‹ł‘ĺŠw
ŽĺĂŽŇ“ú”äF”V (‘ĺă‘ĺŠw), ‘ĺˆ˘‹vr‘Ľ(“Œ‹ž—Žq‘ĺj, ‘吙‰pŽj (—§‹ł‘ĺŠw)
’|‘ş˛’Ę (“Œ‹ž‘ĺŠw) , ‰ĄŽR˜aOi‹ăB‘ĺŠwj
•ńW?
–źĚ—LŒŔŒQ‚ĚƒRƒzƒ‚ƒƒW[˜_‚ĚŒ¤‹†
“ú’ö8ŒŽ29 “ú ? 9ŒŽ2“ú
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇˆ¤•Q‘ĺŠw—Šw•” ˛X–Ř—mé
•ńW”—‰đÍE¤‹†Šu‹†˜^‚P‚S‚U‚U
–źĚ‘ć38‰ńŠÂ˜_‚¨‚ć‚Ń•\Œť˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö9ŒŽ 2“ú ? 4EE/TD>
‰ďęˆ¤’mH‹Ć‘ĺŠw
ŽĺĂŽŇŽáźF‹`ié‹Ę‘ĺjC ‹÷ŽRF•viˆ¤’mH‹Ć‘ĺj
•ńW?
–źĚConference on Singularity Theory and Commutative Ring Theory
“ú’ö9ŒŽ12“ú?17“ú
‰ďę•l–źŒÎƒJƒŠƒAƒbƒN
ŽĺĂŽŇÎˆäŽu•ŰŽqi“ŒH‘ĺjA‘ –ě˜a•Fi–žŽĄ‘ĺjAŒ´Lśi“Œ–k‘ĺj
”‘EšFi“ú‘ĺjA“n•ÓŒhˆęi“ú‘ĺj
•ńEW?
–źĚ‘ć8‰ńŽ”˜_ƒI[ƒ^ƒ€ƒ[ƒNƒVƒ‡ƒbƒv
“ú’ö9ŒŽ24“ú?10ŒŽ1“ú
‰ďę”’”nƒnƒCƒ}ƒEƒ“ƒgƒzƒeƒ‹
ŽĺĂŽŇ‹g“cŒh”Vi‹ž‘ĺj
•ńW?
–źĚModuli and compactifications
“ú’ö9ŒŽ28E?Ei…j? 30“úi‹ŕj
‰ďę–źŒĂ‰Ž‘ĺŠw‘ĺŠw‰@‘˝Œł”—‰ČŠwŒ¤‹†‰Č
ŽĺĂŽŇ’†‘şˆči–k‘ĺjAŒüˆä–΁i‹ž‘吔—Œ¤j
Ö“Ą­•Fi_ŒË‘ĺjA‹ŕ“ş˝”Vi–ź‘ĺj
•ńEW?
–źĚE㐔“I‘g‡‚š˜_‚Ć‚ťE̎ü•Ó
“ú’ö10ŒŽ3“ú ? 6“ú
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇŽRŒ`‘ĺŠw—Šw•” ŹŠÖ“š•v
•ńW?
–źĚ‰đÍEIŽ”˜_
“ú’ö10ŒŽ17 “ú? 19@“ú
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇŒcœä‹`m‘ĺŠwŒoĎŠw•” Œj“cš‹I
•ńW?
–źĚ ŽË‰e‘˝—l‘Ě‚ĚŠô‰˝‚Ć‚ť‚ĚŽü•Ó2005
“ú’ö 11ŒŽ3“ú‚Š‚ç5“ú‚Ü‚Ĺ
‰ďę ‚’m‘ĺŠw@—Šw•”
ŽĺĂŽŇ •ŸŠÔŒc–ži‚’m‘ĺj@Ź“‡G—YiVŠƒ‘ĺj
•ńW –˘’č
–źĚ‘g‡‚š˜_“I•\Œť˜_‚̐˘ŠE
“ú’ö11ŒŽ8 “ú ? 11“ú
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇ–h‰q‘ĺŠwZ‘‡‹łˆçŠwŒQ …ěETŽi
•ńW?
–źĚ‘ć27‰ń‰ÂŠˇŠÂ˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö11ŒŽ14“ú?17“ú
‰ďęƒCƒ“ƒeƒbƒN‘ĺŽRŒ¤CƒZƒ“ƒ^[
ŽĺĂŽŇ‰Í‡G‘ׁiÎěH‹Ć‚ęj
•ńW?
–źĚ ‘ć6‰ńu‘㐔Šw‚ĆŒvŽZvŒ¤‹†W‰ď (AC2005)
“ú’ö 2005”N11ŒŽ15“ú (‰Î) - 18 “ú (‹ŕ)
‰ďę Žń“s‘ĺŠw“Œ‹ž ‘ŰŒđ—Ź‰ďŠŮ
ŽĺĂŽŇ ’†‘ş Œ› iŽńEs‘ĺŠw“Œ‹žjA‚ERMEBi_ŒË‘ĺŠwj
˜e ŽŽu iO‘O‘ĺŠwjA’Ă‘ş”Ž•śiŽń“s‘ĺŠw“Œ‹žj
‘q“cr•Fi–@­‘ĺŠwjAŹŠÖ“š•viERŒ`‘ĺŠwj
“ŕŽRŹŒ›iNTT)
•ńW “dŽqo”Ĺ—\’č
–źĚSymplectic varieties and related topics ? ‘㐔Šô‰˝ƒZƒ~ƒi[2005?
“ú’ö11ŒŽ21“ú?25“ú
‰ďę–kŠC“š‘ĺŠw
ŽĺĂŽŇź‰ş‘ĺ‰îi–k‘ĺ—ji‘ă•\jA Ź—ѐł“T (Žń“s‘ĺŠw“Œ‹ž)AâV“Ą‰Ä—Y (L“‡Žs‘ĺî•ń‰Č)A
—é–؍D (“Œ‹ž‘ĺŠw”—‰ČŠwŒ¤‹†‰Č)AL–吳s (L“‡Žs‘ĺî•ń‰Č)
•ńWě‚é—\’č, ƒz[ƒ€ƒy[ƒW
–źĚ‘㐔“IŽ”˜_‚Ć‚ť‚ĚŽü•Ó
“ú’ö12ŒŽ5 “ú ? 9“ú
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇ‘ˆî“c‘ĺŠw—HŠw•” ‹´–{Šěˆę˜N
•ńWěŹ—\EEA HREF="">
–źĚŒ´ŽnŒ`ŽŽ‚́E—˜_“I\Ź
“ú’ö12ŒŽ5 “ú ? 9@“ú
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇ‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š, ‚‹´“ÄŽj
•ńW?
–źĚAlgebraic Geometry and Beyond
“ú’ö12ŒŽ12“ú ? 16“ú
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇ_ŒË‘ĺŠw—Šw•” EV“Ą­•F
•ńW?
–źĚComputer Algebra
-- Design of Algorithms, Implementations and Applications
“ú’ö12ŒŽ19 “ú ? 22“ú
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇ‹ăB‘ĺŠw”—ŠwŒ¤‹†‰@ ‰ĄŽR˜aO
•ńW?
–źĚ ‘ćŽO‰ń‘㐔‹Čü˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö 2005”N12ŒŽ19“ú(ŒŽ)?22“ú(–Ř)
‰ďę Žş
ŽĺĂŽŇ Eēc@“ń—ǁi_“ސěH‰ČEĺŠwjE基@˜Ni“ż“‡‘ĺŠwj
•ńW ěŹ—\’č i–⍇‚šćF‘ĺŸş@˜NEj ƒz[ƒ€ƒy[ƒW
–źĚ –k—¤”˜_ŹŒ¤‹†W‰ď
“ú’ö ‚Q‚O‚O‚T”N‚P‚QŒŽ‚Q‚U“úiŒŽj?‚P‚QŒŽ‚Q‚V“úi‰Îj
‰ďę ‹ŕ‘ň‘ĺŠwƒTƒeƒ‰ƒCƒgƒvƒ‰ƒUi‹ŕ‘ňŽsź’Ź‹łˆçŒ¤CŠŮ“ŕj
ŽĺĂŽŇ •˝—ŃŠ˛li‹ŕ‘ňH‹Ć‘ĺŠwjA–ě‘ş–žli‹ŕ‘ň‘ĺŠwEjA–Ř‘şEށi•xŽR‘ĺŠwj
•ńW ě‚é—\’č ƒz[ƒ€ƒy[ƒWěEŹ—\’č
–źĚ‘㐔Šô‰˝‚ĆˆĘ‘ŠŠô‰˝‚ĚŽü•Ó
“ú’ö1ŒŽ16“ú ? 19“ú
‰ďEE/TD>‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇ‘ˆî“c‘ĺŠw—HŠwEEÎâ•ä
•ńW?
–źĚ•ŰŒ^•\ŒťEL”Ÿ”EŽüŠú‚ĚŒ¤‹†
“ú’öH18”N1ŒŽ23“ú ? 27“ú
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇ‹ž“s‘ĺŠw—ŠwŒ¤‹†‰Č ’r“c•Ű
•ńW?
–źEĚ ĺ‘䐔˜_‹y‚Ń‘g‡‚š˜_ŹŒ¤‹†W‰ď2005
“ú’ö2006”N1ŒŽ30“ú‚Š‚ç31“ú
‰ďę“Œ–k‘ĺŠw‘ĺŠw‰@î•ń‰ČŠwŒ¤‹†‰Č 2ŠK‘ĺu‹`Žş
ŽĺĂŽŇ @­şOi“Œ–k‘ĺî•ń, ŠJĂÓ”CŽŇjAĄˆäG—Yi“Œ–k‘ĺî•ńjC
“c’J‹v—Yi“Œ–k‘ĺî•ńj
•ńWěŹ—\’č ƒz[ƒ€ƒy[ƒW
–źĚ‘㐔AŒžŒęEAŒvŽZƒVƒXƒeƒ€‚É‚¨‚Ż‚éƒAƒ‹ƒSƒŠƒYƒ€–â‘č
“ú’öH18”N2ŒŽ20 “ú ? 22“ú
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤EEE/TD>
ŽĺĂŽŇ“‡Ş‘ĺŠw‘‡—Šw•” ŻŽi–MF
•ńW?
–źĚDiophantine Analysis and Related Fields 2006
“ú’ö2006”N3ŒŽ7“úi‰Îj?10“úi‹ŕj
‰ďęŒcœä‹`m‘ĺŠw—HŠw•”
ŽĺĂŽŇŒj“cš‹IiŒcœä‘ĺŒoĎjEŹźŽ•viO‘O‘ĺ—j
•ńW‚ ‚čDÚ×‚Í HP
ěŹ


2004 ”N“x‚ɍs‚í‚ę‚˝ƒVƒ“ƒ|ƒWƒEƒ€‚̏î•ńiŠJĂ“ú’ö‡j
–źĚ ‘ć‚V‰ń‘㐔ŒQ‚Ć—ĘŽqŒQ‚Ě•\Œť˜_Œ¤‹†W‰ď
“ú’ö 2004”N 6ŒŽ 18“ú ‚Š‚ç 20“ú
‰ďę ExŽm‹łˆçŒ¤CŠ
ŽĺĂŽŇ ŻŽi r–žA‹{’n •ş‰q(–ź‘ĺ‘˝Œł”—j
EńW ěŹ—\’č ƒz[ƒ€ƒy[ƒW
–źĚ ‘ć‚Q‚P‰ń‘㐔“I‘g‚ݍ‡‚í‚š˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö‚Q‚O‚O‚S”N‚UŒŽ‚Q‚W“ú ‚Š‚ç‚R‚O“ú ‚Ü‚Ĺ
‰ďęMB‘ĺŠw—Šw•”
ŽĺĂŽŇ ‰Ô–Ř ÍGiEMB‘ĺŠw—Šw•”j
•ńW?
–źĚ ‘’Ñ㐔Šô‰˝ƒZƒ~ƒi[‚Q‚O‚O‚S
“ú’ö2004 ”N 7 ŒŽ 4 “ú‚ŠEE7 ŒŽ 8 “ú
‰ďę‘’ĂƒZƒ~ƒi[ƒnƒEƒX
‘ă•\ŽŇŹ—ѐł“Ti“s—§‘ĺŠwjŠFě—´”Ži“Œ‹žH‹Ć‘ĺŠwj
âV“Ą‰Ä—YiL“‡Žs—§‘ĺŠwj—é–؍Di“Œ‹ž‘ĺŠwj
•ńWƒm[ƒg‚đE?ŠJ‚ˇ‚é—\’čA ƒz[ƒ€ƒy[ƒW
–źEĚ Algebraic Geometry workshop (Dolgachev's 60))
“ú’ö‚Q‚O‚O‚S”NEVŒŽ‚T“ú ‚Š‚ç‚X“ú ‚Ü‚Ĺ
‰ďę‚j‚h‚`‚riƒ\ƒEƒ‹j
EĺĂŽŇJongHae Keum(KIAS), ‹ŕ“ş ˝”V
•ńW?
–źĚ ‘ć‚R‰ńL“‡Ž”˜_W‰ď
“ú’ö ‚Q‚O‚O‚S”N‚VŒŽ‚Q‚P“ú‚Š‚ç‚Q‚R“ú‚Ü‚Ĺ
‰ďę L“‡‘ĺŠw
ŽĺĂŽŇ ź–{áÁA“s’z’¨•vAŽsŒ´—R”üŽqA‹÷“c_Ž÷ (L“‡‘ĺŠw)
ź—ˆ˜H•ś˜NiL“‡‘Ű‘ĺj
•ńW —\’č‚Č‚ľ ƒz[ƒ€ƒy[ƒW
–źĚ Designs, Codes, Graphs and their Links
“ú’ö‚Q‚O‚O‚S”N‚VŒŽ‚Q‚W“ú ‚Š‚ç‚R‚O“ú ‚Ü‚Ĺ
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤EEE/td>
ŽĺĂŽŇŒI–Ř i“ńi‘ĺă•{—§‘ĺŠwHŠwŒ¤‹†‰Čj
•ńW?
–źĚ Computer Algebra Œ¤‹†‚̐V‚˝‚Č”­“Wi’ZŠú‹¤“Żj
“ú’ö‚Q‚O‚O‚S”N‚WŒŽ‚Q“ú ‚Š‚ç‚S“ú ‚Ü‚Ĺ
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇ‚‹´ łi_ŒË‘ĺŠw”­’B‰ČŠw•” j
•ńW?
–źĚ ‘ć‚S‚X‰ń‘㐔ŠwƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö ‚Q‚O‚O‚S”N‚WŒŽ‚Q“ú‚Š‚ç‚T“úi‘O”ź”˜_AŒă”źŒQ˜_j
‰ďę ĺ‘䍑ŰƒZƒ“ƒ^[
ŽĺĂŽŇ ‰ďęÓ”CŽŇFX“cN•vi“Œ–k‘ĺŠwjAÎ“cEł“Ti“Œ–k‘ĺŠwj
ƒvƒƒOƒ‰ƒ€Ó”CŽŇF‹ŕŽqšMi‹ăB‘ĺŠwjA@­şOi“Œ–kEĺŠwj
•ńW ƒz[ƒ€ƒy[ƒWiƒvƒƒOƒ‰ƒ€‚Ć•ńWj
–źĚ 2004 Workshop on Cryptography and Related Mathematics
“ú’ö 2004”N8ŒŽ6“úi‹ŕj?8“úi“új
‰ďę ’†‰›‘ĺŠwŒăŠy‰€ƒLƒƒE“ƒpƒX3†ŠŮ3ŠKŹƒz[ƒ‹
ŽĺĂŽŇ ’†‰›‘ĺŠw21˘‹ICOEƒvƒƒOƒ‰ƒ€AŒ¤‹†ŠJ”­‹@\
˘˜blFŠÖŒű—́i’†‰›‘ĺŠwj
•ńW ěŹ—\’č ƒz[ƒ€ƒy[ƒW
–źĚ •\Œť˜_A‹y‚Ń“™Žż‹óŠÔă‚Ě’˛˜a‰đÍ
“ú’ö‚Q‚O‚O‚S”NEWŒŽ‚X“ú ‚Š‚ç‚P‚Q“ú ‚Ü‚Ĺ
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇ ˆäEE‡ŽqiEšŽć‘ĺŠw’nˆć‰ČŠw•”j
•ńW?
–źĚWorkshop on Topological Combinatrics and Tropical AlgebraicGeometry
“ú’ö‚Q‚O‚O‚S”N‚WŒŽ‚P‚Q“ú ‚Š‚ç‚Q‚P“ú ‚Ü‚Ĺ
‰ďę ‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇ Kirillov, Anatolii‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Šj
•ńW?
–źĚ‘ć‚P‚Q‰ńŽ”˜_ƒTƒ}[ƒXƒN[ƒ‹uŠî–{ŒQv
“ú’ö ‚Q‚O‚O‚S”N‚WŒŽ‚Q‚R“ú ‚Š‚ç‚Q‚V“ú ‚Ü‚Ĺ
‰ďę•ŸŽR‹Î˜J‘‡•ŸŽƒƒZƒ“ƒ^[uƒ[ƒYƒCƒ“”őŒăƒnƒCƒcv
ŽĺĂŽŇŠp ŠFGEiă’q‘ĺŠw—HŠw•”j
•ńWěŹ—\’č ƒz[ƒ€ƒy[ƒW
–źĚ ‚Q‚P˘‹I‚b‚n‚d Summer School(ƒA[ƒxƒ‹‘˝—l‘Ě‚Ć‚ť‚ĚŽü•Ó)
“ú’ö‚Q‚O‚O‚S”N‚WŒŽ‚Q‚S“ú ‚Š‚ç‚Q‚X“ú ‚Ü‚Ĺ
‰ďę”MŠCiƒzƒeƒ‹źŽREđ—\’čj
ŽĺĂŽŇŒj —˜si“Œ‹ž‘ĺŠw”—‰ČŠwŒ¤‹†‰Čj
•ńW?
–źĚ ‘ć‚R‚V‰ńŠÂ˜_‹y‚Ń•\Œť˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö‚Q‚O‚O‚S”N‚XŒŽ‚R“ú ‚Š‚çET“ú ‚Ü‚Ĺ
‰ďęź–{Žs‚lƒEƒCƒ“ƒO
ŽĺĂŽŇ óŽĹ Gli‘ĺăŽsE§‘ĺŠw—Šw•”j
•ńW?
–źĚ rě EP’jŽ ’Ç“‰Œ¤‹†W‰ď
“ú’ö‚Q‚O‚O‚S”N‚XŒŽ‚S“ú ‚Š‚ç‚V“ú ‚Ü‚Ĺ
‰ďę—§‹ł‘ĺŠw
ŽĺĂŽŇ˛“Ą •śLi—§‹ł‘ĺŠwj
•ńWo”ĹŽĐ‚Š‚ço”Ĺ—\’č
–źĚ ƒ‚ƒWƒ…ƒ‰ƒC‹óŠÔ‚Ɛ”˜_Šô‰˝
“ú’ö‚Q‚O‚O‚S”N‚XŒŽ‚W“ú ‚Š‚ç‚P‚T“ú ‚Ü‚Ĺ
‰ďę‹ž“s‘ĺŠw
ŽĺĂEҐX˜e ~i‹ž“s‘ĺŠw—ŠwŒ¤‹†‰Čj
•ńW?
–źĚ Sp(2,R)‚ĆSU(2,2)ă‚Ě•ŰŒ^Œ`ŽŽi’ZŠú‹¤“Żj
“ú’ö‚Q‚O‚O‚S”N‚XŒŽ‚Q‚W“ú ‚Š‚ç‚P‚OŒŽ‚P“ú ‚Ü‚Ĺ
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇD“c FKi“Œ‹ž‘ĺŠw”—‰ČŠwŒ¤‹†‰Čj
•ńW?
EźĚ ‰đÍ“IŽ”˜_‚Ć‚ť‚ĚŽü•Ó
“ú’ö‚Q‚O‚O‚S”N‚P‚OŒŽ‚P‚W“ú ‚Š‚ç‚Q‚Q“ú ‚Ü‚Ĺ
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇ“VEH ‰ëşiŒQ”n‘ĺŠwHŠw•”j
•ńW?
–źĚ •\Œť˜_‚É‚¨‚Ż‚é‘g‚ݍ‡‚í‚š˜_“IŽč–@‚Ć‚ť‚̉ž—p
“ú’ö‚Q‚O‚O‚S”N‚P‚OŒŽ‚P‚X“ú ‚Š‚ç‚Q‚Q“ú ‚Ü‚Ĺ
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤EEE/td>
ŽĺĂŽŇ˛Š_ ‘ĺ•ăi’}”g‘ĺŠw”ŠwŒnj
•ńW?
–źĚ ‘ć‚V‰ńŽ”˜_ƒI[ƒ^ƒ€ƒ[ƒNƒVƒ‡ƒbƒv
“ú’ö‚Q‚O‚O‚S”N‚P‚OŒŽ‚Q‚S“ú ‚Š‚ç‚R‚O“ú ‚Ü‚Ĺ
‰ďę”’”nƒnƒCƒ}ƒEƒ“ƒgƒzƒeƒ‹
ŽĺĂŽŇˆÉŽR ’m‹`i‘ĺă‘ĺŠw—ŠwŒ¤‹†‰Čj
•ńWěŹĎ‚Ý
–źĚ ‘㐔Šô‰˝ŠwƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö ‚Q‚O‚O‚S”N‚P‚OŒŽ‚QET“ú‚Š‚ç‚Q‚X“ú
‰ďę •şŒÉŒ§éč’Ź
ŽĺĂŽŇ ‚‹´é”\(LEÚEA‚–ŘŠ°’Ę(“Œ‘吔—)Aˆ˘•”@Œ’(‹ž‘吔—Œ¤)
•ńW ?
–źĚ ‘˝dƒ[[ƒ^’l‚ĚŒ¤‹†i’ZŠú‹¤“Żj
“ú’ö2004”N11ŒŽ8“ú(ŒŽ)--11“ú(–Ř)
‰ďę‹ž‘吔—‰đÍŒ¤‹†Š
ŽĺĂŽŇ‘ĺ–ě‘אśi‹ß‹E‘ĺŠwj
•ńWě‚é—\’č ƒz[ƒ€ƒy[ƒW
–źĚ •„‡‚ĆˆĂ†‚̑㐔“I”—
“ú’ö‚Q‚O‚O‚S”N‚P‚PŒŽ‚W“ú ‚Š‚ç‚P‚P“ú ‚Ü‚Ĺ
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇ•˝ź –Lˆęi–@­‘ĺŠwHŠw•”j
•ńW?
–źĚ L“‡‘㐔Šô‰˝ŠwƒVƒ“ƒ|ƒWƒEƒ€
“ú’öEQ‚O‚O‚S”N‚P‚PŒŽ‚P‚T“ú ‚Š‚ç‚P‚X“ú ‚Ü‚Ĺ
‰ďęL“‡‘ĺŠw
ŽĺĂŽŇ ‹÷L GNA–Ř‘ş rˆęA ‚‹´ é”\iL“‡‘ĺŠw‘ĺŠw‰@—ŠwŒ¤‹†‰Čj
•ńW?
–źĚ ‘ć‚Q‚U‰ń‰ÂŠÂ˜_ƒVƒ“ƒ|ƒWƒEƒ€
“úEE/td>‚Q‚O‚O‚S”N‚P‚PŒŽ‚Q‚S“ú ‚Š‚ç‚Q‚V“ú ‚Ü‚Ĺ
‰ďę‘q•~ƒAƒCƒr[ƒXƒNƒGƒA
ŽĺĂŽŇÂŽR —zˆęA‹g–ě —Y“ń
•ńW?
–źĚ ‘㐔“IŽ”˜_‚Ć‚ť‚ĚŽü•Ó
“ú’ö‚Q‚O‚O‚S”N‚P‚QŒŽ‚U“ú ‚Š‚ç‚P‚O“ú ‚Ü‚Ĺ
EEE/td>‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇX‰ş š‹Ii‹ŕ‘ň‘ĺŠw—Šw•”j
•ńW?
–źĚ €ŽüŠúTiling‚Ć‚ť‚ĚŽü•Ó
“ú’ö‚Q‚O‚O‚S”N‚P‚QŒŽ‚V“ú ‚ŠEç‚P‚O“ú ‚Ü‚Ĺ
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇˆÉ“Ą ErŽŸi‹ŕ‘ň‘ĺŠwŽŠ‘R‰ČŠwŒ¤‹†‰Čj
•ńW?
–źĚ ‘ć“ń‰ń‘㐔‹Čü˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö 2004”N12ŒŽ11“ú(“y)?12“ú(“ú)
‰ďę _“ސěH‰Č‘ĺŠw
ŽĺĂŽŇ •Ä“c@“ń—ǁi_“ސěH‰Č‘ĺŠwj‘ĺŸş@˜Ni“ż“‡‘ĺŠwj
•ńW ěŹ—\’č ƒz[ƒ€ƒyE[ƒW
–źĚ Computer Algebra - Design of Algolithms, Implementations and Applications
“ú’ö‚Q‚O‚O‚S”N‚P‚QŒŽ‚P‚R“ú ‚Š‚ç‚PEU“ú ‚Ü‚Ĺ
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇ–ě˜C łsi_ŒË‘ĺŠw—Šw•”j
•ńW?
–źĚ ‘㐔“I‘g‚ݍ‡‚í‚š˜_
E?’E/td>‚Q‚O‚O‚S”N‚P‚QŒŽ‚P‚R“ú ‚Š‚ç‚P‚T“ú ‚Ü‚Ĺ
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇ“c•Ó Œ°ˆę˜Yi’}”g‘ĺŠw”ŠwŒnj
•ńW?
–źĚ Arithmetic and Algebraic Geometry
“ú’ö‚Q‚O‚O‚S”N‚P‚QŒŽ‚P‚V“ú ‚Š‚ç‚Q‚Q“ú ‚܁EĹ
‰ďę“Œ‹ž‘ĺŠw”—‰ČŠwŒ¤‹†‰Č
ŽĺĂŽŇ‰Á“Ą˜a–çi‹ž“s‘ĺŠwjA Œj —˜si“Œ‹ž‘ĺŠwj
âV“Ą‹Bi“Œ‹ž‘ĺŠwEjŽ›ž[—FGi“Œ‹ž‘ĺŠwj
•ńW? ƒz[ƒ€ƒy[ƒW
–źĚ –k—¤”˜_ŹŒ¤‹†W‰ď
“ú’ö ‚P‚QŒŽ‚Q‚U“úi“új?‚P‚QŒŽ‚Q‚V“úiŒŽj
‰ďę ‹ŕ‘ň‘ĺŠwƒTƒeƒ‰ƒCƒgƒvƒ‰ƒUi‹ŕ‘ňŽsź’Ź‹łˆçŒ¤CŠŮ“ŕj
ŽĺĂŽŇ –ě‘ş–žli‹ŕ‘ň‘ĺŠwjA•˝—ŃŠ˛li‹ŕ‘ňH‹Ć‘ĺŠwjA–Ř‘şEށi•xŽR‘ĺŠwj
•ńW ě‚é—\’č
–źĚ •ŰŒ^E`ŽŽ‚Ć•ŰŒ^L?ŠÖ”
“ú’ö‚Q‚O‚O‚T”N‚PŒŽ‚P‚V“ú ‚ŠEç‚Q‚P“ú ‚Ü‚Ĺ
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇŒĂŕV šHi‘ĺăŽs—§‘ĺŠw—ŠwŒ¤‹†‰Čj
•ńW?
–źĚ ĺ‘䐔˜_‹y‚Ń‘g‡‚š˜_ŹŒ¤‹†W‰ď2004
“ú’ö 2005”N1ŒŽ24“ú‚Š‚ç25“ú
‰ďę “Œ–k‘ĺŠw‘ĺŠw‰@î•ń‰ČŠwŒ¤‹†‰Č 2ŠK‘ĺu‹`Žş
ŽĺĂŽŇ @­şOi“Œ–k‘ĺî•ńjAĄˆäG—Yi“Œ–k‘ĺî•ńj
“c’J‹v—Yi“Œ–k‘ĺî•ńj
•ńWƒz[ƒ€‚؁[ƒW
–źĚ‘㐔ŒnAŒ`ŽŽŒžŒę‚ĆŒvŽZ˜_
“ú’ö‚Q‚O‚O‚T”N‚QŒŽ‚Q‚P“ú ‚Š‚ç‚Q‚R“ú ‚Ü‚Ĺ
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇŹ—Ń ‚䂤ŽĄi“Œ–M‘ĺŠw—Šw•”j
•ńW ?
–źĚƒUƒŠƒXƒL[Šô‰˝‚Ɛ”˜_ŠôE˝i’ZŠú‹¤“Żj
“ú’ö‚Q‚O‚O‚T”N‚RŒŽ‚P‚S“ú ‚Š‚ç‚P‚W“ú ‚Ü‚Ĺ
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇ”Âˆä š“Ti“ŒŠC‘ĺŠw—Šw•”j
•ńW?


2003 ”N“x‚ɍs‚í‚ę‚˝ƒVƒ“ƒ|ƒWƒEƒ€‚̏î•ńiŠJĂ“ú’ö‡j
–źĚ uE”˜_‚É‚¨‚Ż‚é p-i“I•ű–@v
“ú’ö ‚Q‚O‚O‚R”N‚SŒŽ‚X“úi…j‚Š‚ç‚P‚O“úi–؁j‚Ü‚Ĺ
‰ďę –źŒĂ‰Ž‘ĺŠw‘˝Œł”—‰ČŠwŒ¤‹†‰Č
ŽĺĂŽŇ “ĄŒ´@ˆęGAâ“ŕ@Œ’ˆęi–źŒĂ‰Ž‘ĺŠwj
•ńW —\’č–ł‚ľ
–źĚ Ž”˜_ƒ~ƒjŒ¤‹†W‰ď
“ú’ö ‚Q‚O‚O‚R”N‚SŒŽ‚P‚V“úi–؁jŒßŒă[‚P‚W“úi‹ŕj
‰ďę ‘ĺă‘ĺŠwŽŠ‘R‰ČŠw“‚PŠK‚P‚O‚T”ŠwƒZƒ~ƒi[Žş
ŽĺĂEŇ ˆÉŽR’m‹`
•ńW ě‚ç‚Č‚˘
–źĚ ‘㐔‹Čü‘Š‚Ě‹ÇŠ•s•Ď—Ę‚ĚŒ¤‹†
“ú’ö 2003.6.17?2003.6.20
‰ďę ‹ž‘吔—‰đÍŒ¤‹†Š
ŽĺĂŽŇ Ą–ěˆęGi‘ĺă‘ĺŠwj
•ńW ?
–źĚ ‘ć‚U‰ń‘㐔ŒQ‚Ć—ĘŽqŒQ‚Ě•\Œť˜_ Œ¤‹†W‰ď
“ú’ö 2003 ”N 6 ŒŽ 20 “ú - 22 “ú
‰ďę ă’qŒyˆä‘ňƒZƒ~ƒi[ƒnƒEƒX
ŽĺĂŽŇ ’†“‡rŽ÷ (ă’q‘ĺ)AÖ“Ą‹`‹v (“Œ‘ĺ)
•ńW ?
–źĚ ‘ć‚Q‚O‰ń‘㐔“I‘g‡‚š˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö ‚Q‚O‚O‚R”N‚VŒŽ‚V“ú[‚X“ú
‰ďę –k‘ĺ
ŽĺĂŽŇ ‹g“c’ms
•ńW ?
–źĚ ”ރ–Šx‘㐔Šô‰˝ƒZƒ~ƒi[‚Q‚O‚O‚R
“ú’ö2003 ”N 7 ŒŽ 7 “ú‚Š‚ç 7 ŒŽ 11 “ú
‰ďę”ރ–Šx‚Œ´ň‹˝
‘ă•\ŽŇŹ—ѐł“Ti“s—§‘ĺŠwjŹ–Ř‘\Œ[ŽŚEi“Œ‹ž‘ĺŠwj
ŠFě—´”Ži“Œ‹žH‹Ć‘ĺŠwj
•ńW ƒz[ƒ€ƒy[ƒW
–źĚ ‘ć 2 ‰ńL“‡EŽ”˜_W‰ď
“ú’ö 2003 ”N 7 ŒŽ 22 “úi‰Îj-- 24 “úi–؁j
‰ďę L“‡‘ĺŠw
ŽĺĂŽŇ “s’z’¨•viL“‡‘ĺjAź—ˆ˜H•ś˜NiL“‡‘Ű‘ĺj
•ńW ě‚é—\’č‚Č‚ľB ƒz[ƒ€ƒy[ƒW
–źĚ Lie Theory ‚Ě‚Đ‚ë‚Ş‚č‚ƐV‚˝‚Ȑi“W
“ú’ö 2003 ”N 7 ŒŽ 22 “ú - 25 “ú
‰ďę ‹ž‘吔—‰đÍŒ¤‹†Š
ŽĺĂŽŇ —L–ؐi(‹ž‘吔—‰đÍŒ¤‹†Š)
•ńW ě‚é—\’č ƒzE[ƒ€ƒy[ƒW
–źĚ Designs, Codes, Graphs and their Links
“ú’ö 2003.7.30?2003.8.1
‰ďę ‹ž‘吔—‰đÍŒ¤‹†Š
ŽĺĂŽŇ “ĄŒ´@—ǁi’}”g‘ĺŽĐ‰ďHŠwŒnj
•ńW ?
–źĚ ‘㐔ŠwƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö2003 ”N 8 ŒŽ 4 “ú‚Š‚ç 8 ŒŽ 7 “ú
‰ďę–źŒĂ‰Ž‘ĺŠw‘˝Œł”—Œ¤‹†‰Č
‘ă•\ŽŇź–{k“ńi–źŒĂ‰Ž‘ĺŠwj‹ŕ“ş˝”Vi–źŒĂ‰Ž‘ĺŠwj
•ńWě‚é—\’č
–źĚ ŽŔ2ŽŸ‘Ě‚Ěƒf[ƒfƒLƒ“ƒgEƒ[[ƒ^E֐”‚ĚƒŠ[ƒ}ƒ“EƒW[ƒQƒ‹ŒöŽŽ (’ZŠú‹¤“Ż)
“ú’ö 2003.8.11?2003.8.15
‰ďę ‹ž‘吔—‰đÍŒ¤‹†Š
ŽĺĂŽŇ ‹ŕŒő@Ž i‹ß‹E‘ĺŠw‹ăBHŠw•”j
•ńW ?
–źĚ ‘ć‚P‚P‰ńŽ”˜_ƒTƒ}[ƒXƒN[ƒ‹uŠâŕV—E_v
“ú’ö 2003”N8ŒŽ18“ú(ŒŽ)--22“ú(‹ŕ)
‰ďę ‹{éŒ§ĺ‘äŽs ‹Î˜JŽŇ•Ű—{Šu–Î’ë‘‘v
ŽĺĂŽŇ “c’J ‹v—Y (“Œ–k‘ĺŠw)AEސX Ë—˛ (ŠwK‰@‘ĺŠw)
”öč Šw (“‡Ş‘ĺŠw)
•ńW ě‚é—\’č
–źĚ ŽË‰e‘˝—l‘Ě‚ĚŠô‰˝‚Ć‚ť‚ĚŽü•Ó
“ú’ö 2003”N8ŒŽ27“ú(…)‚Š‚ç29“ú(‹ŕ)
‰ďę ‚’m‘ĺŠw—Šw•”
ŽĺĂŽŇ •ŸŠÔŒc–ž(‚’m‘ĺŠw), Ź“‡G—Y(VŠƒ‘ĺEw)
•ńW ě‚é—\’č‚Č‚ľ
EźĚ —LŒŔŒQ‚ĚƒRƒzƒ‚ƒƒW[˜_‚ĚŒ¤‹†i’ZŠú‹¤“Żj
“ú’ö 2003.9.1?2003.9.5
‰ďę ‹ž‘吔—‰đÍŒ¤‹†Š
ŽĺĂŽŇ ˛X–Ř—méiˆ¤•Q‘ĺŠwj
•ńW ?
–źĚ Convex Bodies and Algebraic Geometry 2003
“ú’ö 2003 ”N 9 ŒŽ 8 “ú‚Š‚ç 12 “ú
‰ďę “Œ‹žH‹Ć‘ĺEw
ŽĺĂŽŇ Victor Batyrev, Jean-Paul Brasselet,Masanori Ishida
, Shihoko Ishii, Bernard Teissier.
•ńW
–źĚ ‘ć‚U‰ńŽ”˜_ƒI[ƒ^ƒ€ƒ[ƒNƒVƒ‡ƒbƒv
“ú’ö ‚Q‚O‚O‚R”N‚XŒŽ‚W“úiŒŽj‚Š‚ç‚P‚Q“úi‹ŕj
‰ďę ”’”nƒnƒCƒ}ƒEƒ“ƒgEzƒeƒ‹
ŽĺĂŽŇ ˛“Ą•śLi—§‹ł‘ĺŠwj
•ńW ‚Č‚ľH
–źĚ ‰đÍ“IŽ”˜_‚Ć‚ť‚ĚŽü•Ó
“ú’ö 2003.9.29?2003.10.3
‰ďę ‹ž‘吔—‰đÍŒ¤‹†Š
ŽĺĂŽŇ HŽR–΁E?iVŠƒ‘ĺŠwj
•ńW ě‚é—\’č ƒz[ƒ€ƒy[EW
–źĚ ‘ć5‰ńu‘㐔Šw‚ĆŒvŽZvŒ¤‹†W‰ď (AC2003)
“ú’ö 2003”N10ŒŽ6“ú(ŒŽ)--10“ú(‹ŕ)
‰ďę “Œ‹ž“s—§‘ĺŠw ‘ŰŒđ—Ź‰ďŠŮ
ŽĺĂŽŇ ’†‘ş Œ›, ‘q“c r•F (“Œ‹ž“s—§‘ĺŠw), ŹŠÖ “š•v (ŽRŒ`‘ĺŠw)
•ńW •ńW‚ ‚č
–źĚ éč‘㐔Šô‰˝ŠwŒ¤‹†W‰ď
“ú’ö 2003 ”N 10 ŒŽ 20 “ú‚Š‚ç 24 “ú
‰ďę éč
ŽĺĂŽŇ •Ŕ‰Í—Ç“Ti‹žEs‘ĺŠwjC‘ĺŸş˜Ni“ż“‡‘ĺŠwj
•ńW ?
–źĚ ‘ć36‰ńŠÂ˜_‚¨‚ć‚Ń•\Œť˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö –{Ł  (O‘O‘ĺŠw), ˛“Ą^‹v(ŽR—œ‘ĺŠw)
‰ďę O‘O‘ĺŠw—Šw•””Šw‹łŽş
ŽĺĂŽŇ 2003”N10ŒŽ11“ú(“y) -- 13“ú(ŒŽ)
•ńW ?
–źĚ •„†‚ĆˆĂ†‚̑㐔“I”—
“ú’ö 2003.11.4?2003.11.7
‰ďę ‹ž‘吔—‰đÍŒ¤‹†Š
ŽĺĂŽŇ •˝ź–Lˆęi–@­EĺŠwj
•ńW ?
–źĚ ‘g‚ݍ‡‚š˜_“I•\Œť˜_‚̏”‘Š
“ú’ö 2003 ”N 11 ŒŽ 4 “ú - 7 “ú
‰ďę ”—‰đÍŒ¤‹†Š
ŽĺĂŽŇ ŽRŞG”V(ă‘ĺ)
•ńW ?
–źĚ ‘ć25‰ń‰ÂŠˇŠÂ˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö 2003 ”N 11 ŒŽ 10 “ú‚Š‚ç 13 “ú
‰ďę ƒEƒFƒ‹ƒTƒ“ƒsƒA‘˝–€i“Œ‹ž“sE˝–€ŽsC‘˝–€ƒZƒ“ƒ^[j
ŽĺEĂŽŇ ‘ –ě@˜a•F@i–žŽĄ‘ĺŠwE—Hj
•ńW ?
EźĚ EACAC2 (‘ć‚Q‰ńEast Asian Conference on Algebra and Combinatorics)
“ú’ö ‚Q‚O‚O‚R”N‚P‚PŒŽ‚P‚V“ú[‚Q‚P“ú
‰ďę •Ÿ‰Ş
ŽĺĂŽŇ â“ŕ‰pˆę
•ńW ƒz[ƒ€ƒy[ƒW
–źĚ ”˜_Šô‰˝ŠwƒVƒ“ƒ|ƒWƒEƒ€ (Symposium of Arithemtic Geometry)
“ú’ö 2003”N11ŒŽ18“úi‰Îj- 21“úi‹ŕj
‰ďę EkŠC“š‘ĺŠwEŠw•”‚Q†ŠŮ
ŽĺĂŽŇ ‰Á“Ą•śŒłiEž“s‘ĺŠwjA’†Eşˆči–kŠC“š‘ĺŠwj
•ńW ě‚ç‚Č‚˘—\’č ƒz[ƒ€ƒy[ƒW
–źĚ €ŽüŠúTiling‚Ć‚ť‚ĚŽü•Ói’ZŠú‹¤“Żj
“ú’ö 2003.11.25?2003.11.28
‰ďę ‹ž‘吔—‰đÍŒ¤‹†Š
ŽĺĂŽŇ ˆÉ“ĄrŽŸi‹ŕ‘ň‘ĺŠwj
•ńW ?
–źĚ u‘㐔“IŽ”˜_‚Ć‚ť‚ĚŽü•Óv
“ú’ö 2003 ”N 12 ŒŽ 1 “úiŒŽj‚Š‚ç 5 “ú(‹ŕj
‰ďę ‹ž‘吔—‰đÍŒ¤‹†Š
ŽĺĂŽŇ ŒIŒ´Ťli“s—§‘ĺŠwjA“cŒű—Yˆę˜Yi‹ăB‘ĺŠwj
•ńW ě‚é—\’č
–źĚ ‚Q‚O‚O‚R”N“x•\Œť˜_ƒVƒ“ƒ|ƒWƒEE€
“ú’ö ‚Q‚O‚O‚R”N‚P‚QŒŽ‚Q“úi‰Îj[‚T“úi‹ŕj
‰ďę ƒOƒŠ[ƒ“ƒsƒA‘ĺŔ
ŽĺĂŽŇ Ö“Ą—¤i–kŠC“š‘ĺŠwjAŽR‰ş”Ži–kŠC“š‘ĺŠwj
ŕFě—zˆęi–kŠC“š‘ĺŠwjA˜a’n‹Pmi–kŠC“šH‹Ć‘ĺŠwj
•ńW ƒz[ƒ€ƒy[ƒW
–źĚ —LŒŔ’PƒŒQ‚́E¤‹†‚Ć‚ť‚ĚŽü•Ó
“ú’ö ‚Q‚O‚O‚R”N‚P‚QŒŽ‚P‚T“úiŒŽj?‚P‚V“úi…j
‰ďę ‹ž‘吔—‰đÍŒ¤‹†Š
ŽĺĂŽŇ ”ŃŠńM•ŰiŽRŒű‘ĺŠwj
•ńW ?
–źĚ ‘㐔‹Čü˜_Œ¤‹†W‰ď
“ú’ö 2003”N 12ŒŽ 19“úi‹ŕj-12ŒŽ 20“úi“yj
‰ďę _“ސě‘ĺŠw‚P†ŠŮ‚WŠKC‚W‚O‚Si‰ď‹cŽşEj
ŽĺĂŽŇ •Ä“c@“ń—Ç(_“ސěH‰Č‘ĺŠw),‘ĺŸş@˜Ni“ż“‡‘ĺŠw‘‡‰ČŠw•”j
•ńEW EEé‰Â”\Ť‚ ‚č ƒz[ƒ€ƒy[ƒW
–źĚ •ŰŒ^Œ`EŽ‚̍\Ź‚Ć‚ť‚̉ž—p
“ú’ö 2004.1.19?2004.1.23
‰ďę ‹ž‘吔—‰đÍŒ¤‹†Š
ŽĺĂŽŇ “n•”—˛•vi‘ĺă‘ĺŠwj
•ńW ě‚é—\’č
–źĚ ‘㐔Šô‰˝Œ¤‹†W‰ďwŽË‰e‘˝—l‘Ě/‘㐔‘˝—l‘̂̎ˉeŠô‰˝3+‘㐔‹Čüx
“ú’ö 2004 ”N1ŒŽ26EEŒŽ)-29“ú(–Ř)
‰ďę ‘ˆî“c‘ĺŠw—HŠw•”
ŽĺĂŽŇ žľ Œł, ‘O“c‰p•q
•ńEW ěŹ—\’č ƒz[ƒ€ƒy[ƒW
–źĚ ‘㐔Šô‰˝ŠwƒVƒ“ƒ|ƒWƒEƒ€@VŠƒ‚Q‚O‚O‚S
“ú’ö ‚Q‚O‚O‚S”N‚QŒŽ‚S“ú?‚U“ú
‰ďę ƒEƒFƒ‹ƒVƒeƒBVŠƒ
ŽĺĂŽŇ ‹gŒ´‹v•vCŹ“‡G—Y@iVŠƒEĺŠwj
•ńW ěŹ—\’č ƒz[ƒ€ƒy[ƒW
–źĚ Eć‚R‰ń•ŰŒ^Œ`ŽŽŽü•Ó•Ş–ěƒXƒvƒŠƒ“ƒOƒRƒ“ƒtƒ@ƒŒƒ“ƒX
“ú’ö ‚Q‚O‚O‚S”N‚QŒŽ‚P‚U“úiŒŽj‚Š‚ç‚Q‚O“úi‹ŕj
‰ďę •l–źŒÎƒJƒŠƒAƒbƒN
ŽĺĂŽŇ ˆÉŽR’m‹`iă‘ĺjAÖ“Ą‹ąŽii‹ž‘吔—Œ¤j
â“ŕ‰pˆęi‹ă‘ĺjA‹{–{‰ë•Fi’}”g‘ĺj
•ńW ě‚é—\’č
–źĚ u”˜_Šô‰˝v
“ú’ö ‚Q‚O‚O‚S”N‚QŒŽ‚P‚U“úiŒŽj‚Š‚ç‚Q‚O“úi‹ŕj
‰ďę “Œ‹ž‘ĺŠw”—‰ČŠwŒ¤‹†‰Č
ŽĺĂŽŇ Ö“Ą@GŽii–źŒĂ‰Ž‘ĺŠwjÖ“Ą@‹Bi“Œ‹ž‘ĺŠwj
•ńW —\’č–ł‚ľ ƒz[ƒ€ƒyE[ƒW
–źĚ ‘㐔“I‘g‡‚š˜_
“úEE/TD> 2004.3.8?2004.3.10
‰ďę ‹ž‘吔—‰đÍŒ¤‹†Š
ŽĺĂŽŇ •˝–؏˛i‘ĺă‹łˆç‘ĺŠwj
•ńW ?


2002 ”N“x‚ɍs‚í‚ę‚˝ƒVƒ“ƒ|ƒWƒEƒ€‚̏î•ńiŠJĂ“ú’ö‡j
–źĚ ƒOƒŒƒuƒi[Šî’ę‚Ě—˜_“I—LŒřŤ‚ĆŽŔ‘H“I—LŒřŤ
Eú’E/TD>2002 ”N 5 ŒŽ 27 “ú‚Š‚ç 5 ŒŽ 31 “ú
‰ďę‹ž‘吔—Œ¤
‘ă•\ŽŇ“ú”äF”Viă‘ĺ—j
•ńW•s–ž
–źĚ ‘ć‚T‰ń ‘㐔ŒQ‚Ć—ĘŽqŒQ‚Ě•\Œť˜_Œ¤‹†W‰ď
“ú’ö2002 ”N 5 ŒŽ 30 “ú‚Š‚ç 6 ŒŽ 1 “ú
‰ďę‘ĺăŽs—§‘ĺŠwŠwpî•ńCENTER‚PŠK•śEťŒđ—ŹEş
ƒvƒƒOƒ‰ƒ€Ó”CŽŇŒ““cłŽĄiăŽs‘ĺE—jA“ŕ“Ą‘i’}”g‘ĺE”Šwj
•ńWě‚é—\’č
EźĚ ‘㐔ŒQ‚Ě•\Œť˜_
“ú’ö 2002 ”N 6 ŒŽ 26 “ú‚Š‚ç 6 ŒŽ 28 “ú
‰ďę ‘ĺăŽs—§‘ĺŠwŠwEpî•ńCENTER‚PŠK•ś‰ťŒđ—ŹŽş
Ó”CŽŇ Œ““cłŽĄi‘ĺăŽs—§‘ĺjA’Jčr”Vi‘ĺăŽs—§‘ĺj
•ńW •s–ž
–źĚ ‘ć‚PEX‰ń‘㐔“I‘g‡‚š˜_ƒVƒ“ƒ|ƒWƒ…ƒEƒ€
“ú’ö ‚Q‚O‚O‚Q”N‚VŒŽ‚P“úiŒŽj?‚R“úi…j
‰ďęŒF–{‘ĺŠw
Ó”CŽŇ
‚Ü‚˝‚͘A—ć
•˝•ô@–LiEF–{‘ĺE‹łˆçj
hiramine@gpo.kumamoto-u.ac.jp
•ńW •s–ž
–źĚ p iŒQ‚Ě’˛˜a‰đÍ
“ú’ö‚Q‚O‚O‚QEN‚VŒŽ‚P“úiŒŽj‚Š‚ç‚T“úiEŕj
‰ďę‹ž‘吔—Œ¤
‘ă•\ŽŇâV“Ą—Ti‹žEĺlŠÔŠÂ‹Ťj
•ńWě‚é—\’č ƒz[ƒ€ƒy[ƒW
–źĚ ƒ[ƒNƒVƒ‡ƒbƒv
u‘㐔‘˝—l‘Ě‚Ěƒzƒ‚ƒgƒs[—˜_‚Ćƒ~ƒ‹ƒi[—\‘zv
“ú’ö‚Q‚O‚O‚Q”N‚VŒŽ‚T“úi‹ŕj‚Š‚ç‚W“úiŒŽj
‰ďę”ރ–Šxň‹˝
‘ă•\ŽŇ‘ĺ’Ř‹I”Viç—t‘ĺj
ƒg[ƒ}ƒXEƒKƒCƒT[ i“ěƒJƒŠƒtƒHƒ‹ƒjƒA‘ĺE“Œ‘ĺj
•ńW•s–ž ‰ďęƒz[ƒ€ƒy[ƒW
–źĚ ”ń‰ÂŠˇ‘㐔Œn‚Ě•\Œť‚Ć’˛˜a‰đÍ
“ú’ö‚Q‚O‚O‚Q”N‚VŒŽ‚Q‚R“úiE΁j‚Š‚ç‚QEU“úi‹ŕj
‰ďę‹ž‘吔—Œ¤
‘ă•\ŽŇ‘ž“c‘ô–çi“Œ‹ž“d‹@‘ĺHj
•ńW •s–ž
–źĚ L“‡Ž”˜_W‰ď
“ú’ö 2002 ”N 7 ŒŽ 29 “úiŒŽj-- 31 “úi…j
‰ďę L“‡‘ĺŠw
˘˜bl “s’z’¨•viL“‡‘ĺ—jA‹÷“c_Ž÷iL“‡‘ĺE‡‰ČŠwj
•ńW ě‚é—\’č‚Č‚ľƒz[ƒ€ƒy[ƒW
–źĚ ‘ć 47 ‰ń‘㐔ŠwƒVƒ“ƒ|ƒWƒEƒ€iĄ‰ń‚͐Ž”˜_‚ĆŒQ˜_j
“ú’ö2002 ”N 8 ŒŽ 6 “úEi‰Îj-- 9 “úi‹ŕj
‰ďęŽş—–H‹Ć‘ĺŠw
˘˜blŒj“c‰p“TiŽş—–H‘ĺHjA’|ƒ–Œ´—TŒłiŽş—–H‘ĺHj
‹gr‘i‘ĺă‹łˆç‘ĺjA‹ĘěˆŔ‹R’ji‹ž‘吔—Œ¤j
•ńWěŹ—\’č ƒvƒƒOƒ‰ƒ€ h”‘ˆÄ“ŕ
–źEĚ ‘ć‚P‚O‰ńŽ”˜_ƒTƒ}[ƒXƒN[ƒ‹uŠT‹ĎŽżƒxƒNƒgE‹‹óŠÔv
“ú’ö2002 ”N 8 ŒŽ 17 “ú(“y)--21 “ú
‰ďę•l–źŒÎƒJƒŠƒAƒbƒN
ŽĺĂŽŇ‘ĺ–ě‘אśi‹ß‹E‘ĺEwj Ź–Ř‘]Šx‹`iéź‘ĺŠwj
•ńWě‚é—\’č
–źĚ International Congress of Mathematical Software
“ú’ö 2002 ”N 8 ŒŽ 17 EE(“y) -- 8 ŒŽ 19 “ú (ŒŽ)
‰ďę –k‹ž
˘˜bl Zhuojun Liu (Chinese Acad. Sci., China)A ‚ŽRM‹B (_ŒË‘ĺŠw)
Arjeh Cohen (Eindhoven, Netherland)A Lian LI (Lanzhou, China)
’†‘şŒ› (“s—§‘ĺŠw)A Dingkang WANG (Beijing, China)
Lu YANG (Chengdu, China)
•ńW ƒz[ƒ€ƒy[ƒW
–źĚ ‘ć‚Q‰ń‘˝Œł”—‘ŰƒVƒ“ƒ|ƒWƒEƒ€@ "Discrete Groups and Moduli"
“ú’ö ‚Q‚O‚O‚Q”N‚XŒŽ‚Q“úiŒŽj?‚XŒŽ‚T“úi–؁j
‰ďę–źŒĂ‰Ž‘ĺŠw‘˝Œł”—‰ČŠwŒ¤‹†‰Č
˘˜bl Œüˆä–΁i‹ž‘吔—Œ¤jEAV.V.Nikulin (Liverpool)
‹ŕ“ş˝”Vi–źE命Œł”—j
•ńW ěŹ‚ľ‚Č‚˘ ƒz[ƒ€ƒy[ƒW
–źĚ @School on Mirror Symmetry
“ú’ö ‚Q‚O‚O‚Q”N‚XŒŽ‚W“úi“új‚Š‚ç‚P‚R“úi‹ŕj
‰ďę•şŒÉŒ§éč’Ź éč‚Ó‚ę‚ ‚˘ƒZƒ“ƒ^[
‘gDˆĎˆő [’JŒŤŽĄ(‹ž‘ĺ—jCâV“Ą­•Fi_ŒË‘ĺ—j
˜A—ćFâV“Ą ­•F
•ńW ƒz[ƒ€ƒy[ƒW
–źĚ Modulformen
“ú’ö ‚Q‚O‚O‚Q”N‚XEŽ‚P‚T“ú‚Š‚ç‚Q‚P“ú
‰ďę ƒI[ƒxƒ‹ƒ”ƒHƒ‹ƒtƒ@ƒbƒnŒ¤‹†ŠiƒhƒCƒcj
ŽĺĂŽŇ Siegfried Boecherer(Mannheim), Winfried Kohnen(Heidelberg)
ˆÉŽR’m‹`i‘ĺă‘ĺŠwj
•ńW ě‚é—\’č‚Č‚ľ ƒz[ƒ€ƒy[ƒW
–źĚ ”ރ–Šx‘㐔Šô‰˝ƒZƒ~ƒi[‚Q‚O‚O‚Q
“ú’ö2002 ”N 9 ŒŽ 16 “ú‚Š‚ç 9 ŒŽ 20 “ú
‰ďę”ރ–Šx‚Œ´ň‹˝
‘ă•\ŽŇEŹ—ѐł“Ti“s—§‘ĺŠwjEŹ–Ř‘\Œ[ŽŚEi“Œ‹ž‘ĺŠwj
ŠFě—´”Ži“Œ‹žH‹Ć‘ĺŠwj
•ńW‘ݏo—pƒm[ƒg ƒz[ƒ€ƒy[ƒW
–źĚ ‘ć35‰ńŠÂ˜_‚¨‚ć‚Ń•\Œť˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö 2002 ”N 10 ŒŽ 12 “ú(“y)‚Š‚ç 14 “ú(ŒŽ)
‰ďę‰ŞŽR‘ĺŠwŠÂ‹Ť—HŠw•”
ƒvƒƒOƒ‰ƒ€Ó”CŽŇ •˝–ěN”V(‰ŞŽR‘ĺŠw—Šw•”) yhirano@math.okayama-u.ac.jp
‰ďęÓ”CŽŇ ’r”¨Gˆę(‰ŞŽR‘ĺŠwŠÂ‹Ť—HŠw•”) ikehata@ems.okayama-u.ac.jp
•ńW •s–ž
–źĚ ƒfƒBƒIƒtƒ@ƒ“ƒgƒX–â‘č‚ƉđÍ“IŽ”˜_
“ú’ö 2002 ”N 10 ŒŽ 21 “úiŒŽj‚Š‚ç 25 “úi‹ŕj
‰ďę‹ž‘吔—Œ¤
‘ă•\ŽŇ•˝“c“TŽqi“ú‘ĺ—Hj
•ńW ěŹ—\’č ƒz[ƒ€ƒy[ƒW
–źĚ éčƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö 2002 ”N 10 ŒŽ 21 “úiŒŽj‚Š‚ç 25 “úi‹ŕj
‰ďę•şŒÉŒ§éč’Ź‘ĺ‰ď‹cŠŮ
˘˜blX˜e~i‹ž‘ĺ—j
•ńW•s–ž
–źĚ ‘ć‚T‰ńŽ”˜_ƒI[ƒ^ƒ€ƒ[ƒNEVƒ‡ƒbƒv
“ú’ö2002 ”N 11 ŒŽ 5 “ú‚Š‚ç 8 “ú
‰ďę”’”nEnƒCƒ}ƒEƒ“ƒgƒzƒeƒ‹
ŽĺĂŽŇ˛“Ą•śL
•ńWě‚é—\’č
–źĚ ‘ć‚Q‚S‰ń‰ÂŠˇŠÂ˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö‚Q‚O‚O‚Q”N‚P‚PŒŽ‚T“ú‚Š‚ç‚W“ú
‰ďęƒEƒFƒ‹ƒTƒ“ƒsƒA‚Č‚É‚í
˘˜bl ‹{č[Oi‹ž“s‹łˆç‘ĺjg53448@wsml.kyokyo-u.ac.jp
ěčŒŞˆę˜Yi“Ţ—Ç‹łˆç‘ĺjA ‰Á“ĄŠó—Žqi‘ĺă—Žq‘ĺjA–öě_“ńiăEE
•ńEW•s–ž
–źĚ E”˜_‚ĆŠô‰˝Šw“I•ű–@
“ú’ö 2002”N11ŒŽ12“úi‰Îj‚Š‚ç15“úi‹ŕj
‰ďę L“‡‘ĺŠw’†‰›}‘ŠŮ
ŽĺĂŽŇ “s’z’¨•viL“‡‘ĺ—jA‰Á“Ą•śŒłi‹ž‘ĺ—j
•ńW ě‚é—\’č ƒz[ƒ€ƒy[ƒW
–źĚ ‘g‡‚š˜_“I”˜_‚Ƒ㐔“I‘g‡‚š˜_‚ɂ‚˘‚Ä‚ĚŒ¤‹†W‰ď
“ú’ö 2002 ”N 11 ŒŽ 18 “ú - 11 ŒŽ 21 “ú
‰ďę ŽRŒ`‘ĺŠwŹ”’ěƒLƒƒƒ“ƒpƒX(ŽRŒ`Žs“ŕ)
ŽĺĂŽŇ ŹŠÖ “š•v, â“ŕ ‰pˆę
•ńEW ?
–źĚ Algebraic Geometry (the Japan-Korea Joint Workshop in 2002)
“ú’ö‚Q‚O‚O‚Q”N‚P‚PŒŽ‚Q‚U“úi‰Îj?‚P‚PŒŽ‚Q‚W“úi–؁j
‰ďę Korea Institute for Advanced Study iŠŘ‘j
˘˜bl J.H.Keum (KIAS), J.M.Hwang (KIAS), Ź—Ń—şˆęi–ź‘ĺ‘˝Œł”Ej
Ź‹{ŽOiŽRŒű‘ĺA—jA‹ŕ“ş˝”Vi–ź‘ĺ‘˝Œł”—j
•ńW ěŹ—\’č ƒz[ƒ€ƒy[EW
–źĚ ‘㐔“IŽ”˜_‚Ć‚ť‚ĚŽü•Ó
“ú’ö2002 ”N 12 ŒŽ 2 “úiŒŽj‚Š‚ç 6 “úi‹ŕj
‰ďę‹ž“s‘ĺŠw”E‰?ÍŒ¤‹†Š
‘ă•\ŽŇŒIŒ´Ťli“s—§‘ĺ—j“cŒű—Yˆę˜YEi‹ă‘吔—j
•ńWě‚é—\’č
–źĚ ‘㐔“I‘g‡‚š˜_
“ú’ö 2002 ”N 12ŒŽ16“ú(ŒŽj?19“ú(–؁j
‰ďę ‹ž“s‘ĺŠw”—‰đÍŒ¤
‘ă•\ŽŇ ˆÉ“Ą’B˜Y(‹ŕ‘ň‘ĺŠw—j
•ńW •s–ž
–źĚ IV Œ^‘ÎĚ—Ěˆćă‚Ě•ŰŒ^Œ`ŽŽ‚ĚŒ¤‹†
“ú’ö 2002 ”N 12 ŒŽ 24 “úi‰Îj‚Š‚ç 26 “úi–؁j
‰ďę‹ž‘吔—Œ¤
‘ă•\ŽŇD“cFKi“Œ‘吔—j
•ńW•s–ž
–źĚ ‘㐔Šô‰˝ŠwŒ¤‹†W‰ď
E?’E/TD> 2003 ”N 1 ŒŽ 14“ú(‰Î)--1 ŒŽ 16 “ú(–Ř)
‰ďę ‹ăB‘ĺŠw” č‘Űƒz[ƒ‹
ŽĺĂŽŇ E˛“Ą‰hˆęi‹ăB‘ĺŠw”—Šwj
•ńW ě‚é—\’č
–źĚ •ŰŒ^Œ`ŽŽ‚Ć‹ÇŠ‘̏ă‚̑㐔ŒQ‚Ě•\Œť
“ú’ö 2003 ”N 1 ŒŽ 20 “ú(ŒŽ)--1 ŒŽ 24 “ú(‹ŕ)
EEE/TD>‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
ŽĺĂŽŇâV“Ą—Ti‹ž“sEĺŠwj
•ńEWě‚é—\’č ƒz[ƒ€ƒy[ƒW
–źĚ ‘ć‚Q‰ń•ŰŒ^Œ`ŽŽŽü•ÓEŞ–ěƒXƒvƒŠƒ“ƒOƒRƒ“ƒtƒ@ƒŒƒ“ƒX
“ú’ö‚Q‚O‚O‚R”N‚QŒŽ‚P‚TE?i“yj‚Š‚ç‚QŒŽ‚P‚X“úi…j
‰ďę•l–źŒÎƒJƒŠƒAƒbƒN
ŽĺĂŽŇ ˆÉŽR’m‹`i‘ĺă‘ĺŠwjAÖ“Ą‹ąŽii‹ž‘吔—Œ¤j
â“ŕ‰pˆęi‹ăB‘ĺŠwjA‹{–{‰ë•Fi’}”gE吔Šwj
•ńWě‚é—\’č ƒz[ƒ€ƒy[ƒW
@@@@


2001 ”N“x‚ɍs‚í‚ę‚˝ƒVƒ“ƒ|ƒWƒEƒ€‚Ě‹L˜^iŠJĂ“ú’ö‡j
–źĚ Conference on arithmetic geometry and Iwasawa theory
“ú’ö2001 ”N 4 ŒŽ 2 “úiŒŽj-- 4 “úi…j
‰ďę“Œ‹ž‘ĺŠw”—‰ČŠwŒ¤‹†‰Č
˘˜blÖ“ĄEBi“Œ‘ĺE”Ej
•ńWěŹ—\’č–ł‚ľ
–źĚ ƒ[ƒNƒVƒ‡ƒbƒv
"Hodge theory, Galois theory, moduli and arithmetic geometry"
“ú’ö2001 ”N 5 ŒŽ 21 “úiŒŽj-- 5 ŒŽ 24 “úi–Ř)
‰ďę‹ž“s‘ĺŠwlŠÔEŠÂ‹ŤŠwŒ¤‹†‰Č
˘˜blź–{ áÁ(‹ž“s‘ĺŠwlŠÔEŠÂ‹ŤŠwŒ¤‹†‰Č)
•ńW?
–źĚ ’ZŠú‹¤“ŻŒ¤‹†u‘˝dƒ[[ƒ^’l‚̏”‘Šv
“ú’ö 2001”N6ŒŽ4“úiŒŽj13:30 -- 6ŒŽ6“úi…j17:00
‰ďę ‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š1ŠK115†Žş
Œ¤‹†‘ă•\ŽŇ ‹ŕŽqšMi‹ăB‘ĺŠw‘ĺŠw‰@”—ŠwŒ¤‹†‰@j
•ńW ěŹ‚ľ‚ȁE˘B ƒvƒƒOƒ‰ƒ€‚Ěƒz[ƒ€ƒy[ƒW—L‚č
–źĚ ‘ć ‚S ‰ń‘㐔ŒQ‚Ć—ĘŽqŒQ‚Ě•\Œť˜_Œ¤‹†W‰ď
“ú’ö 2001 ”N 6 ŒŽ 15 “ú - 6 ŒŽ 17 “ú
EEE/TD> ă’qŒyˆä‘ňƒZƒ~ƒi[ƒnƒEƒX
ƒvƒƒOƒ‰ƒ€Ó”CŽŇ ě’†é–ž (ă‘ĺE—)A ŻŽir–ž (“Œ‹ž—‰Č‘ĺE—H)A
’Jčr”V (L‘ĺE—)
•ńW ěEŹ—\’č
–źĚ ”ރ–Šx‘㐔Šô‰˝ƒZƒ~ƒi[‚Q‚O‚O‚P
“ú’ö2001 ”N 6 ŒŽ 25 “úiŒŽj-- 29 “úi‹ŕj
‰ďę”ރ–Šx‚Œ´ ň‹˝
˘˜blě–”—Y“ń˜Yi“Œ‘ĺE”—jAŹ–Ř‘]Œ[ŽŚi“Œ‘ĺE”—j
Ź—ѐł“Ti“s—§‘ĺE—jAŠFě—´”ŽiEŒH‘ĺE—Hj
•ńW—\’č‚Č‚ľ
–źĚ‘ć 18 ‰ń‘㐔“I‘g‡‚š˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö2001”N‚VŒŽ‚Q[‚S“ú
‰ďęç—t‘ĺŠw‚ŻE₫‰ďEŮ
Ó”CŽŇ–k‹lłŒ° (ç—t‘ĺE—)
•ńWě‚é—\’č
–źĚ ‘ć 9 ‰ńŽ”˜_ƒTƒ}[ƒXƒN[ƒ‹
“ú’ö2001 ”N 7 ŒŽ 15 “úi“új-- 19 “ú(–؁jŒß‘O
‰ďę‘–Ż‹x‰É‘ş@‘ĺ‹v–쓇iŁŒË“ŕŠC‘—§Œö‰€j
˘˜b–đ•˝–ě@Š˛iˆ¤•Q‘ĺE—j
•ńWě‚é—\’č
TOP ‚É–ß‚é TOP ‚É–ß‚é
–źĚ ‘ć 46 ‰ń‘㐔ŠwƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö2001 ”N 7 ŒŽ 30 “úiŒŽj-- 8 ŒŽ 2 “úi–؁j
‰ďę‘ĺă‘ĺŠw–L’†ELƒƒƒ“ƒpƒX
˘˜bl‰z’Jd•viç—t‘ĺE—jA‘ –ě˜a•Fi“s—§Eĺj AX˜e~i‹ž‘ĺE—j
EPˆäŽO•˝iă‘ĺE—j
•ńWě‚é—\’č
–źĚ ‘ć 10 ‰ń“ú–{”Šw‰ď‘ŰE¤‹†W‰ď u‘㐔ŒQ‚Ć—ĘŽqŒQ‚Ě•\Œť˜_v
“ú’ö2001 ”N 8 ŒŽ 1 “ú -- 8 ŒŽ 10 “ú
‰ďęă’q‘ĺŠw
‘gDˆĎˆő‰ďŻŽir–ž (“Œ‹ž—‰Č‘ĺE—HA ˆĎˆő’ˇ) A ”Œ´łŽ÷ (‹ž‘ĺE”—Œ¤)A
ě’†é–ž (ă‘ĺE—)A ⪓cŒ’ˆę (ă’q‘ĺE—H) A G. Lusztig (MIT)
•ńW i•ńW‚Í, Advanced Studies in Pure Math ‚Š‚çoEŗ\’čj
ƒz[ƒ€ƒy[ƒW‚ ‚č
–źĚ “ŒƒAƒWEA‚̑㐔Šô‰˝
“ú’ö ‚Q‚O‚O‚P”N‚WŒŽ‚R“ú -- ‚P‚O“ú
‰ďę ‘Ű‚“™Œ¤‹†Š(IIAS)(‹ž“s•{‘ŠŠyŒS)
EgDˆĎˆő ‘ĺŸş˜Ni“ż“‡‘ĺŠwjAĄ–ěˆęGi‘ĺă‘ĺŠwjAX˜e~i‹ž“s‘ĺŠwj
’†ŽR¸i‹ž‘吔—Œ¤jA‰PˆäŽO•˝i‘ĺă‘ĺŠwj
•ńW ěŹ—\’čA ƒz[ƒ€ƒy[ƒW‚ ‚č
–źĚ ‘ć‚P‰ń‘˝Œł”—‘ŰƒVƒ“ƒ|ƒWƒEƒ€i‰źĚj
u•ŰŒ^Œ`ŽŽ‚Ć p i•\Œťv
“ú’ö 2001 ”N 8 ŒŽ 20 “úiŒŽj-- 24“úi‹ŕj
‰ďę ”ň‘ˁE‚ŽRi‚Đ‚žƒzƒeƒ‹ƒvƒ‰ƒUj
ŽĺĂŽŇ “ĄŒ´ˆęG(–źŒĂ‰Ž‘ĺŠwjA‰F‘ň’Bi—§‹ł‘ĺŠwj
•ńW ƒz[ƒ€ƒy[ƒW: http://www.math.nagoya-u.ac.jp
or http://www.rikkyo.ne.jp/~uzawa/autom.htm
–źĚ Conference on Commutative Algebra, 2001.
“ú’ö2001 ”N 8 ŒŽ 20 “ú -- 25 “ú
‰ďę‰Ą•lŠCˆő‰ďŠŮ (Yokohama Seamen's Club)
˘˜bl Œă“Ą Žl˜Y (–žŽĄ‘ĺŠw—HjC“n•Ó Œhˆę(“ú‘ĺE•ś—)
•ńW?
–źĚ ƒ‚ƒWƒ…ƒ‰ƒC‹óŠÔ‚ĚŠô‰˝Šw‚Ć‰ÂĎ•ŞŒn
“ú’ö2001 ”N 9 ŒŽ 3 “ú(ŒŽ) -- 7 “ú(‹ŕ)
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
‘gDˆĎˆőâV“Ą ­•F(_ŒË‘ĺ —)A âV“Ą ‹ąŽi(‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š)
‘ĺŽR Ez‰î(‘ĺă‘ĺE—), ‘ź
•ńW?
–źĚ “ú“Ć‹¤“ŻƒZƒ~ƒi[ u•ŰŒ^Œ`ŽŽ‚Ćƒ[[ƒ^ŠÖ”‚Ě–žŽŚ“I\‘˘v
(JSPS ‚Ć DFG ‚Ě“ú“ƉȊw‹Ś—ÍŽ–‹ĆA“ú“ĆƒZƒ~ƒi[Œă‰‡‚É‚ć‚éj
“ú’ö‚Q‚O‚O‚P”N‚XŒŽ‚X“úi“új-‚P‚T“úi“yj
‰ďę”’”nƒnƒCƒ}ƒEƒ“ƒgƒzƒeƒ‹
ŽĺĂŽŇˆÉŽR’m‹`i‘ĺă‘ĺŠwj Winfried Kohnen(Heidelberg ‘ĺŠwj
•ńW ěŹ—\’č ƒz[ƒ€ƒy[ƒW—L‚č
–źĚ uƒKEƒA—˜_‚Ćƒ‚ƒWƒ…ƒ‰[Œ`ŽŽ‚đ‚ß‚Ž‚鐔˜_v
"Galois theory and modular forms"
“ú’ö ‚Q‚O‚O‚P”N ‚XŒŽ‚Q‚T“úi‰Îj?‚Q‚X“ú(“y)
‰ďę “Œ‹ž“s—§‘ĺŠw ‘ŰŒđ—Ź‰ďŠŮ‘ĺ‰ď‹cŽş
ƒvƒƒOƒ‰ƒ€Ó”CŽŇ ‹´–{Šěˆę˜Ni‘ˆî“c‘ĺŠwE—HjA’†‘ş”Žşi“Œ‹ž“s—§‘ĺŠwE—j
•ńW ƒz[ƒ€ƒy[ƒW—L‚č
–źĚ ‘ć 34 ‰ńŠÂ˜_‹y‚Ń•\Œť˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö2001”N10ŒŽ15“ú(ŒŽ) -- 17“ú (…)
‰ďę‘O‹´ƒeƒ‹ƒT (‘O‹´Žsç‘ă“c’Ź2-5-1)
˘˜bl“Ą“cŽši’}”g‘ĺŠwE”ŠwŒnEjA ‘ĺ’|Œöˆę˜YiŒQ”n‘ĺŠwE‹łˆçj
•ńWěŹ—\’č
–źĚ Communications in Arithemetic Fundamental Groups
“ú’ö 2001 ”N 10 ŒŽ 29 “ú -- 31 “ú
‰ďę ‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š 115 †Žş
ŽĺĂŽŇ ’†‘ş”Žşi“Œ‹ž“s—§‘ĺEw)
•ńW ”—Œ¤u‹†˜^‚đo”Ĺ—\’č ƒz[ƒ€ƒy[ƒW—L‚č
–źĚ ‘ć‚S‰ńu‘㐔Šw‚ĆŒvŽZvŒ¤‹†W‰ď (AC2001)
“ú’ö 2001”N11ŒŽ5“ú (ŒŽ) -- 9 “ú (‹ŕ)
‰ďę “Œ‹ž“s—§‘ĺŠw ‘ŰŒđ—Ź‰ďŠŮ
ŽĺĂŽŇ ŹŠÖ “š•v(ŽRŒ`‘ĺŠw)A’†‘ş Œ›(“Œ‹ž“s—§‘ĺŠwjAŒ´“c šW(ŽRŒ`‘ĺŠwj
‘q“c r•F(“Œ‹ž“s—§‘ĺŠwj
•ńW ƒz[ƒ€ƒy[ƒW
–źĚ Workshop on moduli
“ú’ö ‚Q‚O‚O‚P”N‚P‚PŒŽ‚P‚Q“ú?‚P‚PŒŽ‚PES“ú
‰ďę –źŒĂ‰Ž‘ĺŠwEĺŠw‰@‘˝Œł”—‰ČŠwŒ¤‹†‰Č
ŽĺĂŽŇ ‹ŕ“ş˝”Vi–źŒĂ‰Ž‘ĺŠwj
•ńW ‚Č‚ľ
–źĚ ‘ć 23 ‰ń‰ÂŠˇŠÂ˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö2001 ”N 11 ŒŽ 19 “úiŒŽj- 22 “úi–؁j
‰ďęƒTƒ“ƒsƒA‘q•~i‰ŞŽRŒ§‘q•~Žsj
˘˜bl“ňč–rŽŔiL“‡‘ĺŠwj
•ńWěŹ—\’č
–źĚ‰đÍ“IEŽ”˜_‚̐V‚ľ‚˘“WŠJ
“ú’ö2001 ”N 11 ŒŽ 26 “úiŒŽj-- 30 “úi‹ŕj
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
Œ¤‹†‘ă•\ŽŇ’JěD’ji–źŒĂ‰Ž‘ĺŠwj
•ńWě‚é—\’č
–źĚ ‘㐔“I‘g‡‚š˜_Œ¤‹†W‰ď
“ú’ö‚Q‚O‚O‚P”N1‚QŒŽ‚P‚V“ú[‚P‚X“ú
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
Œ¤‹†‘ă•\ŽŇ@­şOi‹ă‘吔—)
•ńWě‚é—\’č
–źĚ uŽ”˜_‚Ě‚ą‚ĚŽĺ‘čAŽŠ•Ş‚Í‚ą‚¤l‚Ś‚évŽáŽč”­•\‰ď
“ú’ö2001 ”N 12 ŒŽ 19 “úi…j-- 21 “úEi‹ŕj
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
Œ¤‹†‘ă•\ŽŇˆÉŒ´N—˛
•ńWě‚é—\’č
–źĚ International Workshop on Categorical Algebra,
Deformation Theory and Field Theory
iƒJƒeƒSƒŠƒJƒ‹‘㐔A•ĎŒ`—˜_‚ƏęE̗˜_A‘Űƒ[ƒNƒVƒ‡ƒbƒvj
“ú’ö 2002”N@1ŒŽ7“ú(ŒŽ)--11“ú(‹ŕ)
‰ďę ‹ž“s‘ĺŠw‘ĺŠw‰@—ŠwŒ¤‹†‰ČE@E”Šw‹łŽş
‘gDˆĎˆő [’JŒŤ–č(‹ž‘ĺ—jAâV“Ą­•F(_ŒË‘ĺ—jAâV“Ą‹ąŽi(‹ž‘吔—Œ¤j
•ńW –˘’čA ƒz[ƒ€ƒy[ƒW‚ ‚č
–źĚ •ęŠÖ”‚Ć‚ť‚ĚŽü•Ó
“ú’ö ‚Q‚O‚O‚Q”N‚PŒŽ‚Q‚R“ú?‚PŒŽ‚Q‚T“ú
‰ďę –kŠC“š‘ĺŠw—Šw•””Šw‰Č‚S?‚T‚O‚WEłŽş
˘˜bl ‹g“c’ms(–k‘ĺ—E”Šw yoshidat@math.sci.hokudai.ac.jp)
EńW ěŹ—\’č
–źĚ •ŰŒ^Œ`ŽŽ‚¨‚ć‚Ń‚ť‚ę‚É•t‚ˇ‚éƒfƒBƒŠƒNƒŒ‹‰”‚ĚŒ¤‹†
“ú’ö‚Q‚O‚O‚Q”N‚PŒŽ‚Q‚W“úiŒŽj-‚QŒŽ‚P“úi‹ŕj
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
Œ¤‹†‘ă•\ŽŇŒj“c‰p“TiŽş—–H‹Ć‘ĺŠwj
•ńWě‚é—\’č
–źĚ ‘ć‚P‰ń•ŰŒ^Œ`ŽŽŽü•Ó•Ş–ě
ƒXƒvƒŠƒ“ƒOEƒRƒ“ƒtƒ@ƒŒƒ“ƒX u•ŰŒ^Œ`ŽŽŠÂv
“ú’ö‚Q‚O‚O‚Q”N‚QŒŽ‚P‚U“úi“yj-- ‚Q‚O“úi…j
‰ďę•l–źŒÎƒJEŠƒAƒbƒNi¤H‰ď‹cŠŒ¤CŽ{Ýj
ŽĺĂŽŇˆÉŽR’m‹`i‘ĺă‘ĺŠwjAÖ“Ą‹ąŽii‹ž‘吔—Œ¤j
â“ŕ‰pˆęi‹ăB‘ĺŠwjA‹{–{‰ë•Fi’}”g‘ĺŠwj
•ńWě‚é—\’č ƒz[ƒ€ƒy[ƒW
–źĚ Algebraic Geometry Conference Iitaka 60
“ú’ö ‚Q‚O‚O‚Q”N‚QŒŽEP‚W“ú(ŒŽ)[‚Q‚P“úi–Ř)
‰ďę “Œ‹ž‘ĺŠw”—‰ČŠwŒ¤‹†‰Č‘ĺu‹`Žş
ŽĺĂŽŇ ě–”—Y“ń˜Y(“Œ‹ž‘ĺŠw)
•ńW ‚Č‚ľ
–źĚ ‘ˆî“c‘ĺŠwŽ”˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö ‚Q‚O‚O‚Q”N‚RŒŽ‚P‚W“ú(ŒŽ)[‚Q‚O“úi–Ř)
EEE/TD> ‘ˆî“c‘ĺŠw—HŠw•”
ŽĺĂŽŇ ‘Ť—§P—YAŹźŒ[ˆęA‹´–{Šěˆę˜Ni‘ˆî“c‘ĺŠwj
•ńW ě‚é—\’č


2000 ”N“x‚ɍs‚í‚ę‚˝ƒVƒ“ƒ|ƒWƒEƒ€
(20 lˆČăŽQ‰ÁA‚Ü‚˝‚Í•ńW‚Ě‚ ‚é‚ŕ‚́BŠJĂ“ú’ö‡j
–źĚ Œˇ—˜_‚ÉŠÖ‚í‚é‘㐔Šô‰˝Šw‚Ć‰ÂĎ•ŞŒn
“ú’ö2000 ”N 6 ŒŽ 12 “ú(ŒŽ) -- 16 “ú(‹ŕ)
‰ďę‹ž“s‘ĺŠwE”—‰đÍŒ¤‹†Š
‘gDˆĎˆőâV“Ą ­•F(_ŒË‘ĺE—)
•ńW—L‚či”—Œ¤u‹†˜^‚Ć‚ľ‚ďo”Ĺ—\’čj
–źĚ ‘ć 17 ‰ń‘㐔“I‘g‚ݍ‡‚í‚š˜_EVƒ“ƒ|ƒWƒEƒ€
“ú’ö2000 ”N 6 ŒŽ 19 “úiŒŽj-- 21 “úi–؁j
‰ďę’}”g‘ĺŠw
˘˜bl‹{–{‰ë•Fi’}”g‘ĺE”Šwj—é–ŘŠ°i‘ŰŠî“‹ł‘ĺj
•ńWu‹†˜^—L‚či’}”g‘ĺA‹{–{‚܂Łj
–źĚ ‘㐔ŒQă‚Ě•ŰŒ^Œ`ŽŽE•ŰŒ^•\Œť‚Ć•ŰŒ^“I $L$ ŠÖ”
“ú’ö2000 ”N 6 ŒŽ 26 “úiŒŽj-- 30 “ú i‹ŕj
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
Œ¤‹†Eă•\ŽŇ’r“c@•Űi‹ž‘ĺE—j
•ńWu‹†˜^—L‚či‹ž‘吔—‰đÍŒ¤‹†Šj
–źĚ ‘ć 3 ‰ń‘㐔ŒQ‚Ć—ĘŽqŒQ‚Ě•\Œť˜_Œ¤‹†W‰ď
“ú’ö2000 ”N 6 ŒŽ 30 “úi‹ŕj-- 7 ŒŽ 2 “úi“új
‰ďęŠÖźŠw‰@çŠ ƒZƒ~ƒi[ƒnƒEƒX
ƒvƒƒOƒ‰ƒ€
Ó”CŽŇ
ě’†é–ž (ă‘ĺE—)A ŻŽir–ž (“Œ‹ž—‰Č‘ĺE—H)A
’Jčr”V (L‘ĺE—)
•ńW —LEE(“Œ‹ž—‰Č‘ĺE—HAŻŽi‚܂ŁAŽc•” 30ű)
–źĚ ‘ć 8 ‰ńŽ”˜_ƒTƒ}E[ƒXƒN[ƒ‹
“ú’ö2000 ”N 7 ŒŽ 12 “ú …j- 15 “úi“yj
‰ďę‘–Ż‹x‰É‘ş@‹ß]”Ş”Ś
˘˜blă“cŸi“Ţ—Ç—Žq‘ĺj
•ńW—L‚či“Ţ—Ç—Žq‘ĺAă“cŸ‚܂Łj
–źĚ Algebraic Geometry 2000
“ú’ö‚Q‚O‚O‚O”N‚VŒŽ‚Q‚O“ú?‚R‚O“ú
‰ďę’ˇ–ěŒ§•ä‚’ŹˆŔ“Ü–ěň‹˝
‘gDˆĎˆőMark Green (UCLA), Luc Illusie (Paris), ‰Á“Ą˜a–ç (“Œ‘ĺ ”—),
Eduard Looijenga (Utrecht), Œüˆä@EÎ(–ź‘ĺ ‘˝Œł),
Ä“Ą@GŽi (–ź‘ĺ ‘˝Œł),‰Pˆä@ŽO•˝ (ă‘ĺ —)
•ńW •ńW—L‚čiAdv. Stud. Pure Math. ‚ć‚čo”Ĺ‚Ě—\’čj
–źĚ ‘ć 45 ‰ń‘㐔ŠwƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö2000 ”N 8 ŒŽ 7 “úiŒŽj?10 “úi–؁j
‰ďę‹ăB‘ĺŠw˜Z–{źƒLƒƒƒ“ƒpƒX
˘˜blŒIŒ´Ťli“s—§‘ĺj‰F–ěŸ”Žiă‘ĺE—j â“ŕ‰pˆęi‹ă‘ĺE”—j
Ź’rł•vi‹ă‘ĺE”—j
•ńW—L‚či“Œ–k‘ĺE—AX“cN•v‚܂ŁAŽc•”–ń50űj
–źĚ ‘ć 6 ‰ń’Ă“cm‘ĺŠwŽ”˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö‚Q‚O‚O‚O”N‚XŒŽ‚S“úiŒŽj-‚U“úi…j
‰ďę’Ă“cm‘ĺŠw
ŽĺĂŽŇ•ĐŽRFŽŸA‘ž“ci’Ă“cm‘ĺjA ‘ž“c‰ëŒČi“ŒŠC‘ĺj
•ńW—L‚čB ’Ă“cm‘ĺî”‰ČŽ––ąŽş saitoc@tsuda.ac.jp
ƒz[ƒ€ƒy[ƒW
–źĚ ‘ć 3 ‰ńŽ”˜_ƒI[ƒ^ƒ€ƒ[ƒNƒVƒ‡ƒbƒv
“ú’ö ‚Q‚O‚O‚O”N‚XŒŽ‚X“úi“yj-- ‚XŒŽ‚P‚R“úi…j
‰ďęE’”nƒnƒCƒ}ƒEƒ“ƒgƒzƒeƒ‹
ŽĺĂŽŇˆÉŽREm‹`iă‘ĺE—j
•ńW•ńW—L‚čiă‘ĺAˆÉŽR’m‹`‚܂Łj
ibukiyam@math.wani.osaka-u.ac.jp
ƒz[ƒ€ƒy[ƒW
–źĚ ‘ć 33 ‰ńŠÂ˜_‹y‚Ń•\Œť˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö2000 ”N 9 ŒŽ 18 “úiŒŽj-- 20 “úi…j
‰ďę“‡Ş‘ĺ‘‡—H
˘˜blŹ—Ń Ž i––勳ˆç‘ĺjA A“c —ći“‡Ş‘ĺE‘‡—Hj
•ńEW—L‚či––勳ˆç‘ĺAŹ—Ń Ž ‚܂Łj
–źĚ Codes, Lattices, Modular forms and Vertex operator algebras.
“ú’ö‚Q‚O‚O‚O”N‚P‚OŒŽ‚Q“úiŒŽj‚Š‚ç‚S“úi…j
‰ďęŽRŒ`‘ĺŠw
ŽĺĂŽŇ ŹŠÖ“š•vAŒ´“cšWiŽRŒ`‘ĺjAâ“ŕ‰pˆęi‹ă‘ĺj
•ńW•ńW‚ ‚čiŽRŒ`‘ĺAŒ´“cšW‚܂Łj
–źĚ International Workshop on Combinatorics
iŒ“‘ć 12 ‰ń“ú•§‘g‡‚š˜_ƒ[ƒNƒVƒ‡ƒbƒvj
“ú’ö‚Q‚O‚O‚O”N‚P‚OŒŽ‚T“úi–؁j‚Š‚ç‚W“úi“új
‰ďę‘ ‰¤‰ˇňƒGƒR[ƒzƒeƒ‹
ŽĺĂŽŇ â“ŕ‰pˆęi“ú–{‘¤Ó”CŽŇjAM. Deza (ƒtƒ‰ƒ“ƒX‘¤Ó”CŽŇj
•ńW•ńW–ł‚ľ
–źĚ ‰đE͐”˜_‚Ě“W–]‚Ə”–â‘č
“ú’ö2000 ”N 10 ŒŽ 23 “úiŒŽj-- 27 “úi‹ŕj
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
Œ¤‹†‘ă•\ŽŇŽá—ŃŒ÷iŹćü‘ĺEEH)
•ńWu‹†˜^—L‚či‹ž‘吔—‰đÍŒ¤‹†Š)
–źĚ éč‘㐔Šô‰˝ŠwƒVƒ“ƒ|ƒWƒ…[ƒ€
“ú’ö‚Q‚O‚O‚O”N‚P‚OŒŽ‚Q‚S“ú-‚Q‚V“ú
‰ďę•şŒÉŒ§—§éč‘ĺ‰ď‹cŠŮ
˘˜bl ‘ĺ–ě_Žiiă‘ĺ —jC‰ÁEĄ•śŒłi‹ž‘ĺ —j
•ńW•ńW—L‚čiă‘ĺA‘ĺ–ě‚܂Łj
–źĚ ‘ć 22 ‰ń‰ÂŠˇŠÂ˜_ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö2000 ”N 11ŒŽ 6 “úiŒŽj-- 9 “úi–؁j
‰ďęƒCƒ“ƒeƒbƒN‘ĺŽRŒ¤CƒZƒ“ƒ^[
˘˜blŹŽR—zˆęi‹ŕ‘ňH‹Ć‘ĺŠwj
•ńW—L‚či‹ŕ‘ňH‹Ć‘ĺŠwAŹŽR—zˆę‚܂Łj
–źĚ ‘ć 4 ‰ń‘㐔Šô‰˝E”˜_‹y‚Ń•„†EˆĂ†ƒVƒ“ƒ|ƒWƒEƒ€
“ú’ö ‚Q‚O‚O‚O”N‚P‚PŒŽ‚Q‚P“úi‰Îj-‚Q‚S“úi‹ŕj
‰ďę“Œ‹ž‘ĺŠw”—‰ČŠwŒ¤‹†‰Č
˘˜bl‰Ş–{—´–ž(NTT)AŒj@—˜s(“Œ‘ĺjA •˝ź–Lˆę(–@­‘ĺ)EAŽO‰YWŽŚ
•ńW•ńW—L‚či“Œ‘吔—AŒj@—˜s‚܂Łj
–źĚ Modular Invariance, ADE, Subfactors, and
Geometry of moduli spaces.
“ú’ö2000 ”N 11 ŒŽ 27 iŒŽ) -- 12 ŒŽ 1 “ú(‹ŕ)
‰ďęŠÖźƒZƒ~ƒi[ƒnƒEƒX
ŽĺĂŽŇ’†‘şE@ˆč(–kE嗁EA‚ľ‚Ě‚žŒ’ˆę(ă’q—H)A Ö“Ą‹ąŽi(‹ž“s”—Œ¤)
‰Í“Œ–ő”V(“Œ‘吔—)AŒüˆä–Î(–źŒĂ‰Ž‘˝Œł)A ’†“‡Œ[i‹ž‘ĺ—j
Reid(Warwick), Evans(Cardiff)
•ńW•ń‘–ł‚ľ
–źĚ ĺ‘䐔˜_ŹŒ¤‹†W‰ď 2000
“ú’ö2000 ”N 12 ŒŽ 1 “ú(‹ŕ)
‰ďę“Œ–k‘ĺŠw ‘ĺŠw‰@î•ń‰ČŠwŒ¤‹†EČ
‘ă•\ŽŇ“ŕ“c ‹ť“ń i“Œ–k‘ĺEî•ńj
•ńW—L‚či“Œ–k‘ĺEî•ńA“ŕ“c ‹ť“ń‚܂Łj
–źĚ Explicit Algebraic Geometry
“ú’ö‚Q‚O‚O‚O”N‚P‚QŒŽ‚V“ú-‚X“ú
‰ďę“Œ‹ž‘ĺŠw”—‰ČŠwŒ¤‹†‰Č
˘˜blě–”@—Y“ń˜Yi“Œ‘吔—j
•ńW•ńW‚Č‚ľ
–źĚ ŒQ˜_‚ƁEť‚ĚŽü•Ó[‘Š‡‚Ć“W–]
“ú’ö‚Q‚O‚O‚O”N1‚QŒŽ‚P‚P-‚P‚R“ú
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
Œ¤‹†‘ă•\ŽŇ‹gr‘i‘ĺă‹łˆçEE
•ńW•ńWěŹ—\’č
–źĚ ‘㐔“IŽ”˜_‚Ć‚ť‚ĚŽü•Ó
“ú’ö2000 ”N 12 ŒŽ 18 “úiŒŽj-- 22 “úEi‹ŕj
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
Œ¤‹†‘ă•\ŽŇˆÉŒ´N—˛i‹ž‘ĺE”‰đŒ¤j
•ńWu‹†˜^—L‚či‹ž‘吔—‰đÍŒ¤‹†Šj
–źĚ Workshop on Arithmetic Geometry and Differential Equations
“ú’ö2001 ”N 1ŒŽ 8 “ú(ŒŽ) -- 1 ŒŽ 12 EE‹ŕ)
‰ďę–kŠC“š‘ĺŠw
ŽĺĂŽŇ‰Á“Ą •śŒł (‹ž‘ĺ—) A’†‘şˆč(–k‘ĺ—)
•ńW•ń‘‚͍쐬—\’či˜A—ć ‰Á“Ą •śŒłj
–źĚ Arithmetic and algebraic geometry
“ú’ö‚Q‚O‚O‚P”N‚PŒŽ‚P‚T“ú-‚P‚W“ú
‰ďę“Œ‹ž‘ĺŠw”—‰ČŠwŒ¤‹†‰Č
˘˜blŒj@—˜s
•ńW•ńW‚Č‚ľ
–źĚŽ”˜_ƒ~ƒjŒ¤‹†W‰ď
“ú’ö‚Q‚O‚O‚P”N‚PŒŽ‚R‚O“úi‰Îj-‚R‚P“úi…j
‰ďę‘ĺă‘ĺŠw
ŽĺĂŽŇˆÉŽR’m‹`A“n•”—˛•vi‘ĺă‘ĺŠwj
•ńW•ńW‚Č‚ľ. ƒvƒƒOƒ‰ƒ€ŒfÚƒz[ƒ€ƒy[ƒW
–źĚ •„†EŠiŽqE’¸“_ě—p‘f‘㐔‚Ć—LŒŔŒQ
“ú’ö‚Q‚O‚O‚P”N‚QŒŽ‚P‚X“ú-‚Q‚P“ú
‰ďę‹ž“s‘ĺŠw”—‰đÍŒ¤‹†Š
Œ¤‹†‘ă•\ŽŇ–k‹lłŒ° iç—t‘ĺ)
•ńW•ńWěŹ—\’č
–źĚ ‘ˆî“c‘ĺEwŽ”˜_Œ¤‹†W‰ď
“ú’ö2001 ”N 3 ŒŽ 11 “ú(“ú)-13“ú(‰Î)
‰ďę‘ˆî“c‘ĺŠw—HŠw•”
˘˜blŹźŒ[ˆęA‹´–{Šěˆę˜Y
•ńW??
–źĚ “ú’†ƒZƒ~ƒi[u”˜_“I•ű–@‚Ě“WŠJv
“ú’ö2001 ”N 3ŒŽ12“úiŒŽj-16“úi‹ŕj
‰ďę‹ß‹E‘ĺŠwE‹ăBEHŠw•”
‘ă•\ŽŇ‹ŕŒőŽ i‹ß‹E‘ĺE‹ăBEHj Chaohua Jiai’†‘‰ČŠw‰@j
•ńW•ńWěŹ—\’č

‚ą‚Ěƒy[ƒW‚̐擪‚Ö

•Ş‰Č‰ďƒz[ƒ€ƒy[ƒWƒgƒbƒv‚Ö